
Holistic performance analysis for large-scale
distributed systems
Francisco Neves and José Pereira

francisco.t.neves@inesctec.pt,jop@di.uminho.pt
HASLab - INESC TEC and U. Minho

Braga, Portugal

1 CONTEXT
The complexity of systems hosted in cloud infrastructures
raises challenges in managing resources to ensure the perfor-
mance stated in Service Level Agreements. The heterogene-
ity and interdependencies of integrated off-of-the-shelf and
custom software, along with virtualization layers and the un-
known behavior of those systems, i.e., how their components
interact among themselves, make it difficult to pinpoint the
root cause of bottlenecks and act accordingly.
Effective resource management is strongly related to the

knowledge about the system [8]. Knowing how each sys-
tem is composed and how its components interact not only
eases the task of pinpointing bottlenecks but also allows a
better prediction of the effects of resource management on
the overall performance, that is, after changing resources
allocated to components of the system [1].
This project aims at discovering behavior of complex,

multi-tier, black-box large-scale distributed systems. This
is suitable for wide range of scenarios: from performance
analysis over in-house systems, potentially built along with
other opaque sub-systems, to effective resource management
in cloud infrastructures that host these systems. Such sys-
tems raise challenges not only in pinpointing the root cause
of a performance bottleneck but also in predicting the conse-
quences in holistic performance, good or bad, of allocating
and deallocating resources assigned to each component of
each system. In fact, as the knowledge of a given system
increases, better decisions can be made. To this end, three
main challenges are addressed:

• Discover the architecture and behavior of software
components. Determining how black-box composite
systems operate allows to build a representation of the
whole system. This should cause a minimal overhead
and be applicable to heterogenous components;

• Simulate systems behavior under several scenarios.
This should somehow rely on a correlation between
performance key indicators and hardware configura-
tion and be easily adapted for various workloads;

• Leverage knowledge about black-box systems and its
simulated behavior and apply effective resource man-
agement, without harming the overall system perfor-
mance.

In this project we foresee two main scientific contribu-
tions: A method to extract and model the behavior of a given
composite system; and a method to quantify scalability of
the whole system under a given scenario. These contribu-
tions will be embodied in prototype tools that are used for
experimental evaluation.

2 STATE OF THE ART
The analysis of distributed systems has attracted a lot of
attention and been addressed in various ways for differ-
ent purposes. A common approach is to add instrumenta-
tion to systems to generate events for future logging and
analysing. Namely, Google Dapper is a tracing tool used in
Google services to record requests flow by annotating mes-
sages sent through standard communication protocols [15].
X-Ray applies instrumentation to Java-based data process-
ing systems for monitoring and analysis of distributed data-
base queries [5]. Other approaches are based on low-level
traces which significantly increases the amount of collected
data [14]. For instance, both X-Trace [4] and Pivot Tracing
are suitable for Java-based systems and aim at identifying
the root causes of software bugs and misconfiguration. The
main difference between both is that Pivot Tracing is able to
correlate distributed events across components without ex-
pensive operations such as aggregations [12]. It also inspired
Facebook Canopy [9], an end-to-end performance tracing
and analysis that enables the collection of performance met-
rics in order to allow a global analysis of performance from
the back-end to the final user. What makes it more relevant
when compared to Pivot Tracing is the ability to perform
analysis over historical data in a near real-time fashion.

Genericmonitoring toolsmake it possible to execute queries
over performance metrics thus providing useful filtered and
aggregated data. One of the well-known tools is Prometheus,
a monitoring tool that collects performance metrics from
each running agent deployed on each node and provides
a powerful Query Language. Despite the flexibility of the
query language and amount of metrics available for analysis,
it is limited to performance indicators. Therefore, pinpoint-
ing the root cause of a performance bottleneck is still not
trivial for engineers.



Current Monitoring-as-a-Service (MaaS) solutions enable
monitoring without the need of manual and tedious con-
figuration nor instrumentation [11]. The monitoring agents
they provide are capable of discovering the architecture and
interactions among processes and services within the system
under analysis. The key to make this happen is to provide an
agent that is ready to instrument specific points in running
processes. When compared to approaches like Prometheus,
these MaaS solutions do not provide a so powerful query
language or even none at all, which limits the overall under-
standing of the architecture, interdependencies and perfor-
mance metrics.
As knowledge about a given system grows, it can then

be used to build or instantiate better models that describe
its scalability. On one end this can be as simple as direct
application of Amdahl’s Law, to estimate scalability of a
parallel program in multi-processor architectures [2], and
Universal Scalability Law, which differs in representing the
loss of scalability due to inter-node communication. Both
require benchmarks to estimate their parameters, which is
unpractical for large scale and dynamic systems [6]. One
interesting feature of the Universal Scalability Law is the
fact that it can be composed, so it could be used to model
holistic performance of a given system by composing the
scalability models of its sub-systems. Nonetheless, it only
performs well over homogeneous hardware, which is not al-
ways the case in distributed systems. On the other end, there
are techniques that ease the performance debugging and
bottleneck identification by modeling the system as a queue-
ing network and considering latency of inter-component
communication. Still, it requires the service level time and
arrival rate as parameters, which are not trivial to get [7].
Amdahl’s Law and queueing theory were also combined to
work around these parameters [3].

Finally, knowledge about the system can be used to act on
itself. In autonomic systems, resources (or components) are
managed by resource managers, containing the control loop
Monitor-Analyse-Plan-Execute, based on knowledge about
the system [10]. When multiple resource managers exist,
each monitoring and executing actions based on collected
information about its managed resource, the system may be-
come dysfunctional [13]. Therefore, orchestration is needed
in order to act according to the overview of the system. In
black-box systems, this is even more challenging since no
overview of the system is available.

3 APPROACH AND DISCUSSION
This project thus addresses three complementary aspects:
Modeling, simulation, and scalability analysis of black-box
large scale systems. Black-box approaches can be applied to
several layers of a system, from its architecture to application-
level knowledge. We start by defining black-box systems as

systems whose architecture and interactions among its com-
ponents, or subsystems, are completely unknown. In order to
understand what is the proper function of a system and what
and how many resources it needs to operate properly, the
first stage of this work is to outline a procedure to discover
the behavior of the system. The behavior of the system can
be specified as the collected information about three main
characteristics: architecture, that shows how system is orga-
nized; dependencies between system’s components, which
hint how changing a given component affects the others;
and the system’s status under several workloads.

The architectures we target go beyond simple three-tiered
systems, tipically used in web services. Instead, several virtu-
alisation layers with containers and virtual machines should
be considered as they are introduced to keep systems iso-
lated, specially in multi-tenant systems, where resources
are shared. It is a concern of our approach to discover how
processes are placed across nodes and virtualised environ-
ments and to do so we will first rely on existing libraries for
communicating with hypervisors to firstly cover environ-
ments where virtual machines are chosen over containers.
We achieve this with a single monitoring agent per physi-
cal and per virtualised node able to collect this information.
The resulting model that comprises the architecture of the
system and interactions among its components can be draw
as a graph with several types of nodes. Concretelly, in the
end nodes represent physical machines, virtualised environ-
ments, processes and services. The edges that connect all
these nodes represent allocation, in case of virtual machines
and physical nodes, and communication relationship, such
as processes exchanging messages.

According to the previous black-box definition, all this in-
formationmust be retrievedwithout requiring any application-
level knowledge. To do so, low-level tools are leveraged to
collect data for future correlations and thus allow to infer the
behavior of the target system. However, choosing the right
data and tools to gather relevant data to this end is not trivial,
because despite of knowing that several specificities of the
system will still be hidden, the procedure that collects and
correlates data will determine the accuracy of the modeling
process. Moreover, the way these low-level tools work can
easily become intrusive to the point of being unpractical to
use.

The accuracy of modeling black-box systems is related to
the amount and detail of collected data. However, there is a
trade-off between the amount of collected data and the over-
head imposed by these tools. A large amount of data allows
to detail the behavior of system but monitoring may become
intrusive. In fact, this is the main challenge with monitoring
black-box systems. In the end of this stage, we should be
able to fit any distributed black-box system into a model that
is representative for scalability analysis. As mentioned in

2



Section 2, there are two well-known scalability quantifica-
tion models used in practice, however as their parameters
are non trivial to estimate, the main challenge of this stage
will fall into understanding what metrics could be useful to
estimate them.

After analysing the system and building its model, the sec-
ond stage is to use the model to simulate the behavior of the
system under a given hardware configuration. By using this
model in a simulation tool, it should output useful data to
analyse if the system under simulation might be under con-
tention or not. Additionally, it should be improved to detect
which components are causing performance bottlenecks.

REFERENCES
[1] Marcos K Aguilera, Jeffrey C Mogul, Janet L Wiener, Patrick Reynolds,

and Athicha Muthitacharoen. 2003. Performance debugging for dis-
tributed systems of black boxes. ACM SIGOPS Operating Systems
Review 37, 5 (2003), 74–89.

[2] Gene M Amdahl. 1967. Validity of the single processor approach to
achieving large scale computing capabilities. In Proceedings of the April
18-20, 1967, spring joint computer conference. ACM, 483–485.

[3] Nuno A Carvalho and José Pereira. 2010. Measuring software systems
scalability for proactive data center management. InOTMConfederated
International Conferences" On the Move to Meaningful Internet Systems".
Springer, 829–842.

[4] Rodrigo Fonseca, George Porter, Randy H Katz, Scott Shenker, and
Ion Stoica. 2007. X-trace: A pervasive network tracing framework. In
Proceedings of the 4th USENIX conference on Networked systems design
& implementation. USENIX Association, 20–20.

[5] Pedro Guimarães and José Pereira. 2015. X-Ray: Monitoring and anal-
ysis of distributed database queries. In IFIP International Conference on
Distributed Applications and Interoperable Systems. Springer, 80–93.

[6] Neil J Gunther. 2007. Scalability—A Quantitative Approach. Guerrilla
Capacity Planning: A Tactical Approach to Planning for Highly Scalable
Applications and Services (2007), 41–69.

[7] Ahmed Harbaoui, Nabila Salmi, Bruno Dillenseger, and Jean-Marc Vin-
cent. 2010. Introducing queuing network-based performance aware-
ness in autonomic systems. In Autonomic and Autonomous Systems
(ICAS), 2010 Sixth International Conference on. IEEE, 7–12.

[8] Olumuyiwa Ibidunmoye, Francisco Hernández-Rodriguez, and Erik
Elmroth. 2015. Performance anomaly detection and bottleneck identi-
fication. ACM Computing Surveys (CSUR) 48, 1 (2015), 4.

[9] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor
Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,
Brendan Viscomi, et al. 2017. Canopy: An End-to-End Performance
Tracing And Analysis System. In Proceedings of the 26th Symposium
on Operating Systems Principles. ACM, 34–50.

[10] Jeffrey O Kephart and David M Chess. 2003. The vision of autonomic
computing. Computer 36, 1 (2003), 41–50.

[11] Dynatrace LLC. 2005. Dynatrace: Digital Performance and Application
Performance Monitoring. (2005). https://www.dynatrace.com/

[12] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot tracing:
Dynamic causal monitoring for distributed systems. In Proceedings of
the 25th Symposium on Operating Systems Principles. ACM, 378–393.

[13] Mohammad Reza Nami and Koen Bertels. 2007. A survey of auto-
nomic computing systems. In Autonomic and Autonomous Systems,
2007. ICAS07. Third International Conference on. IEEE, 26–26.

[14] Bo Sang, Jianfeng Zhan, Gang Lu, Haining Wang, Dongyan Xu, Lei
Wang, Zhihong Zhang, and Zhen Jia. 2012. Precise, scalable, and online

request tracing for multitier services of black boxes. IEEE Transactions
on Parallel and Distributed Systems 23, 6 (2012), 1159–1167.

[15] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephen-
son, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag.
[n. d.]. Dapper, a large-scale distributed systems tracing infrastructure.
Technical Report.

3

https://www.dynatrace.com/

	1 Context
	2 State of the Art
	3 Approach and Discussion
	References

