
Towards Transient Resource Usage on Real-Time Stream
Processing Systems

Pedro Joaquim
Instituto Superior Técnico, Universidade de Lisboa

ABSTRACT
Stream processing emerged as a key technology, with applica-

tions in many different areas. These applications, regardless of
their differences, have the common characteristic of continuous
processing, thus requiring the system to run on a 24/7 basis. For
deployments in public cloud infrastructures, these long term de-
ployments may incur very high costs. However, cloud providers
offer transient lived resources, with significantly reduced prices
compared to the regular resources, with the proviso that the former
can be evicted at any time. Thus, this type of resources is a huge
opportunity to significantly reduce operational costs of long lived
stream processing systems, missed so far by existing approaches.

In this work we present the initial ideas towards the design
of a stream processing system, able to leverage the availability of
transient resources on public cloud providers to significantly reduce
its operational costs. We identify some challenges of the proposed
work, most of them related to the dynamic availability conditions
of transient resources, specially problematic for applications that
typically have low-latency and high-throughput requirements.

CCS CONCEPTS
• Computer systems organization→ Real-time system speci-

fication;

KEYWORDS
Stream Processing, Cloud Computing, Resource Management,

Transient Resources

1 INTRODUCTION
Stream processing (SP) [1, 4, 7, 8, 13] recently emerged as a key

technology for applications that need to process, in real time, large
volumes of information that is being continuously produced. Fraud
detection [3] and social trend detection [10], are some relevant ex-
amples of such applications. Large companies, like Twitter, Google
or LinkedIn, typically deploy SP systems on their own infrastruc-
ture [1, 7, 8]. However, the lack of upfront investment on physical
infrastructure makes public cloud environments, like Amazon Web
Services (AWS) or Google Compute Engine (GCE), appealing solu-
tions for companies without their own infrastructure. Still, because
SP is a continuous task that needs to run on a 24/7 basis, even the
use of public cloud can accrue to significant costs over the long
term.

In parallel, cloud providers have offered for some time the pos-
sibility for users to acquire spare resources at a very reduced cost
(typically depending on supply/demand conditions) compared to
the traditional reserved price. However, these resources can be uni-
laterally revoked by the provider without any warning for the user.
Due to this somewhat unpredictable availability conditions, we

further refer to this type of resources as transient resources. Recent
work [5, 11, 14] studied ways of leveraging these resources to reduce
the operational costs of systems operating on cloud environments.
Most of these works focus on offline analytical processes, with
relaxed timing constraints, that explore the dynamic availability of
cheap transient resources to complete the jobs.

Unfortunately, the dynamic availability conditions of transient
resources, that can be evicted without notice, may compromise the
timeliness guaranties desired for SP applications. Therefore, mak-
ing them a doubtful choice for systems with real time performance
requirements such as the ones that we consider in this work. Nev-
ertheless, the potential cost benefits of a solution that successfully
uses transient resources to fully (or even partially) deploy an SP
system without compromising its performance requirements, make
it a research topic worth investigate.

Furthermore, most public cloud providers allow users to se-
lect some of the physical characteristics of the machines (even
for transient machines), such as number of CPU cores, memory
size, disk type, among others1. As different applications running
on SP systems may benefit from the use of specific hardware char-
acteristics [8] on particular system components, such as, enhanced
network capabilities for tasks that are communication-bound or in-
creased disk throughput for tasks that are I/O-bound. The resource
heterogeneity available on public cloud infrastructures further exac-
erbates the resource provisioning process that needs to consider the
hardware characteristics of the machines, their cost and also their
availability conditions. This creates a complex trade off between
cost and performance that needs to be translated into a suitable
strategy to acquire resources based on the system characteristics.
Unfortunately, existing approaches do not address the underlaying
physical resource provisioning process as they often assume an
already existing infrastructure [1, 7, 8].

In short, although a significant amount of research has been
dedicated to help automated deployment of cloud applications, and
also to systems that aim at leveraging transient resources, existing
approaches fail to address the complexity of SP applications that
combine the need for heterogeneous hardware, dependability, and
timeliness requirements.

2 PREVIOUS WORK
2.1 Stream Processing Systems

Recent systems for stream processing, such as Google’s Mill-
Wheel [1], Twitter Heron [7] and Apache Samza [8] ease the cre-
ation of stream processing applications by decoupling the computa-
tion logic from resource management. In this model, users are just
required to specify the computational process as a directed graph
of computations that receive streams of data and run arbitrary user

1https://aws.amazon.com/ec2/instance-types/

https://aws.amazon.com/ec2/instance-types/


code using platform specific hooks to perform standard stream pro-
cessing operations, such as time windowed tasks and split/merge
streams of data. The system is then responsible for deploying the
user defined topology into the existing resource infrastructure.

These systems rely on schedulers like YARN [12] and Mesos [6]
to assign the computational tasks to existing physical resources.
Although these systems release the underlaying SP system from
the need to efficiently manage the underlying resources, they are
completely oblivious to the resources’ acquisition and release man-
agement policies. Recently, Dhalion [4] proposed a set of techniques
to self-regulate the Heron [7] system for a target performance. Still,
the system focuses solely on the high level component manage-
ment through the scheduling service, therefore also ignoring the
underlying physical resources’ provisioning policies. As mentioned
before, this is specially problematic when considering deployments
in public cloud environments, where the user is required to select
from a wide range of heterogeneous machines, not only in their
hardware characteristics but also in terms of dynamic cost functions
and availability conditions.

2.2 Using Transient Resources
Previous research has shown that the judicious use of hetero-

geneous resources, namely transient resources, can offer signifi-
cant cost savings. Unfortunately, their solutions cannot be trivially
adapted to SP systems as most of them leverage the relaxed timing
constraints of offline analytical processes, without real-time and
low-latency requirements, to explore the dynamic availability of
transient resources to reduce the operational costs.

For example, Pado [14], a data processing engine, tackles the
problem of reducing the performance impact of transient resource’s
revocations. The system receives two inputs: (i) the information
about the available machines, which are either reserved or tran-
sient and (ii) the computational process translated into a directed
graph of computations, similar to the SP systems described before.
The system then chooses the task placement in a way that mini-
mizes the performance impact of transient resources revocations
by placing the ones that, if evicted, generate long re-computation
chains on reserved resources and others on transient servers. Still,
Pado assumes the underlying machines to be selected by someone
else and it does not ensure a given performance threshold for the
system.

Flint [11], a batch-interactive framework based on Spark, tack-
les the problem of bounding the performance impact of transient
resource’s revocations on interactive applications by leveraging
different spot markets. Given the number and type of machines
to use, the system uses historical data of Amazon spot-instances
to identify the regions which have the most uncorrelated failures
for that target machine type, i.e., the markets where historically
a revocation of type M machines do not happen at the same time.
Flint then deploys the system on machines across this different
markets. Unfortunately, not only does Flint rely on the user to
select the number and type of machines to deploy, but also the
strategy used to bound the performance impact is not well suited
for systems whose computational flow highly depends on machine
communication, as machines can be placed at distant geographical
locations.

2.3 Automated Deployment
There has been a growing interest in researching for techniques

that allow to automate the selection of the most appropriate de-
ployment for a given workload. Systems like CherryPick [2] seek
to find the optimal VM configuration for a given workload provided
a cost function that is assumed to be stable. The dynamic price char-
acteristics of transient resources, together with their somewhat
unpredictable failure models, make the integration of these systems
in settings that aim at leveraging transient resources a non trivial
problem.

3 GOALS
Analysing the existing SP systems, which we briefly described

earlier, we identify some key problems that we would like to ad-
dress in future work. First, most of these systems ignore resource
provisioning process by often assuming an already existing under-
lying physical infrastructure. This is particularly problematic for
public cloud environments, where users have to pick the number
and types of machines to use. Second, SP systems are long lived
and often have 24/7 availability requirements that can accrue to
significant costs over the long term. However, existing systems
ignore this monetary aspect and do not explore ways of reducing
the operational costs of these systems.

In this context, the high level goal of our work is to address
the above mentioned problems for public cloud deployments of SP
systems. This translates into providing a resource configuration
that aims to be the cheapest possible while guaranteeing the per-
formance requirements for the system. We split this high level goal
into three, more concrete, goals. Namely:

Goal 1: Leverage the dynamic availability and hardware hetero-
geneity of transient resources to reduce the operational costs of SP
systems in public cloud environments.

Goal 2: Provide performance guarantees, even when using tran-
sient resources with dynamic availability conditions.

Goal 3: Use the knowledge about the SP system and its target
applications to automatically provision the underlying physical
infrastructure in cloud environments, requiring minimal user inter-
action.

These goals require improving existing SP systems to make them
tolerate a possibly large number of evictions efficiently. Further-
more, we need also to design new automated tools to adjust the way
the system is provisioned, taking into consideration the underlying
application characteristics and in response to dynamic changes in
the cost of transient resources.

4 CHALLENGES
We envision a number of challenges that need to be overcome

to fulfill our goals. Namely:
• Adapt the fault-tolerance mechanisms of SP systems to min-
imize the impact of frequent transient resources’ evictions.
One should consider the trade-off between fault tolerance
mechanisms that provide a stable or bounded performance
impact in the occurrence of failures, even if adding some

2



overhead to the steady state performance, and optimistic
fault-tolerance mechanisms that have little to no impact
during normal execution but take longer to recover.

• Design a resource provisioning strategy that is able to reduce
the operational costs of SP systems by leveraging the avail-
ability of transient resources and, at the same time, provide
minimum performance guarantees.

• Design efficient reconfiguration mechanisms. The system
must keep pace with transient market price trends as they
have a direct impact in the operational cost of the system.
Machines that are very cheap at one moment in time can
become very expensive (even above the reserved price). Tak-
ing this into consideration, the underlying physical resource
(re-)provisioning needs to be done efficiently, as it may be
necessary to replace the machines being used.

5 RESEARCH DIRECTIONS
The current line of investigation is still in an early research stage.

In the following sections we briefly describe the research directions
currently being investigated.

5.1 Component Replication
Systems that have low latency and high throughput require-

ments are particularly vulnerable to component failures. In the
presence of failures these systems may fail to meet a target perfor-
mance Service Level Objective (SLO). For systems that have such
strict performance requirements, one possible solution is to pro-
vision active backup instances that ensure the system is able to
meet a target performance SLO under a bounded number of compo-
nent failures. Strategies that leverage recent trending technologies
(such as RDMA [9]) are worth looking into to reduce the inherent
performance impact.

5.2 Heterogeneity Driven Provisioning
Strategies

Knowledge about the performance of specific cluster configura-
tions, possibly with different hardware characteristics, needs to be
translated into a suitable strategy to acquire and release resources
based on the expected trade-off between cost and performance.

This process should avoid common pitfalls when using transient
resources, such as allowing a single eviction that affects multiplema-
chines to leave the system with an insufficient number of resources
to meet a target performance SLO, or even completely deprived
of resources. For this problem, strategies like the one suggested
in [11] should be considered and extended for a component repli-
cation setting. One should leverage past market data to infer the
correlation between the price trends of different transient machine
types (which directly translates into eviction correlation). Using
this information one is then able to use transient machines with
uncorrelated failures in a replicated setting.

Recent work [15] studied ways of provisioning machines with
uncorrelated failures. However, the techniques used are for corre-
lated hardware failures and require privileged information from
the provider that is often not available. Therefore, we consider this
work orthogonal to the transient resources evictions correlation,
that is dependent on market trends and not shared hardware.

5.3 Efficient Resource (Re-)Provisioning
Due to the frequent changes in the underlaying physical re-

sources, either as a result of revocations or planned reconfigura-
tions made to meet target performance or cost goals, the system
should handle the frequent changes in resources gracefully and
without much impact in performance. When changes are planned,
or revocations get preceded by a timely warning (not guaranteed),
the system may leverage the underlying component replication to
perform phased resource replacements with graceful component
shutdown, resulting in no loss or reprocessing of updates [7].

6 EVALUATION SCENARIOS
After identifying a solution that meets the defined goals for this

work, the resulting system should be evaluated to validate them.
Although it is difficult to predict the exact scenarios in which the
final systemwill be evaluated, as this depends on the solution details
that may or may not be ones that we here proposed, some more
general aspects can be identified beforehand include:

• The evaluation must include executions in real world scenar-
ios, i.e., execute the system in a public cloud environment.
As a possible final solution includes transient resource usage,
we consider that the transient behaviour of machines must
be simulated through injected faults, following a possible
real scenario observed in historical data. This way it is pos-
sible to find interesting cases to test and provide a equal
setting for possible different implementations that we seek
to compare.

• In order to provide long term cost analysis, a simulated ex-
ecution over historical data of transient resource market
prices is required. This historical data allows us to simulate
the system behaviour (for example, number of evictions, ma-
chines selected for different periods in time) over a period
of time that would be otherwise impossible to measure.

7 NEXT STEPS
After having identified the goals of our work, as well as the

possible research directions, we now intend to start implementing,
testing and adapting the possible solutions identified here. For this
early design stage, and also for a possible final working prototype,
we intend to use the Heron [7] SP system for a couple of reasons.
First, most SP systems follow the same computational model where
applications are defined as a directed graph of computations that
process a stream of data. This makes our solution valid and easy to
adapt for other available SP systems. Second, it is an open source
system with a very active community and detailed documentation
that eases the development process. Naturally, this choice will need
to be reassessed, based on the experience that we will collect from
the prototype.

ACKNOWLEDGMENTS
This work was partially supported by national funds through In-

stituto Superior Técnico, Universidade de Lisboa, and Fundação para
a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013
(INESC-ID).

3



REFERENCES
[1] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax, S. McVeety,

D. Mills, P. Nordstrom, and S. Whittle. 2013. MillWheel: Fault-tolerant Stream
Processing at Internet Scale. (2013).

[2] O. Alipourfard, H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang. 2017.
CherryPick: Adaptively Unearthing the Best Cloud Configurations for Big Data
Analytics. In 14th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 17).

[3] F. Carcillo, A. Pozzolo, Y. Borgne, O. Caelen, Y. Mazzer, and G. Bontempi. 2017.
SCARFF: a Scalable Framework for Streaming Credit Card Fraud Detection with
Spark. CoRR (2017).

[4] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy. 2017. Dhalion:
Self-regulating Stream Processing in Heron. VLDB (2017).

[5] A. Harlap, A. Tumanov, A. Chung, G. Ganger, and P. Gibbons. 2017. Proteus:
Agile ML Elasticity Through Tiered Reliability in Dynamic Resource Markets
(EuroSys ’17). Belgrade, Serbia.

[6] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R. Katz, S. Shenker,
and I. Stoica. 2011. Mesos: A Platform for Fine-grained Resource Sharing in the
Data Center (NSDI ’11). USENIX, Boston, MA, USA.

[7] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. Patel, K.
Ramasamy, and S. Taneja. 2015. Twitter Heron: Stream Processing at Scale
(SIGMOD ’15). Melbourne, Victoria, Australia.

[8] S. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst, I. Gupta, and R.
Campbell. 2017. Samza: Stateful Scalable Stream Processing at LinkedIn. VLDB
(2017).

[9] M. Poke and T. Hoefler. 2015. DARE: High-Performance StateMachine Replication
on RDMA Networks. In Proceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing (HPDC ’15).

[10] L. Recalde, D. Nettleton, R. Baeza-Yates, and L. Boratto. 2017. Detection of
Trending Topic Communities: Bridging Content Creators and Distributors. CoRR
(2017).

[11] P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy. 2016. Flint: Batch-interactive
Data-intensive Processing on Transient Servers (EuroSys ’16). London, UK.

[12] V. Vavilapalli, A. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and E.
Baldeschwieler. 2013. Apache Hadoop YARN: Yet Another Resource Negotiator
(SoCC ’13). Santa Clara, California.

[13] S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi, M. Franklin,
B. Recht, and I. Stoica. 2017. Drizzle: Fast and Adaptable Stream Processing at
Scale (SOSP ’17). Shanghai, China.

[14] Y. Yang, G. Kim, W. Song, Y. Lee, A. Chung, Z. Qian, B. Cho, and B. Chun.
2017. Pado: A Data Processing Engine for Harnessing Transient Resources in
Datacenters (EuroSys ’17). Belgrade, Serbia.

[15] E. Zhai, R. Chen, D. Wolinsky, and B. Ford. 2014. Heading Off Correlated Failures
through Independence-as-a-Service. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). USENIX Association.

4


	Abstract
	1 Introduction
	2 Previous Work
	2.1 Stream Processing Systems
	2.2 Using Transient Resources
	2.3 Automated Deployment

	3 Goals
	4 Challenges
	5 Research Directions
	5.1 Component Replication
	5.2 Heterogeneity Driven Provisioning Strategies
	5.3 Efficient Resource (Re-)Provisioning

	6 Evaluation Scenarios
	7 Next Steps
	Acknowledgments
	References

