
Online pattern discovery in distributed, high-dimensional,
streaming data under the YOLO principle.

Andreas Grammenos∗
University of Cambridge
ag926@cl.cam.ac.uk

Cecilia Mascolo†
University of Cambridge
cm542@cl.cam.ac.uk

Jon Crowcroft †
University of Cambridge

jac22@cl.cam.ac.uk

INTRODUCTION
Over the past few decades the amount of data being produced
and transferred over internet has been ever increasing at an al-
most exponential rate but so has the need to analyze them. This
increase, makes storing the data in its entirety for OLAP processing
intractable both for practical reasons (e.g. storage costs) as well as
due to the inherent computational complexity of processing said
data. Also, even if some data are kept, most of the times it is infea-
sible to provide exact answers within a reasonable amount of time,
especially when working in the online setting where we only get to
look at the incoming data only once, which is known as the YOLO1

principle. Additionally, we argue that in many use-cases it is accept-
able to provide approximate answers that are close the exact ones
but can be computed significantly faster while also requiring orders
of magnitude less storage. In addition, to topic of finding and track-
ing emerging, hidden, or periodic patterns can be directly applicable
many use-cases example of which are low latency stock market
monitoring, temperature trend detection, DDoS attack detection
and generally any interesting unbounded information signal.

Of course, this is not a new concept and there have been nu-
merous works either looking at the related theoretical or systems
aspects but almost never both; we argue for such algorithmic tools
in order to be practical and be actually used in practice both aspects
need to be considered at the same time. In particular this work aims
to be, in its final form, a combination of i) algorithmic tools and ii)
systems architecture that will work in tandem to provide answers
to the iii) top-k pattern tracking problem in the streaming, online
setting at a massive scale.

OBJECTIVES
Concretely, our framework will try to satisfy the following criteria:

O1: Ease-of-use. Our implementation will use a widely known
streaming framework in order to maximize its reach and will hide
its complexity by using higher level primitives provided.

O2: Performance. : Aim to provide answers fast, usually with
minimal latency while also being resilient to missing values.

O3: Flexibility. Will be able to adjust the tracked patterns either at
will, or based on a given function f which can be used to determine
the number of patterns to keep in each node.

O4: Scalability. Will be able to handle a vast amount of data, and
be able to distribute the load automatically over the available nodes
thus achieving a linear horizontal scaling.
∗PhD Student, Submitter
†PhD Supervisor
1You Only Look Once

PROBLEM STATEMENT
Givenm groups of data-streams that each one consists of {n1, ...,nm }

co-evolving numeric data-streams, we want to devise a solution
that will solve the following two problems:

• Incrementally find the top-k most dominant patterns Li ∈
R1×k within a single group i ∈ [1,m] using FL function.

• Efficiently combine the each one of them local patterns Li
to find the representative global patterns G ∈ R1×k using
FG function of all monitored streams in each group.

Preliminaries
In this problem we model each data-stream using the time-series
model and as such a stream data-source, for our purposes is an
unbounded sequence of tuples in time-order. For specificity we
assume that such data-streams produce one tuple per time-unit. To
find such patterns more efficiently a sound technique is to find a
method to distribute the workload amongst many workers. This
is performed by splitting the input data-streams into groups and
incrementally finding the patterns in each of the groups. Finding
the patterns in each of the groups is considerably less expensive
than finding all the patterns at once; this step is called local-pattern-
discovery. Then by having discovered each of the groups’ local-
patterns find efficiently the global-patterns that are representative
for all of our monitored streams.

Additionally, we view the original data-streams as points in a
high-dimensional space2, where as stated above, produce one tuple
per time-unit. After grouping the streams; each of the groups’ local-
patterns are extracted using low-dimensional projections of the
original points.

Problem Formalization
Before we introduce these two aforementioned functions we have
to first describe the data-stream distribution amongst each group.
Let a group be denoted as S then each i-th group Si is comprised
out of an unbounded sequence of ni -dimensional vectors where
ni is the number of data-streams contained in the group Si with
1 ≤ i ≤ m and m being the total number of monitored groups.
Si can also be represented as a matrix with ni columns and an
unbounded number of rows. The intersection of matrix Si , defined
as Si (t , l) is the t-th row and the l-th column of Si ; this represents
the value of the l-th stream recorded at time t in the i-th group.
Finally using the definitions described above we are now able to
define the functions for monitoring per-group local-patterns FL and
the aggregated global-patterns FG .

2The dimension can be user adjustable, from 1 to thousands



Function FL definition for local-pattern calculation:

FL : (Si (t + 1, :),B) → Li (t + 1, :) (1)

FL takes as input Si (t + 1, :) ∈ R1×ni vector which contains
current values for each data-stream monitored by the group i at
time (t + 1) and the block-size that we current have, usually this is
a static value throughout the execution of our system.

The function FL has to incrementally maintain the local-patterns
Li ∈ R

1×d which is then propagated to the aggregators in order to
produce the global-patterns. In a similar fashion like FL the defini-
tion for the global-pattern detection function FG follows in full.

FG : (L1(t + 1, :),Lm (t + 1, :)) → G(t + 1, :) (2)

The FG function takes as arguments all the local-patterns Li , i ∈
[1,m] for each one of the m groups that were generated at time
(t + 1) and produces a global-pattern vector G(t + 1, :) at each time-
step which is then propagated to each one of them groups and is
also our final output that holds the top-k most dominant trends of
all monitored streams.

An interesting relaxation of the problem, as it leads to potential
novel research avenues, is to propagate values only at certain points
e.g. when something "interesting" happened; this could expressed
as a particular event occurrence, certain value changes, or could be
given by an arbitrary, node specific, monitor function fm .

PATTERN DISCOVERY USING ONLINE PCA
Principal component analysis is a linear transformation, specifically
it uses an orthogonal transformation to convert a set of observed
possibly correlated values into a set of values of linearly uncorre-
lated variables that are called principal components. The number
of principal components of a lossless transformation is the same as
the number of the original variables before performing PCA. The
dimensionality reduction comes when we are allowed to perform a
lossy PCA transformation, this can be done easily as the principal
components can be sorted based on their significance using the
eigenvalues; this allows to "drop" a number of non-significant prin-
cipal components in order to perform the dimensionality reduction.
Hence, PCA is a great way to reduce the dimensionality of data and
would ideally suit our needs; yet the classic method for computing
PCA is limited by the prohibitive cost of forming the covariance
matrix, which typically is when having a stream of n-dimensional
vectors a n × n dense matrix that in turn requires n2 space. The
quadratic cost of space is, as one might imagine, barred for large
datasets or in streaming scenarios and poses a major bottleneck for
its potential applications.

The output of PCA when operating on streaming vectors of n-
dimensions is a set of k ∈ [1,n], n-dimensional principal com-
ponents which span the subspace created by PCA transformation.
Naturally a lossless application of PCA means that k = n and would
result in a n×n matrix but a relaxation of the lossless decomposition
is expected and we would be allowed to have a significantly reduced
number of principal components. Mitliagkas et al. in [5] proposed
a novel algorithm with strict theoretical bounds on approximation
quality that required O(kn) space which by definition is the lowest
possible when performing PCA. They base their method in the clas-
sic Power-Method as described in [1] and adapt into a block-wise

stochastic variant with great results. The intuition behind their algo-
rithm stemmed from the fact that most stochastic methods for PCA
approximation had a variable and possible large variance at each
step and hence the standard concentration of inequalities would
give vacuous bounds. Their proposed method used a block-wise al-
gorithm that had a variance reduction step built in; in essence they
would update the basis Qτ of PCA once every block using a lossy
QR-decomposition while within each block they would average-out
the noise thus reducing the variance contained in processed values.
For this particular setting each node incrementally calculates its
own Qr basis approximation which is kept locally and at any time
requires O(kn) space.

Finally, we are now ready to define our notion of a pattern,
which we define as the projection the input to the current basis
approximationQr . This operation produces a vector in Rk , where k
is the number of patterns tracked, ordered in terms of significance.

PRELIMINARY IMPLEMENTATION DESIGN
As per (O1) we elected to use for the purposes of our implementa-
tion Apache Flink [2], that although is a relatively new streaming
framework is widely used, mature, and has good support within the
community. In addition, it provides a highly-scalable and flexible
infrastructure that we leverage to achieve (O2). The algorithmic
framework that we developed was based initially on the streaming
PCA methods described in [5, 6] and was briefly outlined above. In
order to satisfy (O3) performed the following two integral changes
in order to satisfy this goal, i) created a user-adjustable thresholding
method for which we would increase/decrease the tracked patterns
during execution and ii) instead of having to transfer the whole
subspace matrix (size O(kn)) we only transfer its projections to the
current input (size O(k)) – which is our local pattern vector in Rk
as described previously. Moreover, this streaming computation of
the projections can happen in multiple remote nodes independently
and due to the fact that PCA is a linear transformation the sum-
maries can be trivially merged in aggregation nodes; this property
enables us to efficiently parallelise our workload (O4). Finally, since
the actual data are not stored which has the side-benefit of inher-
ently preventing the leakage of global information in case a system
node is compromised.

EARLY RESULTS
The modified method shown in [5, 6] with our aforementioned
contributions is able to beat, in terms of accuracy, and pattern dis-
covery existing frameworks [7] while showing to be more scalable
and resilient to faults or missing values. Additionally, our method is
computationally efficient as with our initial implementation, with
no significant language level optimizations, we are able to concur-
rently process, in the online setting, more than 5k streams on a
single thread when using a modern processor3. In all of our experi-
ments and in order to have a direct comparison we used the motes
dataset which was provided from [3] and the baseline performance
calculated using [7].

3Intel Xeon X5690

2



ONGOINGWORK
We are in the process of porting and extending our single-node
proof-of-concept into the distributed environment of Apache Flink
and evaluating its performance at scale. Our goal is to meet and
exceed our set objectives which hopefully, will enable the discovery
of patterns from a vast amount of streaming data that was not
possible before.

FUTURE DIRECTIONS
Future directions would be to finish the implementation of our
system, assess its performance along with solving any potential
engineering and/or algorithmic challenges along the way. Finally,
it would be worth improving current missing value handling mech-
anism with ideas stemming from [4] and experimenting the relaxed
setting of the problem as defined previously, where we only propa-
gate the patterns iff an "interesting" event occurred.

REFERENCES
[1] Raman Arora, Andrew Cotter, Karen Livescu, and Nathan Srebro. 2012. Stochas-

tic optimization for PCA and PLS. In Communication, Control, and Computing
(Allerton), 2012 50th Annual Allerton Conference on. IEEE, 861–868.

[2] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[3] Amol Deshpande, Carlos Guestrin, Samuel R Madden, Joseph M Hellerstein, and
Wei Hong. 2004. Model-driven data acquisition in sensor networks. In Proceedings
of the Thirtieth international conference on Very large data bases-Volume 30. VLDB
Endowment, 588–599.

[4] Armin Eftekhari, Laura Balzano, Michael BWakin, and Dehui Yang. [n. d.]. SNIPE
for Memory-Limited PCA From Incomplete Data: From Failure to Success. ([n.
d.]).

[5] Ioannis Mitliagkas, Constantine Caramanis, and Prateek Jain. 2013. Memory
limited, streaming PCA. In Advances in Neural Information Processing Systems.
2886–2894.

[6] Ioannis Mitliagkas, Constantine Caramanis, and Prateek Jain. 2014. Streaming
pca with many missing entries. Preprint (2014).

[7] Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. 2005. Streaming
pattern discovery in multiple time-series. In Proceedings of the 31st international
conference on Very large data bases. VLDB Endowment, 697–708.

3


	References

