
Using Provenance for Security and Interpretability
Xueyuan Han

Harvard University
Cambridge, Massachusetts

hanx@g.harvard.edu

ABSTRACT
System security is somewhat stymied because it is difficult, if not
impossible, to design system defenses that address the full com-
plexity of a system’s interaction. Interestingly, this problem has
parallels in understanding how machine learning (ML) algorithms
make predictions. Both of these problems require a structured, com-
prehensive understanding of what a system/model is doing. My
dissertation addresses these seemingly disparate problems by ex-
ploiting data provenance, which provides just such a solution. I
exploit provenance both to design intrusion detection systems and
to explain how ML algorithms arrive at their predictions.

1 INTRODUCTION
Security systems such as intrusion detection systems (IDSes) of-
ten require an understanding of system execution, using observed
information flows to make critical security decisions. While the
techniques for modeling system execution to obtain such an un-
derstanding become increasingly sophisticated [5], the underlying
information used remains mostly unchanged. For example, a signif-
icant number of host-based IDSes use system call traces to model
system behavior, evolving from simple enumerations of system call
sequences [8] to variable-length n-gram modeling [15], and from
first-orderMarkovmodels [37] to their high-order counterparts [16].
As security applications continue to fail to deliver stronger secu-
rity guarantees (e.g., in terms of detection and false positive rates),
researchers recognize the need to improve the quality of the under-
lying information and design systems that analyze the context of
system execution, in addition to the execution itself. For example,
tools that monitor system calls take into consideration arguments
passed into a system call [22] and its caller function [36]. However,
such additions do not change the nature of the information; they
still provides the security system with only a single layer of se-
mantics and a linear description of system activities. Furthermore,
interactions within and between processes are difficult to untangle,
which results in an ambiguous and sometimes incomplete picture
of system execution. As such, desirable data for security analysis
such as intrusion detection must present a complete, structured
view of system execution that is amendable to incorporate different
layers of semantics as such a need arises. It must describe a detailed
history of normal activities for the system to decide whether a
future event is an attack or not.

Similarly, the use of history to make future decisions is also ap-
plicable to the field of machine learning (ML). Complex ML models
achieve high accuracy at the cost of interpretability [19], thus offer-
ing little transparency to justify predictions and to detect unwanted

EuroDW’18, April 2018, Porto, Portugual
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

unfairness and discrimination [7]. Conceptually, an ML model is
constructed to understand from the training data the intricate as-
sociation between observations and conclusions. Once such an
association is established, the model can be regarded as a compli-
cated “system” and any labelled data validated by the model reveals
the history of a correct “execution" of the “system”. Such a history
of “execution” provides a means to explain why a future prediction
is made. Unlike current approaches that focus on explaining only
local behavior of the model [17, 29], this approach to providing
explanations presents a global perspective that allows for a better
interpretation of how the model behaves under various scenarios,
as long as the model is thoroughly validated.

In both cases, provenance is the ideal source of data. Provenance
was originally used to describe the origination and chain of own-
erships of works of art [28]. Computer scientists have adapted the
term to refer to special metadata describing how digital objects
came to be in their current state. As methods of capturing digital
provenance have evolved [25, 28], provenance has been suggested
as a source of information for various applications ranging from ex-
plaining the existence of data in database systems [12], to detecting
and potentially preventing breaches in computer systems [13]. I in-
tend for my dissertation to advance the state of the art in leveraging
data provenance as the foundation for system security and model
interpretability. In computer security, the fact that provenance of-
fers a complete, causal history of the execution of a system [11]
makes it potentially a rich source of information for detecting sys-
tem intrusions and identifying or constraining the flow of sensitive
information. In ML, provenance is the history of model validation.
It provides clues for inferring inner workings of ML models that as-
sociate observations with conclusions, thus enabling interpretation
that assists fair and justified decision-making [21].

The remainder of the paper is organized as follows. In section 2,
I discuss how data provenance enhances system security, while
in section 3, I discuss its ability to enable ML interpretability. I
present my current research agenda in section 4 and conclude
in section 5.

2 SYSTEMS SECURITY
Modern computer systems deploy a variety of security tools to
create multiple layers of defense, including a prevention layer (e.g.,
firewalls, intrusion prevention systems), a detection layer (e.g., ID-
Ses), and a reaction layer (e.g., anti-virus software) [26]. Security
tools in all these layers use detailed audit trails provided by the
operating systems and applications to enforce security policies and
detect intrusions. Such information is usually the foundation of
security applications, the quality of which determines the efficacy
of security measures. Unfortunately, state-of-the-art security tools
fail to guarantee integrity, confidentiality, and availability of the

https://doi.org/10.1145/nnnnnnn.nnnnnnn

EuroDW’18, April 2018, Porto, Portugual X. Han

system, even though the algorithms they deploy become increas-
ingly sophisticated [1, 23, 30]. My hypothesis is that the underlying
audit information that those tools depend upon has become one
major bottleneck in further improving their efficacy and data prove-
nance provides a new solution to the problem. As such, I would
like to demonstrate the advantages of data provenance for a range
of security techniques.

Audit data viewed at different layers of abstraction leads to differ-
ent semantic views of actions. For example, when a user escalates
privileges by executing the program su, the application level log
usually presents a single-line high-level view of the action:

Jan 31 07:36:53 Michaels-MBP.local su[91231]: SU
Michael to root on /dev/ttys000

The system call level log, however, generates a long list of entries
that detail various actions taken by the operating system, including
obtaining the user’s effective UID, and opening and checking the
password file [4].

Although useful on their ownmerits to tackle a subset of security
problems that are visible to their level of abstraction [24], audit trails
fail to provide security systems with layered semantics that are
required to understand from top-down (or bottom-up) the complete
picture of system activities. Such a holistic understanding not only
improves detection accuracy and precision, but also allows for
attack attribution, enabling system administrators to reason over
the detected intrusions. For example, an IDS that analyzes function
call level workflows [10] can identify stealthy aberrant path attacks
that alter the normal execution path of a function [32]. In many
cases, these attacks are constructed as data-oriented attacks [14]
that do not change the control flow of the entire program, thus
making it difficult for system call based IDSes to detect. On the
other hand, monitoring only function calls cannot defend against
system call injection or return-oriented attacks that are discernible
by those IDSes. However, naively combining two IDSes so as to
use information from both layers does not provide a better solution
because
i) a single intrusion could cause redundant alarms that overwhelm
the human operator;
ii) it is challenging to correlate system call level alarms with the
function call level workflow, which is more interpretable for the
operator;
iii) fundamentally, audit data from either level is unstructured,
therefore unable to present interactions between processes.

Provenance, however, creates a structured view of execution at
various semantic levels since it can represent the causal relationship
of system execution as a directed acyclic graph (DAG). It can also be
layered to incorporate different levels of abstraction while ensuring
overall consistency and connectivity [10, 24]. By reasoning and
correlating information at various layers, security tools can be
made accurate in detecting various intrusions, resilient to common
evasion attacks (e.g., mimicry attacks [27, 35]), and interpretable for
attack attribution.

In the rest of the section, I briefly describe two different security
tools that can be improved through provenance and the challenges
associated with the approaches.
IDS. Continue from the previous IDS discussion, a provenance-
based IDS can simultaneously analyze function call and system call
traces, taking into account their correlations as represented in the

DAG. The DAG also elucidates the interactions between various
processes, untangling the intricate dependencies among them.
Challenges. The size of provenance data can grow very large very
quickly, especially in a distributed setting. The computation of
provenance data carried out by the IDS must be efficient enough
to detect the intrusion before it wreaks havoc on the system. My
previous work [13] attempted a window-based approach to limit
the amount of data to be analyzed. However, it has been shown
that this approach could lead to information loss [2]. Provenance
data is also an ideal source of forensic evidence. Efficiently storing
and querying provenance for post-mortem analysis is an important
step for provenance-based security analysis [38].

For concurrent systems where nondeterminism frequently oc-
curs, it is difficult to reason provenance exactly. It is possible to
address this challenge through fuzzy approaches and statistical
measures [34].
Honeypot. A honeypot is a trap that masquerades as a production
system to lure attackers to probe, exploit, and compromise while
collecting valuable information of their activities [33]. A useful
honeypot therefore must be able to record detailed traces of those
activities to help security experts understand how the attack took
place. State-of-the-art honeypots use virtual machine introspection
(VMI) [9] to stealthily capture the trace of an attacker [20], but suffer
from the semantic gap problem as the virtual machine monitor
has only a low-level external view of the monitored system [6].
A provenance-based honeypot offers a comprehensive picture of
the attack that is manifested by not only high-level steps but also
actions taken “under the hood.”
Challenges. Capturing provenance in the monitored system re-
quires us to deploy sensors either as user processes or in the ker-
nel [9]. Compared to the VMI approach, it is relatively easy for the
attacker to detect, manipulate, and disable provenance capture [31].
In addition, any provenance data stored in the system can be tam-
pered with. The former challenge requires at minimum a stealthy,
efficient deployment of a provenance capture mechanism, while
the latter requires a combination of cryptographic techniques and
a covert, just-in-time delivery method.

3 MACHINE LEARNING INTERPRETABILITY
Provenance is an ideal solution to system security because it de-
scribes a complete, causal history of what happened on the system,
which can be used as a reference to predict what is expected to hap-
pen in the future on the same system. We can also take advantage
of this concept of using history as a basis to predict expected future
behavior to explain ML models, because any prediction must be
derived from the model’s understanding of historical data during
training. The question then is how we can reveal such an under-
standing from the model, which consists of merely mathematical
equations. The key insight is that model validation reveals the
model’s inner workings and the history of how a data is validated
shines a light on its understanding of historical data.

The training process allows the model to learn the associations
between the observations and conclusions from the training data
and encode them in mathematical formulas. Once the model is
fitted (i.e., the model “obtains” an understanding), we can consider
it as a “system”, and any labelled data validated by it is a correct

Using Provenance for Security and Interpretability EuroDW’18, April 2018, Porto, Portugual

“system execution” that reflects its understanding. Provenance in
this context describes the history of model validation for every
labelled data (i.e., how an output value derives from an input data
through the model), providing a rich corpus from which we can
reason about a future prediction. When a prediction is made, we
can use its provenance to identify similar “executions” that support
this prediction and use those labelled data to explain why the model
behaves in a certain way.

4 CURRENT RESEARCH DIRECTION
To date, I have designed a behavior-based intrusion detection sys-
tem that analyzes at runtime system-level provenance graphs to de-
tect application anomalies [13]. I focused on Platform-as-a-Service
(PaaS) users who run many instances of an application on many
compute nodes to collect reference provenance graphs for anomaly
detection. By comparing subgraphs using a modified label propaga-
tion algorithm, I generated a model of the application. Any instance
that did not conform to the model was identified as an anomaly.
Although the experimental results have shown to be promising,
I have encountered several limitations that are inherent to this
approach. For example, the window-based approach to analyze sub-
graphs inevitably broke the connectivity of the graph, disregarding
long-span program behavior [32]. Since only low-level provenance
data was monitored, it was difficult to attribute the high-level cause
of the intrusion.

To overcome the limitations of the previous approach and to
advance the state of the art in intrusion detection with data prove-
nance, I am currently designing an IDS with the following goals:
i) Correlating provenance at different layers of abstraction to detect
at runtime various attacks that can evade detection at one level but
not the other (or the combination thereof).
ii) Provenance generates abundant data, which is ideal for machine
learning to generalize normal behavior. A suitable machine learn-
ing algorithm designed with provenance domain knowledge can
minimize false positive rates while maintaining high detection ac-
curacy.
iii) Layered provenance capture enables interpretable attack attri-
bution at a high level, even when an intrusion alert stems from
low-level provenance analysis. The system administrators can rea-
son about the cause of an intrusion to reject false positive alarms,
effectively making the IDS more usable [18].

5 CONCLUSION
I discussed how provenance is the ideal source of data to enhance
system security and enable machine learning interpretability. Prior
research has successfully designed many systems to capture prove-
nance at different degrees of granularity [3, 10, 25]. The next step
is to adapt provenance capture, storage, query, and analysis to ap-
ply it in the field of computer security and machine learning, as
provenance itself renders little value without such applications. I
plan to explore these possibilities for the duration of my Ph.D., and
welcome suggestions and inspirations from experts in those fields
and in computer systems in general.

REFERENCES
[1] Abdulla Amin Aburomman and Mamun Bin Ibne Reaz. 2017. A survey of intrusion

detection systems based on ensemble and hybrid classifiers. Vol. 65. Elsevier Limited.

135–152 pages.
[2] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly

detection and description: A survey. Vol. 29. Springer Netherlands. 626–688 pages.
[3] Adam M Bates, Dave Tian, Kevin RB Butler, and Thomas Moyer. 2015. Trust-

worthy Whole-System Provenance for the Linux Kernel.. In USENIX Security
Symposium. 319–334.

[4] Matt Bishop. 2003. Computer security: art and science. Addison-Wesley Profes-
sional.

[5] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:
A survey. ACM computing surveys (CSUR) 41, 3 (2009), 15.

[6] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke
Lee. 2011. Virtuoso: Narrowing the semantic gap in virtual machine introspection.
In Symposium on Security and Privacy (SP). IEEE, 297–312.

[7] Lilian Edwards and Michael Veale. 2018. Enslaving the Algorithm: From a “Right
to an Explanation” to a “Right to Better Decisions”. (2018).

[8] Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji, and Thomas A Longstaff.
1996. A sense of self for unix processes. In Symposium on Security and Privacy.
IEEE, 120–128.

[9] Tal Garfinkel, Mendel Rosenblum, et al. 2003. A Virtual Machine Introspection
Based Architecture for Intrusion Detection.. In Internet Society Network and
Distributed Systems Security Symposium, Vol. 3. 191–206.

[10] Ashish Gehani and Dawood Tariq. 2012. SPADE: support for provenance auditing
in distributed environments. In Proceedings of the 13th International Middleware
Conference. Springer-Verlag, Inc., 101–120.

[11] Laurent Georget, Mathieu Jaume, Frédéric Tronel, Guillaume Piolle, and Valérie
Viet Triem Tong. 2017. Verifying the reliability of operating system-level infor-
mation flow control systems in linux. In 2017 IEEE/ACM 5th International FME
Workshop on Formal Methods in Software Engineering (FormaliSE). IEEE, 10–16.

[12] Muhammad Ali Gulzar, Matteo Interlandi, Xueyuan Han, Mingda Li, Tyson
Condie, and Miryung Kim. 2017. Automated debugging in data-intensive scalable
computing. In Proceedings of the 2017 Symposium on Cloud Computing. ACM,
520–534.

[13] Xueyuan Han, Thomas Pasquier, Tanvi Ranjan, Mark Goldstein, and Margo
Seltzer. 2017. FRAPpuccino: Fault-detection through Runtime Analysis of Prove-
nance. InWorkshop on Hot Topics in Cloud Computing (HotCloud’17). USENIX.

[14] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. 2016. Data-oriented programming: On the expressiveness
of non-control data attacks. In Symposium on Security and Privacy (SP). IEEE,
969–986.

[15] Neminath Hubballi, Santosh Biswas, and Sukumar Nandi. 2011. Sequencegram:
n-gram modeling of system calls for program based anomaly detection. In Third
International Conference on Communication Systems and Networks (COMSNETS).
IEEE, 1–10.

[16] Wen-Hua Ju and Yehuda Vardi. 2001. A hybrid high-order Markov chain model
for computer intrusion detection. Vol. 10. Taylor & Francis. 277–295 pages.

[17] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via
influence functions. arXiv preprint arXiv:1703.04730 (2017).

[18] Christopher Kruegel, Darren Mutz, William Robertson, and Fredrik Valeur. 2003.
Bayesian event classification for intrusion detection. In 19th Annual Computer
Security Applications Conference. IEEE, 14–23.

[19] Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016. Rationalizing neural predic-
tions. arXiv preprint arXiv:1606.04155 (2016).

[20] Tamas K Lengyel, Justin Neumann, Steve Maresca, Bryan D Payne, and Aggelos
Kiayias. 2012. Virtual Machine Introspection in a Hybrid Honeypot Architecture..
In Workshop on Cyber Security Experimentation and Test (CSET). USENIX.

[21] Zachary C Lipton. 2016. The mythos of model interpretability. arXiv preprint
arXiv:1606.03490 (2016).

[22] FedericoMaggi, MatteoMatteucci, and Stefano Zanero. 2010. Detecting intrusions
through system call sequence and argument analysis. IEEE Transactions on
Dependable and Secure Computing 7, 4 (2010), 381–395.

[23] Preeti Mishra, Emmanuel S Pilli, Vijay Varadharajan, and Udaya Tupakula. 2017.
Intrusion detection techniques in cloud environment: A survey. Vol. 77. Elsevier.
18–47 pages.

[24] Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A Holland, Peter Macko,
Diana L MacLean, Daniel W Margo, Margo I Seltzer, and Robin Smogor. 2009.
Layering in Provenance Systems.. In USENIX Annual technical conference.

[25] Kiran-Kumar Muniswamy-Reddy, David A Holland, Uri Braun, and Margo I
Seltzer. 2006. Provenance-aware storage systems.. In USENIX Annual Technical
Conference. 43–56.

[26] Marcin Nawrocki, Matthias Wählisch, Thomas C Schmidt, Christian Keil, and
Jochen Schönfelder. 2016. A survey on honeypot software and data analysis.
arXiv preprint arXiv:1608.06249 (2016).

[27] Chetan Parampalli, R Sekar, and Rob Johnson. 2008. A practical mimicry at-
tack against powerful system-call monitors. In Proceedings of the symposium on
Information, computer and communications security. ACM, 156–167.

[28] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Eyers,
Margo Seltzer, and Jean Bacon. 2017. Practical whole-system provenance capture.
In Proceedings of the 2017 Symposium on Cloud Computing. ACM, 405–418.

EuroDW’18, April 2018, Porto, Portugual X. Han

[29] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i
trust you?: Explaining the predictions of any classifier. In Proceedings of the 22nd
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
1135–1144.

[30] Atmaja Sahasrabuddhe, Sonali Naikade, Akshaya Ramaswamy, Burhan Sadliwala,
and Pravin Futane. 2017. Survey on IntrusionDetection System usingDataMining
Techniques. (2017).

[31] Stewart Sentanoe, Benjamin Taubmann, and Hans P Reiser. 2017. Virtual Machine
Introspection Based SSH Honeypot. In Proceedings of the 4thWorkshop on Security
in Highly Connected IT Systems. ACM, 13–18.

[32] Xiaokui Shu, Danfeng Daphne Yao, Naren Ramakrishnan, and Trent Jaeger. 2017.
Long-span program behavior modeling and attack detection. ACM Transactions
on Privacy and Security (TOPS) 20, 4 (2017), 12.

[33] Lance Spitzner. 2003. Honeypots: tracking hackers. Vol. 1. Addison-Wesley Read-
ing.

[34] Lefteri H Tsoukalas and Robert E Uhrig. 1996. Fuzzy and neural approaches in
engineering. John Wiley & Sons, Inc.

[35] David Wagner and Paolo Soto. 2002. Mimicry attacks on host-based intrusion
detection systems. In Proceedings of the 9th Conference on Computer and Commu-
nications Security. ACM, 255–264.

[36] Kui Xu, Ke Tian, Danfeng Yao, and Barbara G Ryder. 2016. A sharper sense of self:
Probabilistic reasoning of program behaviors for anomaly detection with context
sensitivity. In 2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 467–478.

[37] Stefano Zanero. 2004. Behavioral intrusion detection. In International Symposium
on Computer and Information Sciences. Springer, 657–666.

[38] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo, and Yun Mao.
2010. Efficient querying and maintenance of network provenance at internet-
scale. In Proceedings of the 2010 SIGMOD International Conference on Management
of Data. ACM, 615–626.

	Abstract
	1 Introduction
	2 Systems Security
	3 Machine Learning Interpretability
	4 Current Research Direction
	5 Conclusion
	References

