
Composable Primitives for SDN Measurements
Paolo Laffranchini

Instituto Superior Técnico, Lisbon
paolo.laffranchini@tecnico.ulisboa.pt

ABSTRACT
Measurement is a crucial concern for network operation. Rather
than a principled approach, we see that measurement in SDN has
been mostly an ad-hoc activity with poor reuse of abstractions that
are hard to combine efficiently.

We argue that network measurements should be supported with
first-class artifacts able to address a wide range of measurements
tasks in an efficient, flexible and reusable manner.

We have identified a set of primitives that can be easily com-
bined to express well-known techniques and used them to solve
three measurement problems that have not been addressed in the
literature: monitoring path changes, measuring the latency to flow
steering and identifying the top-k congested flows.

1 INTRODUCTION
The introduction of Software Defined Networking (SDN) with its
separation of data and control planes has led to significant work on
various aspects of programmable network infrastructures. Unfortu-
nately, measurement, a well understood requirement of network
management, appears to have been an afterthought in SDN’s de-
velopment.

Historically, measurement’s evolution paralleled the growth of
the Internet but at a much slower pace. SNMP, ping, traceroute and
sampling constituted the bulk of measurement-related aids for a
long time. These tools often lacked sufficient flexibility to provide
precise information on low level aspects of the behavior of flows.

The first realization of SDN, OpenFlow[8] provided simple sup-
port to measurement activities. Forwarding rules are naturally asso-
ciated with a counter of packets (and bytes) they match, altogether
with a timestamp indicating the time when they were installed in
the switch. Numerous research efforts have explored techniques
exploit these data to answer a variety of measurement questions:
throughput and packet loss[11], anomalies[13], traffic matrix[10]
and heavy hitters[6]. However, three main drawbacks emerged.
First, measurement data is tightly coupled to the forwarding policy
decided by the controller, whereas measurement requirements do
not always reflect this assumption. Second, limitations on the avail-
able amount of space in the switches’ TCAM memory, introduce
intrinsic memory/accuracy trade-offs[9], as the quality of the mea-
surements result comes at the expense of an higher number of rules
to be deployed on the data plane. Lastly, explicit data collection from
the control plane led to high overhead on both controller(s) and
switches (additional network traffic, CPU processing, and time)[4].

Subsequent research mitigated these drawbacks using approxi-
mation algorithms (i.e., sketches and bloom filters) to keep short
summaries of traffic haracteristics[12], with provable bounds on
accuracy when assigned a certain amount of resources. But they
had limited applicability and/or re-usability, and required special-
purpose, hard-coded algorithms.

Recent trends on programmable dataplanes[3] allow the defini-
tion and implementation of arbitrary measurement algorithms[5, 7]
that can be installed on protocol-independent switch architectures.
However, it is not clear how programmable dataplanes can foster
re-usability for arbitrary run-time measurement needs.

2 PROBLEM STATEMENT
Network measurement spans different areas often characterized
by non-overlapping requirements: from network-wide traffic moni-
toring (e.g., heavy hitters, traffic matrix), to fine-grained monitor-
ing flow properties (e.g., throughput, latency, loss), to verification
(routing correctness w.r.t. operator’s intent) and debugging (e.g.,
troubleshooting network issues) and various aspects of security
(e.g., anomalies, DDoS).

State-of-the-art approaches adopt ad-hoc algorithms that are
only able to cover a subset of these use cases. Many techniques
overlap in intent and functionality but cannot be easily re-purposed
to address different questions. Adaptation to a slightly different
version of a problem require significant development effort due to
the monolithic nature with which these solutions are realized. Some
of the low-level operations exported by a switch (e.g., counters)
may be shared between different solutions, but their actual usage is
dependent on the specifics of the algorithms themselves. This is due
to the lack of high-level abstractions to flexibly express how a mea-
surement is being realized, leading to hard-coded operations that
cannot be reused efficiently. Furthermore, a thorough review of the
existing literature revealed that a measurement problem can be ap-
proached using a variety of ad-hoc algorithms, that often optimize
different objectives, and whose accuracy depends upon workload
characteristics. These solutions are therefore only amenable under
particular assumptions.

The absence of a principled approach with which to address
measurement needs, burdens network operators with the need to
understand many subtle nuances between different solutions to a
problem. The exposure to low-level details, along with the need
to manually craft algorithms for a large spectrum of scenarios, in-
crease both deployment time and management costs, while possibly
harming correctness due to the complexity of the tasks at hand.

Currently, no existing system is capable to tackle a comprehen-
sive set of different measurement requirements from a higher-level
perspective, while coping with ever-changing run-time needs.

With this PhD proposal, we are the first to address SDN mea-
surements with a set of general-purpose, programmable building
blocks, called primitives. Our approach is rooted on the identifi-
cation of a set of primitives that are orthogonal and composable,
able to express a broad range of measurement in a concise manner.
These primitives will export an API that can be used to combine
them and realize flexible measurements. The high-level compo-
sition of measurement tasks with our primitives will provide a
service layer through which to manage and deploy measurements

EuroDW’18, April 2018, Porto, Portugal P. Laffranchini

Primitive API Purpose
Timestamp Timestamp(x) Timeouts, latency

Counter Counter(λu , c)
#packets/bytes, sequence
numbers

Bloom filter BloomFilter(key, λu , bf) Set membership
Sketch Sketch(key, λu , sketch) Approximate counting

Sample
Duplicate(“virtual_stream”)
Collect(“collector”)

Data reduction, collection

Tag Tag(λu , header_field) Information piggybacking
Match Match(condition) Flow selection, triggers

Table 1: Measurement primitives & API.

in a dynamic fashion. Our goal is to propose a comprehensive SDN
measurement architecture capable to optimize, distribute and co-
ordinate network-wide measurement operations. Integration with
the forwarding policies and coordination with the SDN controller
will allow to exploit decision making strategies to maximize effi-
ciency and reliability of measurement, while respecting resource
constraints.

3 RESEARCH PLAN
The research plan is laid out as follows:

i) Identification of a suitable set of measurement primitives with
which a P4-programmable data plane can be equipped to perform
basic measurement operations. Definition of a general-purpose
expressive API with which operators can program these primitives
and combine them together to implement complex measurement
techniques. Implementation of a compiler to translate an high-level
measurements to a P4 switch pipeline configuration.

ii) Analyze and model the primitives’ memory usage and execu-
tion cost. Limited memory resources and the tight time constraints
to perform per-packet operations represent important objectives to
assess the feasibility of data-plane measurement tasks.

iii) Explore network-wide distribution and coordination of mea-
surement. Some measurements use cases cannot be performed on
a singular network entity, due to the need for multiple points of
observation. Moreover, placement of primitives is a core challenge
to optimally deploy measurement tasks, considering as well the
resource limitations discussed above.

iv) Integrate measurement in the control plane and define inter-
actions with the data plane for run-time primitive configuration
and tuning. Measurement activities are expected to be either short
or long-lived depending on their nature. However, dynamic recon-
figuration of programmable data planes algorithms expressed in
P4 is still an open research question. As well, we plan to explore
abstractions and protocols to model the interactions between the
switches and controller.

v) Propose a comprehensive SDN system, integrating traffic con-
trol and measurement requirements. While we believe the data
plane configuration for the two should be independent, an high
degree of synergy is expected between measurement and control
in SDN, due to its highly dynamic nature. Whereas forwarding
decisions are affected by measurements, the latter need to adapt to
maintain reliability and resource efficiency. Integration of these two
aspects is a crucial concern for the management of SDN networks.

4 CURRENT STATUS
At the current state, we completed the first step of the plan described
in Section 3. We approached the identification of the primitives for
measurement on the basis of their breadth of applicability and the
ability for maximal reuse. We argue that switches should provide
support to perform these primitive measurement actions. A com-
piler translates ameasurement, expressed via a composition of these
primitives, into a P4 pipeline configuration to run on programmable
data planes.

4.1 Measurement primitives
The core set of measurement primitives we have identified are the
following: timestamps, counters, samples, tags, bloomfilters, sketches,
and matching. Each primitive exports an API through which opera-
tors can express measurement activities.

• Timestamps: provide the ability to derive time-related in-
formation, essential to perform a variety of measurement
tasks, such as detecting timeouts or estimating latency and
packets inter-arrival times.

• Counters: can be used to keep track of anymeasurable quan-
tities such as bytes, packets, flows and sequence numbers.

• Bloom filters: permit to compactly encode a group of ele-
ments, making them ideal to test set memberships. Counting
variations can also be exploited to handle dynamic deletions.

• Sketches: allow to collect approximate data using compact
data structures providing provable accuracy when equipped
with fixed memory resources. Useful to gather measurement
data for an high number of independent flows with known
error bounds. Typical usages are volume (amount of data)
and cardinality (e.g., number of flows) estimation.

• Samples: permit to duplicate a packet and forwarding it to
a collector component. Can be used to offload measurement
algorithms outside of the data plane, if the switch resources
are insufficient to execute all measurement operations.

• Tags: allow to modify the content of packet header fields,
enriching the information they carry with contextual infor-
mation as the packet travels in the network.

• Matching: tests conditions on the packet header fields and
the status of the switch stateful memory. It’s intended to
detect specific packets or select groups of them (e.g., coming
from a specific source) so to apply the measurement opera-
tions to the target portion of the traffic. Conditionals on the
value of the switch registers, holding the current state, serve
the purpose to trigger events.

These primitives cope with different needs in measurements: i)
store state, either with a 1-to-1 mapping from flows to registers
(timestamps and counters) or approximately via a N-to-1 relation
via hash-based algorithms (sketches and bloom filters); ii) dissem-
inating and piggybacking information via packet marking (tags);
iii) reduce the data volume and enable off-network collection (sam-
ples) and iv) selection and grouping of packets or flows to which
measurements need to be applied.

4.2 Primitives composition
To express complex measurement tasks, the primitives described
above can be composed using two basic forms of composition:

Composable Primitives for SDN Measurements EuroDW’18, April 2018, Porto, Portugal

Sequential composition. Primitives can be composed in serial
order using the sequential operator≫. A composition:primitive1 ≫
primitive2 ≫ . . . ≫ primitiveN executes the primitives in order,
where the results of the execution of a primitive are made visible
to the following. A primitive sequentially composed to a Match op-
eration is only executed upon a positive evaluation of its condition.

Parallel composition. Primitives can be parallelized via the op-
erator +, the expression primitive1+primitive2+ . . .+primitiveN
executes the primitives independently and applies multiple disjoint
actions to the packet. A parallel composition of mutually exclusive
Match operations allows the specification of if-else alike behavior.

At high level, a composition expresses a chain of operations,
working on an abstraction of a stream of packets fed as input. Prim-
itives execute on a per-packet basis, updating the switch memory
and manipulating packets according to the primitives’ semantics.

The proposed set of primitives can, when opportunely configured
and assembled, encompass a wide range of measurement needs.
We have successfully expressed many well-known techniques from
the literature by means of a combination of these building blocks.
Additionally, we addressed use cases that, at the best of our knowl-
edge, have not yet been considered in the literature. We have so far
identified three examples of such measurements. In Section 4.4, we
will discuss concretely one of them: measuring path changes.

4.3 Compilation to programmable dataplanes
We have built a compiler from a high-level specification of mea-
surement into a P4 switch pipeline configuration. The compiler
analyzes the structure of a measurement composition and trans-
lates each involved primitive into a set of independent tables and
actions. These are linked together as specified via the parallel and
sequential operators, resulting in an ordered sequence of steps to
be applied at runtime on each incoming packet.

Targeting multiple architectures Although our approach is
not tied to any particular hardware switch implementation, we
chose as target a PISA (Protocol-Independent SwitchArchitecture)[2]
switch programmed in P4. This is a straightforward choice for our
solution given their high degree of programmability. Currently our
solution is capable of compiling to the behavioral model of a P4
software switch[1]. We are currently improving the compiler to
generate the P4 configuration for an hardware Tofino switch.

Extending our solution to target different switch architectures or
P4 switch implementations is a possible future direction to further
enhance its generality. As well, programmable smartNICs are an
alternative candidate to provide even broader applicability of our
approach.

A unified framework for the implementation, compilation and
deployment of measurement primitives would indeed be beneficial
to improve the portability of network measurement algorithms.

4.4 Applicability of primitives
In this paragraph we present a measurement of particular relevance
for SDN: detecting and counting path changes. As SDN allows for
fast and frequent changes in network behavior, the data collected
with this measurement can help with both traffic steering decisions
and performance debugging.

The code snippet in Listing 1 demonstrates how to tackle it:

1 (BloomFilter (key : { swi t ch_ id } , λu : { 1 } , l o c a t i o n _b f)
2 ≫ Tag (pkt . b f _ t ag | l o c a t i on_b f , pkt . b f _ t ag))
3 +
4 (Match (i s _ l a s t _hop (pkt))
5 ≫ Match (pkt . b f _ t ag != pa ths_ske tch { key : f low_id })
6 ≫ Sketch (λu : { n_changes + 1 } , n_changes { key : f low_id })
7 ≫ Sketch (λu : { pkt . b f _ t ag } , pa ths_ske tch { key : f low_id }))

Listing 1: Measuring path changes

The measurement consists of two parallelized parts (Lines 1-2 and
Lines 4-7). First, at every hop, we encode the packet location (i.e.,
the switch id) in a bloom filter (Line 1) and tag the result back
into the packet (Line 2), by or’ing the local computed value with
that carried in the packet. As the packet travels to destination, the
packet tag will evolve into a compact representation of the followed
path. Second, at the last hop, we use a Sketch to track the last path
followed. On the last hop (Line 4), we compare the value of the tag
in the current packet against the value of the previous packet(s)
of the same flow (Line 5). If the values mismatch, we increment a
Count-Min Sketch tracking the number of times a flow changed
its path (Line 6) and update the latest value seen (Line 7). Both
sketches are indexed using the flow 5-tuple as key, while the bloom
filter is indexed at each hop with a switch-unique identifier; the
λu functions provided as second parameter to both primitives are
user-supplied lambda function specifying how to update the data
structures.

ACKNOWLEDGMENTS
This work is supported by the EMJD-DC program (ErasmusMundus
Joint Doctorate in Distributed Computing), under the supervision
of Luis Rodrigues (Instituto Superior Técnico) and Marco Canini
(KAUST), with the collaboration of Balachander Krishnamurthy
from AT&T Labs–Research.

REFERENCES
[1] The P4 Software Switch Behavioral Model. https://github.com/p4lang/

behavioral-model.
[2] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica,

and M. Horowitz. Forwarding metamorphosis: Fast programmable match-action
processing in hardware for sdn. In SIGCOMM, 2013.

[3] Bosshart, Pat et al. P4: Programming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev., 2014.

[4] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Baner-
jee. Devoflow: Scaling flow management for high-performance networks. In
SIGCOMM, 2011.

[5] M. Ghasemi, T. Benson, and J. Rexford. Dapper: Data plane performance diagnosis
of tcp. In SOSR, 2017.

[6] L. Jose, M. Yu, and J. Rexford. Online measurement of large traffic aggregates on
commodity switches. In Hot-ICE, 2011.

[7] Y. Li, R. Miao, C. Kim, and M. Yu. Flowradar: A better netflow for data centers.
In NSDI, 2016.

[8] McKeown, Nick et al. Openflow: Enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev., 2008.

[9] M. Moshref, M. Yu, and R. Govindan. Resource/accuracy tradeoffs in software-
defined measurement. In HotSDN, 2013.

[10] A. Tootoonchian, M. Ghobadi, and Y. Ganjali. Opentm: Traffic matrix estimator
for openflow networks. In PAM, 2010.

[11] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers. Opennetmon: Network moni-
toring in openflow software-defined networks. In NOMS, 2014.

[12] M. Yu, L. Jose, and R.Miao. Software defined trafficmeasurement with opensketch.
In NSDI, 2013.

[13] Y. Zhang. An adaptive flow counting method for anomaly detection in sdn. In
CoNEXT, 2013.

https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model

	Abstract
	1 Introduction
	2 Problem Statement
	3 Research plan
	4 Current Status
	4.1 Measurement primitives
	4.2 Primitives composition
	4.3 Compilation to programmable dataplanes
	4.4 Applicability of primitives

	References

