
A Reinforcement Learning Approach to
Optimize Performance of Stream Processors

Arnaud Dethise
KAUST

arnaud.dethise@kaust.edu.sa

1 INTRODUCTION
Real-time data analytics are commonly used by online ser-
vices providers to gain insight from the large amount of data
they collect. For example, a social network wants to detect
the sudden popularity of a specific type of content, or an
e-commerce company wants to verify the success of a flash
promotional campaign.

Companies using real-time big data analytics systems have
stringent requirements on their performance, and want to
achieve both high throughput and low (tail) latency. Dis-
tributed stream processing systems such as Apache Storm [1]
and Twitter Heron [13] are being increasingly used in the in-
dustry for their ability to quickly process streams of real-time
big data and their scalability.

Available stream processing systems such as Storm and
Heron have dozens of parameters that can be configured to
change the behavior of the stream processor. The value of
those parameters can drastically affect the performance of the
application and must be tuned carefully. This configuration
task is very challenging because the parameters have complex
inter-dependencies and can be arranged in thousands of dif-
ferent configurations. An inappropriate configuration could
potentially cause a violation of the Service Level Objectives
(SLOs) or waste resources.

Another source of challenges in parameter tuning comes
from dynamic changes in workload [4] and difference between
stream processing applications [12]. A configuration that
is optimal for a specific application and a given workload
might be inefficient in a different environment, and automated
systems might fail to adapt to some particular environments.

Figure 1 illustrates how parameter tuning can change the
behavior and performance of a stream processor. This figure
shows an example of a simple stream processing application
that counts words in a stream of text (such as books or
tweets) and outputs the most frequent ones over a tumbling
window.

Word	
Split Count Top	

Words
Text	

stream

Workers Threads

Figure 1: An example streaming application

The application is divided in four logical stages (Text
Stream, Word Split, Count and Top Words). Within each of
the stages, we can set the system parameters to change the
number of workers and the degree of parallelism (represented
by the colored shapes), the size of communication buffers
(represented by the black arrows), and the mapping of workers
to physical machines.

To perform this configuration task, one approach is to
configure the system manually. However, this is a daunting
and time-consuming process that requires hours of inspec-
tion and testing by the performance engineers [2, 8], as well
as advanced domain-specific knowledge of the system and
application from an expert performance analyst [14]. This
costly task will also need to be repeated when the system
and requirements change, as the best configuration depends
on the infrastructure, application, workload and desired per-
formance objectives.

Our objective is to attempt to build a tool to automatically
solve this tuning task. We propose a new approach for stream
processing system configuration by employing recent advances
in machine learning. In particular, we follow the ideas from
DeepRM [10] and use a deep reinforcement learning model
to solve the configuration problem.

2 RELATED WORKS
A lot of research has been done in the area of parameter
tuning for other systems such as databases, with iTuned [5]
and OtterTune [14], and batch processing systems, with
MROnline [9] and Ernest [15]. These categories of systems
also benefit from other works in the literature that developed
highly efficient query planners and fast approximate system
models.

However, unlike databases and batch processing systems,
automating the configuration and optimizing the performance
of stream processors is an area that has seen little work, and
the performance of this type of system is not well understood.
Stream processors can support a wide variety of user-defined
applications that have a difficult to predict behavior, and
additional constraints arise from working with real-time data.
Additionally, multiple previous works performing stream pro-
cessor tuning only considered single metrics (such as optimiz-
ing the end-to-end latency) rather than multiple metrics (for
example, optimizing the latency while maintaining a minimal
throughput).

Different techniques have been proposed to automate the
optimization of stream processing systems. Bilal et al. [3]
developed a search-based framework for automated offline
parameter tuning of stream processors, which applies iterative



optimization algorithms on measurements from actual runs
of streaming applications. However, the drawback of this
solution is that adapting to any change in workload needs to
run the optimization process again, which takes from minutes
to hours and requires a testing environment separate from
the production systems. Floratou et al. [6] modified Heron
to provide self-healing and self-tuning capabilities through a
diagnose-and-resolve approach. However, this system requires
human expertise in performance engineering to define the
policies that are applied to resolve problems.

3 MACHINE LEARNING FOR SYSTEMS
Artificial intelligence offers many solutions that can be used to
improve the performance of systems, and we believe it could
apply to stream processors as well. Those solutions include
for example search-based techniques, system modeling and
performance prediction, and machine learning. We focused
our research on machine learning because this approach makes
it possible to reuse past observations and separate the training
and testing phases, two features that are useful in always-
running systems.

Several Machine Learning techniques have been used in
the literature, such as Deep Reinforcement Learning [11],
regression models [7] or Gaussian Processes [5]. In order to
apply those techniques to stream processors, we will need
to find the most appropriate ways to specialize them to our
application domain, which presents multiple challenges such
as encoding the measurements in a way that can represent
the abstract system features, defining the space of possible
decisions (i.e. the available configurations), and ensuring
the convergence of our method. We expect to encounter
significant challenges in the encoding of our very large action
space and the effects of using non-linear utility functions.

Lastly, as explained in section 4, our current approach
relies on using neural networks and deep reinforcement learn-
ing. Unlike black box optimization algorithms, using deep
learning also requires designing a new efficient neural network
architecture.

4 GOALS AND METHODOLOGY
Our goal is to automatically determine the optimal value
of configurable parameters for a system. The definition of
“optimal” depends on the use case and can be configured de-
pending on the requirements. For example, a text processing
application might want to favor high throughput; one that
manages user requests would prefer low latency; and an appli-
cation that has flexible constraints could favor configurations
that minimize the cost.

Another goal is that our solution should be able to make
online predictions that can be applied to production systems.
This introduces two additional challenges: we cannot afford
to run test configurations which violate the SLOs (we need
to have reasonable confidence that a configuration is good,
if not optimal, when it is installed), and our predictions
need to be fast (in the order of seconds). To achieve this, we
can pre-train a model in an offline phase (commonly called

the training phase in machine learning), and leverage that
knowledge to improve the prediction in the online phase (also
called testing phase). Since applying a new configuration to a
running system can incur an additional cost in performance,
it is important to balance the frequency of new configurations
with the cost of disturbing the system stability.

It is possible that the workload applied to the system
quickly changes while it is running. For example, the arrival
rate of new data could increase, or the data could suddenly
become more relevant to the application and require more
complex processing. Our solution needs to be capable of find-
ing the new optimal configuration when the characteristics
of the workload change.

Lastly, our solution should also be able to cope with new,
unseen types of applications, workloads, and requirements.

To achieve those goals, we follow an approach based on
deep reinforcement learning, inspired from successful work
at automating resource allocation [10] and optimizing video
streaming on networks with unpredictable bandwidth [11].
The context of those solutions is similar to ours as they work
on systems that are complex and face dynamic workloads
and different types of performance requirements.

By using machine learning, we will be able to leverage a
large amount of performance metrics collected in the system.
This data reflects the status and behavior of the application,
but is difficult to understand and use directly. One of the
strengths of neural networks is their ability to extract useful
information without guidance, automatically detecting the
relevance of hidden features and approximating the function
of 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 → 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒. This function is
assumed to be arbitrary, potentially non-convex (with local
maxima) and non-smooth, which is a challenge for some other
machine learning techniques.

Another advantage of using reinforcement learning is that
it removes the need for explicit performance measurements.
Instead, we define a reward function that will be maximized
independently of actual metrics. This approach focuses on op-
timizing the configuration quality depending on the objective
rather than raw performance numbers.

Figure 2 illustrates the general structure of reinforcement
learning systems. In this figure, the reward signal is a function
of the performance defined arbitrarily during training, which
our objective is to maximize. Our work will be to find the
relevant state information to extract from the system and
establish a structure that produces an appropriate action
signal for system configuration.

We can use a corpus of workload traces during the training
phase to infer the best configuration in a given environment
without expressing the workload properties explicitly. The
training corpus defines the various workloads our system can
adapt to, and changing the corpus to redo the training allows
us to adapt the optimizer to a new environment.

Figure 3 shows an example of the proposed architecture
of the optimizer. In this architecture, we show three different
categories of inputs (workload, external metrics, internal met-
rics) that are sent to the optimizer for performance prediction.
In addition to this structure required for the online phase,



Figure 2: Overview of a Reinforcement Learning architecture

there exists a reward signal that is sent as feedback to the
optimizer during the training.

Workload traces

Throughput, latency

Buffers, CPUs

Optimizer

Stream processor

Configuration

Word	
Split Count Top	

Words
Text	

stream

Workers Threads

Figure 3: Proposed structure for the optimizer

The performance of our system will be evaluated by mea-
suring the quality of generated configurations against other
existing solutions using benchmarks that have been presented
in the literature.

A major challenge in designing this system is that machine
learning techniques, and in particular deep reinforcement
learning techniques, need to collect a large amount of samples
to train the model. Without a fast and accurate simulator,
this data collection needs to be run on an actual topology,
which is a time-consuming process. Two approaches could
allow us to mitigate this drawback.

First, we could reuse measurements from past runs to
speed-up the training of our model. While those measure-
ments would lack accuracy due to different conditions, they
can help bootstrap the training of the reinforcement learn-
ing model, particularly in the initial phase when the model
hasn’t collected enough data to avoid regions of the action
space that yield very poor performance results. Optionally,
this could also include measurements collected from running
other similar jobs, although this requires us to prove that
those jobs have a similar behavior when applying the same
configuration.

The second approach is broader and based on the idea
that a long training time can be justified if the model is able
to adapt to a wide variety of applications. To this end, we
would need to be able to accurately predict the optimal con-
figuration even when facing unforeseen changes in workload
or different applications without retraining the model.

5 RESEARCH OBJECTIVES
Our first research objective is to investigate whether machine
learning techniques can be successfully applied to distributed
system optimization to build efficient optimizers. Since those
systems contain many components with complex interactions,
it is very difficult and labor-intensive (if at all possible) to
create accurate models of the system. Without a model, it
is difficult to predict how the system will react to certain
changes.

We will attempt to show that, provided a correct encoding
of system measurements and available tuning knobs, machine
learning techniques are capable of building an internal model
of the system to extract the information relevant to optimiz-
ing the system and selecting a configuration that is (close to)
the optimal.

We also want to characterize how the behavior of a stream
processing system evolves when moving to a different appli-
cation or changing the underlying system (such as system
upgrades or changing network configurations). This would
allow researchers to better characterize the adaptability and
portability of their solutions and systems. In the field of
machine learning in particular, this would also give us a way
to predict when a model needs to be retrained in order to
remain relevant to the application.

To this end, multiple types of difference need to be taken
into account. We have already identified sources of uncer-
tainty in applications, system configuration and updates,
dynamic workloads and hardware.

Another objective is to extract knowledge from our ma-
chine learning agent to improve the understanding of stream
processors. This requires us to adapt techniques of explain-
able artificial intelligence to our system and discover what
information is most significant to improving the application
performance. Those results would allow us to improve opti-
mization techniques for systems. This approach could also
be extended to other uses of machine learning for systems.

Finally, we will try to leverage the knowledge gained in the
previous steps to build a new system that includes machine
learning in its design. This self-tuning system could use neural
networks to infer from measurements how to configure itself
and tune its performance without external intervention.

REFERENCES
[1] Apache Storm. https://storm.apache.org/.
[2] Apache Storm performance tuners.

https://www.ericsson.com/research-blog/apache-storm-
performance-tuners/.

[3] M. Bilal and M. Canini. Towards automatic parameter tuning of
stream processing systems. In Proceedings of the 2017 Symposium
on Cloud Computing, SoCC ’17, pages 189–200, 2017.

[4] N. Bruno and S. Chaudhuri. An online approach to physical
design tuning. In 2007 IEEE 23rd International Conference on
Data Engineering, pages 826–835, 2007.

[5] S. Duan, V. Thummala, and S. Babu. Tuning database con-
figuration parameters with ituned. Proceedings of the VLDB
Endowment, pages 1246–1257, 2009.

[6] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy.
Dhalion : Self-Regulating Stream Processing in Heron. Proceedings
of the VLDB Endowment, pages 1825–1836, 2017.

[7] H. Herodotou, F. Dong, and S. Babu. No One (Cluster) Size
Fits All: Automatic Cluster Sizing for Data-intensive Analytics.



Proceedings of the 2nd ACM Symposium on Cloud Computing,
pages 1–14, 2011.

[8] How Spotify Scales Apache Storm.
https://labs.spotify.com/2015/01/05/how-spotify-scales-apache-
storm/.

[9] M. Li, L. Zeng, S. Meng, J. Tan, L. Zhang, A. R. Butt, and
N. Fuller. Mronline: Mapreduce online performance tuning. In
Proceedings of the 23rd International Symposium on High-
performance Parallel and Distributed Computing, pages 165–
176.

[10] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource
Management with Deep Reinforcement Learning. HotNets ’16,
pages 50–56, 2016.

[11] H. Mao, R. Netravali, and M. Alizadeh. Neural Adaptive Video
Streaming with Pensieve. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication,
SIGCOMM ’17, pages 197–210, 2017.

[12] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8 requirements
of real-time stream processing. SIGMOD Rec., pages 42–47, 2005.

[13] Twitter Heron. https://twitter.github.io/heron/.
[14] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang. Automatic

database management system tuning through large-scale machine
learning. In Proceedings of the 2017 ACM International Confer-
ence on Management of Data, SIGMOD ’17, pages 1009–1024,
2017.

[15] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica.
Ernest: Efficient performance prediction for large-scale advanced
analytics. In 13th USENIX Symposium on Networked Systems
Design and Implementation, NSDI ’16, pages 363–378, 2016.


	1 Introduction
	2 Related Works
	3 Machine Learning for Systems
	4 Goals and methodology
	5 Research objectives
	References

