
Edge-cloud hybrid model for distributed apps
Albert van der Linde

a.linde@campus.fct.unl.pt
NOVA LINCS & DI-FCT-UNL

ABSTRACT
The focus of this thesis is on bringing application logic closer to the
client to enhance user experience. Previous work [1], has shown
that by adding peer-to-peer connections between client devices, it
is possible to obtain improvements in terms of user-to-user latency
and server bandwidth, but the proposed approach is not adequate
for every application, since some use cases require stronger con-
sistency semantics (stronger than causal consistency) or may be
required to deal with misbehaving users. The first challenge is on
adding dynamic replication to both logic and data planes of the
centralized component, to leverage on servers closer to end-users.
The next challenge is creating decentralized support for coordi-
nation between devices (for stronger application semantics) and
better security mechanisms to prevent and detect cheating (trust in
decentralized systems).

1 INTRODUCTION
Many applications are made to serve content to users, or are fo-
cussed on enabling direct interactions between users. Despite these
applications being user-centric, often being fully dedicated to enable
interaction between users, the architectural model used to create
these applications is based on a complete separation between client
and server side. The client-to-server interaction model is tradition-
ally used where client devices interact with a centralized compo-
nent, which mediates all interactions between devices (i.e., users).

This architectural model brings disadvantages not only for the
end user (of the application), but also to application providers (those
who develop and/or monetize it). End users suffer from: (i) high in-
teraction latency between clients, as the data-route is client-server-
client; (ii) no interaction between clients when a server is unrespon-
sive (or unreachable), which is notable when clients are close-by or
sharing a local network. For applications developers and providers,
issues are as follows: (i) a central point of failure/contention, as
the central component is responsible to mediate all actions from
every user, possibly to all other users; (ii) high server upkeep costs
and risk for mistakes when provisioning for user load which might
have catastrophic effects business wise.

Poor application performance, or user-perceived latency, leads to
compromising the image of the company operating the application,
even making users believe a website might have compromised
security[2]. When thinking about multi-player games over the
internet, latencies nearing 80ms are noticeable to end users and
over 150ms negatively affects gameplay[3].

It is not trivial to address these issues, especially if we take into
account that users nowadays expect almost no latency whatsoever
while the actual amount of users of an application can change by
an order of magnitude overnight.

EuroDW’18, April 2018, Porto, Portugal
.

A step towards user-centric services.We proposed to extend
user-centric Internet services with peer-to-peer interactions. We
designed a framework called Legion [1], which enables client web
applications to replicate data from servers, operate over these repli-
cas locally, and synchronize these replicas directly among client
devices using the server for durability.

Figure 1 shows results of running a web application developed
with a traditional client-server model (Google Drive RealTime
API) versus our own (Legion) with 4, 8 and 16 clients editing data,
showingmajor impact in client-client latency1. Notice, as clients are
equally distributed across two locations, local client-client latencies
can be very low if we leverage on peer-to-peer connections.

 25

 50

 75

 100

10ms
50ms

100ms
500ms

1s 5s

C
D

F
(%

)

Latency (ms)
Legion 4
Legion 8

Legion 16

GDriveRT 4
GDriveRT 8

GDriveRT 16

Figure 1: Update Propagation Latency

To further investigate the effects of our approach on end-user ex-
perience, we created a multi-player version of the popular Pacman
game, where users control the Pacman and each ghost. The instance
of the Pacman player serves as the owner of the game (i.e., it re-
ceives user input of all users, and applies them to the game). Other
users receive updates to positions, directions, and map updates.
Ghost users use interpolation to estimate where others are located,
but in a highly interactive game this leads to displacement between
the estimated and real position. Figure 2 shows this displacement
using both systems. It is clear that adding peer-to-peer connections
can greatly benefit the user experience in these applications.

This work also demonstrated a reduction in server network
load, and support to continue operating over an already established
network when the server becomes unavailable. Due to space re-
strictions we are unable to present these in detail. We refer the
interested reader to [1].

Legion shows that some applications do indeed benefit from
abandoning the traditional client-server model. A better application
response time comes from locally executing operations. Reduced
client-to-client latency comes from direct connections, sending
operations to connected users directly instead of following the
client-to-server-to-client route (which also enables user interaction
1The application used to compare both systems is exactly the same, changing only the
script import headers of the HTML page.

EuroDW’18, April 2018, Porto, Portugal

Albert van der Linde
a.linde@campus.fct.unl.pt

NOVA LINCS & DI-FCT-UNL

 0
 1
 2
 3
 4
 5
 6

 0 20 40 60 80 100 120 140

D
is

pl
ac

em
en

t (
til

es
)

to
 o

ffi
ci

al
 p

os
iti

on

Received Position Updates

Legion
GDriveRT

Figure 2: Multi-user Pacman

while disconnected from the server). A reduction in server load
was possible to obtain as application instances that are connected
to each other no longer need to all be individually connected to the
server. Server load is not only alleviated by a direct reduction in
client connections, but also by efficiently aggregating operations
from multiple clients (not just data compression, but summarizing
groups of operations).

We claim that this hybrid interaction model where clients can
naturally interact with each other while leveraging the server for
durability and assisting in some key aspects of the system operation,
is the correct approach for devising new user-centric applications.

1.1 Future work
Providing static content to a large number of users can be addressed
through the usage of Content Distribution Networks, but it is un-
clear how to allow users to share application state, and especially,
be able to modify that state efficiently.

An application developer has to make sure that not only all
clients are able to operate over the data (execute read and write
operations) and that clients are updated when data of their interest
changes, but also that the supporting system itself can cope with
an increasing write load with an increasing number of clients while
delivering, in an interactive manner, the correct outcome of user
actions.

In particular, it is challenging to devise general purpose tech-
niques that allow an application to balance the load imposed on
servers by an increasing number of clients, and to enforce adequate
semantics over the data accessed and manipulated by clients. To
give a realistic example of such an application lets re-think the
previous multi-user pacman online game. The application requires
that all clients must, at all times, be able to read and write data from
and to the server, and that all clients must constantly be updated
by any changes that can have an impact on the users’ actions. In
practice, there are two main issues to think about when building
such a system: first, networking wise, keeping all clients connected
to the server farm and the aggregated required bandwidth; second,
data wise, keeping data consistent and fresh at all time, led by the
global write load imposed by all clients (each continuously updating
data).

Proposal for a cloud-edge hybrid. The ultimate goal of this thesis
is the design, implementation, and evaluation of mechanisms to
mitigate the previously described issues. We intend to bridge the
gap between the client and server side on two fronts.

First we bring the centralized service closer to the client. Instead
of havingmultiple heavy datacentersmanaging the centralized logic
of the application, we aim at dynamically partitioning logic and
associated state of the application and migrate these to locations
closer to the end user. We expect to concurrently make use of
multiple cloud services (such as AWS, Azure, etc..) to be able to
provision new instances as close as possible to end-users, improving
user experience in terms of latency and performance.

This mostly differs from existing frameworks in the fact that
they require manual addition of new datacenter locations. We envi-
sion a system where this can be achieved in a mostly autonomic
fashion taking into consideration the execution environment and
workloads generated by clients. This requires creating mechanisms
to discover how to partition the data and how to dynamically add
new partitions without compromising existing connections and
performance at runtime.

Second, we intend to bring most of the application logic to the
client side. Legion is well suited for collaborative applications, but
applications like games, though possible to create, do not cope well
with misbehaving users (i.e., users that lie regarding their view and
history of operations to their own benefit). This can be addressed by
creating mechanisms which are divided into two complementary
aspects: adding stronger forms of consistency instead of only causal
in our system; creating protocols that let applications be run in a
peer-to-peer setting while preventing incorrect user behaviour.

Other forms of consistency are required for many use-cases, dou-
ble spending being a concrete example. If users do not coordinate, in
a game-like application with a restricted amount of resources each
could spend all resources concurrently, leading to erroneous be-
haviour on the application after they communicate their operations
with each other.

The system has to provide, besides a useful API to operate on
data, clear ways to specify expected system behaviour. Not just on
required consistency, on how to enable disconnected operation from
the centralized component correctly, and on how data divergence
due to concurrent operations is addressed, but also on how to
restrict user actions to what is correct within the application. This
is on viewing and/or editing data without the required permissions
or editing data in an incorrect manner (i.e., what in games typically
is seen as cheating, such as running дold = дold ∗ 2 in the user
console).

Notice that cheating is not restricted to where a user edits ap-
plication data in an incorrect manner. Besides the requirement of
only letting users edit data in a correct way in the eyes of an appli-
cation, users must also be unable to tamper with the overall order
of events (for example, suddenly claiming to use a health potion
before dying).

Figure 3 depicts the envisioned system, where different cloud-
services are used together and opportunistic peer-to-peer connec-
tions between clients are created.

Different applications have different requirements. Our approach
to mitigate the fact of over compensating for some applications and
not generalizing to any others at all is to create various application
prototypes for evaluating our system. Creating these prototypes
surely will enhance the results from this work and broaden many
research aspects, as different applications have very different re-
quirements. Furthermore, it enables us to evaluate our system in a

Edge-cloud hybrid model for distributed apps EuroDW’18, April 2018, Porto, Portugal

Figure 3: Diagram of the proposed System. Server instances
on top (from left to right: Google Cloud Compute, Amazon
EC2, Azure) and client devices below.

realistic setting, especially if the same applications are implemented
in a baseline (client-server) system.

1.2 Expected Contributions
We expect to create a framework which allows for low effort devel-
opment of large-scale user-centric applications. We expect results
of this thesis to include:
• a distributed storage system supporting partial replication
to address the needs of data sharing in massive-scale appli-
cations, which includes dealing with dynamic replica place-
ment and migration;
• a communication middleware and supporting distributed al-
gorithms for efficient communication among a large number
of mobile devices and the centralized infrastructure;
• techniques formaking direct (peer-to-peer) interaction among
web and mobile users secure (privacy, tamper, and cheat-
proof);
• providing the programming abstractions and algorithms for
secure communications and mechanisms for detecting and
mitigating incorrect behaviour;
• the platform which combines these techniques to simplify
the development, deployment, and management of novel
massive-scale web and mobile applications.

2 RELATEDWORK
Our work has been influenced by prior research in multiple areas.

Internet services often run in cloud infrastructures composed
bymultiple data centers, and rely on a geo-replicated storage system
[4–11] to store application data.

Some of these storage systems provide variants of weak con-
sistency, such as eventual consistency [4] and causal consistency
[5, 6, 9–11], where different clients can update different replicas
concurrently without coordination. To ensure causal consistency
we must adapt to a setting where we have a very large number of
replicas writing on the data (clients locally, and propagating in a
peer-to-peer fashion), which these previous works do not address.

Other storage systems adopt stronger consistency models, such
as parallel snapshot isolation [12] and linearizability [8], where con-
current (conflicting) updates are not allowed without some form
of coordination. In our context the algorithms used to coordinate
access to data storage for executing each update are prohibitively

expensive for high throughput and large numbers of clients (ma-
nipulating the same set of data objects).

Replication at the clients has been proposed in the past. In
the context of mobile computing [13], systems such as Coda [14]
and Rover [15] support disconnected operation relying on weak
consistency models. Parse [16], SwiftCloud [17] and Simba [18] are
recent systems that allow applications to access and modify data
during periods of disconnection. While Parse provides only an even-
tual consistency model, SwiftCloud additionally supports highly
available transactions [19] and enforces causality. Simba allows
applications to select the level of observed consistency: eventual,
causal, or serializability. In contrast to these systems, we intend
clients to synchronize directly with each other, reducing latency of
update propagation and allowing collaboration when disconnected
from servers.

Collaborative applications and frameworks maintain replicas
of shared data in client machines. Etherpad [20] allows clients to
collaboratively edit documents. ShareJS [21] and Google Drive Real-
time [22] are generic frameworks that manage data sharing among
multiple clients. All these systems use a centralized infrastructure to
mediate interactions among clients as they rely on operational trans-
formation to guarantee eventual convergence of replicas [23, 24],
where we have as goal not to rely on the constant connection to a
server.

Peer-to-Peer systems and FogComputing Extensive research
on decentralized overlay networks [25–27] and gossip-based multi-
cast protocols [25, 28, 29] has been produced in the past. Although
our design for supporting peer-to-peer communication among
clients builds on previous designs, so far it mostly differs in the
way we promote low latency links among clients and leverage the
centralized infrastructure.

Fog Computing [30], is a close topic to our research, but so far
most research approaches Internet of Things as their use case (i.e.,
networks of sensors and actuators, often wireless). Nevertheless,
many aspects of Fog Computing apply to our work, and research in
these topics must be taken into account, such as heterogeneity of
devices, geographical distribution of nodes, security related aspects
and, if supporting mobile, battery management.

Security The use of Trusted Execution Environment (TEE) like
Intel SGX has been argued for securing games, one example being
[31]. These works focus on protecting the integrity and confiden-
tiality of code and data of a single-player game (i.e., DRM), whereas
we focus on multi-player games where players themselves interact
in a peer-to-peer fashion.

TrustJS [32] is very interesting to our use-cases as it allows for
JavaScript to run, in a secure-fashion, at the client side. In out work
we do not want to restrict an application to require the existence of a
TEE, but to only use it when needed and if available at the client side
(resorting to another trusted component, like the server, otherwise).
For example, in a simple game like tic-tac-toe, each client should be
able to trivially verify operations received from other users. In cases
where a trusted component is indeed necessary, we want to be able
to chose from various options depending on what is available and
acceptable: use a TEE existing at one of the players, use an available
TEE existing at any other peer, or using a (trusted) server if all else
fails or when it is simply the only acceptable choice latency wise.

EuroDW’18, April 2018, Porto, Portugal

Albert van der Linde
a.linde@campus.fct.unl.pt

NOVA LINCS & DI-FCT-UNL

REFERENCES
[1] Albert van der Linde, Pedro Fouto, João Leitão, Nuno Preguiça, Santiago

Castiñeira, and Annette Bieniusa. Legion: Enriching internet services with
peer-to-peer interactions. In Proceedings of the 26th International Conference on
World Wide Web, WWW ’17.

[2] Anna Bouch, Allan Kuchinsky, and Nina Bhatti. Quality is in the eye of the be-
holder: Meeting users’ requirements for internet quality of service. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’00, pages
297–304, New York, NY, USA, 2000. ACM.

[3] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel Agu,
and Mark Claypool. The effects of loss and latency on user performance in unreal
tournament 2003®. In Proceedings of 3rd ACM SIGCOMM Workshop on Network
and System Support for Games, NetGames ’04, pages 144–151, New York, NY,
USA, 2004. ACM.

[4] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly available key-value store. SIGOPS
Oper. Syst. Rev., 41(6), 2007.

[5] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Don’t settle for eventual: Scalable causal consistency for wide-area storage with
COPS. In Proc. of SOSP’11, 2011.

[6] Sérgio Almeida, João Leitão, and Luís Rodrigues. Chainreaction: A causal+
consistent datastore based on chain replication. In Proc. of EuroSys’13, 2013.

[7] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana
Yerneni. Pnuts: Yahoo!’s hosted data serving platform. Proc. of VLDB Endow.,
1(2), 2008.

[8] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. Spanner: Google’s globally distributed database. ACM
TOCS, 31(3), 2013.

[9] Deepthi Devaki Akkoorath, Alejandro Z Tomsic, Manuel Bravo, Zhongmiao Li,
Tyler Crain, Annette Bieniusa, Nuno Preguiça, and Marc Shapiro. Cure: Strong
semantics meets high availability and low latency. In Distributed Computing
Systems (ICDCS), 2016 IEEE 36th International Conference on, pages 405–414. IEEE,
2016.

[10] Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi, Nathan Bron-
son, and Wyatt Lloyd. I can’t believe it’s not causal! scalable causal consistency
with no slowdown cascades. In NSDI, pages 453–468, 2017.

[11] Manuel Bravo, Luís Rodrigues, and Peter Van Roy. Saturn: a distributed metadata
service for causal consistency. In Proceedings of the Twelfth European Conference
on Computer Systems, pages 111–126. ACM, 2017.

[12] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional
storage for geo-replicated systems. In Proc. of SOSP’11, 2011.

[13] Douglas B. Terry. Replicated Data Management for Mobile Computing. Synthesis
Lectures on Mobile and Pervasive Computing. Morgan & Claypool Publishers,
2008.

[14] James J. Kistler and M. Satyanarayanan. Disconnected operation in the coda file
system. ACM TOCS, 10(1), February 1992.

[15] A. D. Joseph, A. F. de Lespinasse, J. A. Tauber, D. K. Gifford, and M. F. Kaashoek.
Rover: A toolkit for mobile information access. In Proc. SOSP’95, 1995.

[16] Parse. parse.com.
[17] Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bieniusa, Valter Balegas,

andMarc Shapiro. Write Fast, Read in the Past: Causal Consistency for Client-side
Applications. In Proc. of Middleware’15. ACM/IFIP/Usenix, December 2015.

[18] Dorian Perkins, Nitin Agrawal, Akshat Aranya, Curtis Yu, Younghwan Go, Har-
sha V. Madhyastha, and Cristian Ungureanu. Simba: Tunable End-to-end Data
Consistency for Mobile Apps. In Proc. of EuroSys ’15, 2015.

[19] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and
Ion Stoica. Highly available transactions: Virtues and limitations. Proc. of VLDB
Endow., 7(3), November 2013.

[20] EtherpadFoundation. Etherpad. etherpad.org.
[21] Joseph Gentle. ShareJS API. github.com/share/ShareJS.
[22] Google Inc. Google Drive Realtime API. developers.google.com/google-apps/

realtime/overview.
[23] David A Nichols, Pavel Curtis, Michael Dixon, and John Lamping. High-latency,

low-bandwidth windowing in the jupiter collaboration system. In Proc. UIST’95,
1995.

[24] Chengzheng Sun and Clarence Ellis. Operational transformation in real-time
group editors: issues, algorithms, and achievements. In Proc. of Comp. supported
cooperative work, 1998.

[25] João Leitão, José Pereira, and Luis Rodrigues. Hyparview: Amembership protocol
for reliable gossip-based broadcast. In Proc. of DSN’07. IEEE, 2007.

[26] Spyros Voulgaris, Daniela Gavidia, and Maarten Van Steen. Cyclon: Inexpensive
membership management for unstructured p2p overlays. J. of Net. & Sys. Manag.,
13(2), 2005.

[27] Ayalvadi Ganesh, Anne-Marie Kermarrec, and Laurent Massoulié. Scamp: Peer-
to-peer lightweight membership service for large-scale group communication.
In Net. Group Comm. 2001.

[28] Kenneth P Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu, and
Yaron Minsky. Bimodal multicast. ACM TOCS, 17(2), 1999.

[29] N. Carvalho, J. Pereira, R. Oliveira, and L. Rodrigues. Emergent structure in
unstructured epidemic multicast. In Proc. of DSN’07, UK, June 2007.

[30] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing
and its role in the internet of things. In Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, MCC ’12, pages 13–16, New York,
NY, USA, 2012. ACM.

[31] Erick Bauman and Zhiqiang Lin. A case for protecting computer games with
sgx. In Proceedings of the 1st Workshop on System Software for Trusted Execution,
SysTEX ’16, pages 4:1–4:6, New York, NY, USA, 2016. ACM.

[32] David Goltzsche, Colin Wulf, Divya Muthukumaran, Konrad Rieck, Peter Piet-
zuch, and Rüdiger Kapitza. Trustjs: Trusted client-side execution of javascript.
In Proceedings of the 10th European Workshop on Systems Security, EuroSec’17,
New York, NY, USA, 2017. ACM.

parse.com
etherpad.org
github.com/share/ShareJS
developers.google.com/google-apps/realtime/overview
developers.google.com/google-apps/realtime/overview

	Abstract
	1 Introduction
	1.1 Future work
	1.2 Expected Contributions

	2 Related work
	References

