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ABSTRACT
Privacy of our personal data stored in clouds is under constant
threat. Data from our activities online and even offline are being
stored, processed and mined to generate valuable information for
commercial interests. While this is being done, the individuals have
very little or no knowledge about the sub-processors accessing their
data. The lack of strict regulations has allowed commercial interests
to disregard the privacy of users. A growing distrust among users
about storing their personal data in the cloud has created the need
for privacy preserving systems. In this direction, we present Tolla,
a data management system for personal data. Tolla gives user total
control over their data along with granular privacy controls to
enable legacy internet services.
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1 INTRODUCTION
Internet services are constantly developing new features that cap-
ture and make use of personal data to understand our behavior,
deliver relevant ads and what not. As our data is rapidly becoming
a new commodity to be traded among large Internet companies,
the importance of a stricter control is becoming more and more
necessary and imminent. Recent studies [15, 16] have shown a
growing distrust among individuals about their data stored at these
third-parties.

The General Data Protection Regulation (GDPR)1 of the Euro-
pean Parliament & Council is designed to enforce a stricter control
over data processing and introduce more accountability. The regu-
lations come into effect on 25th May 2018. The regulations provide
individuals with various rights over their own personal data, even if
they are stored at cloud servers worldwide. The regulation enables
individuals to be more aware of the processing done on their data
and it will be possible only if they have consented to it.

2 PROBLEM DESCRIPTION
Most existing Internet services hide away most of their processing
from the user. Their users are generally not aware of where their
data is being stored and what processing is being done on it. The
privacy controls provided to the end users typically fail to provide
granular control over the data being processed. Popular protocols
such as OAuth [12] enable cross-site data sharing via delegated API
calls. However, the policies are defined by the web services using
OAuth. If individuals created their own policies, strong assurances
about how those policies are enforced are required [22]. The GDPR
1eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
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states that explicit consent is required for processing and users
must be notified of any processing of their data. Another aspect of
the GDPR that we are interested in, is the ability to switch between
service providers while keeping user’s data thus preventing data
lock-in. This will enable a new generation of services which rely on
a multitude of data collected by the user from various sources, while
the user will remain in complete granular control of the data. One
example of such a service can be seen in professional sports where
fitness, nutrition, sleep and mood data can help athletes train better
and even prevent suicides [20]. Some of this data can be considered
sensitive in nature and require stricter controls depending upon
the regional laws, individual and the privacy policies of the institu-
tion. We already provide services2 in lifelogging sport domain for
hundreds of elite athletes who are currently monitored, analyzed
and intervened on a 24/7 basis. Another problem associated with
an athlete’s data is switching between different teams. The problem
of ownership and reusing data collected previously arises due to
data lock-in by the different systems in use.

3 RELATEDWORK
One of thewidely usedmethods for preserving privacy is anonymiza-
tion. For example, in Prochlo [3], privacy is achieved by scrubbing
all personal identifiable information from the browser statistics and
mangling it into parts until no individual browser can be identified.
The anonymization of health data in our case only makes sense in
population-wide studies. For individual interventions, data must
remain identifiable. The individual must be aware of the intention
behind the processing of data and the services accessing the data.
This is stipulated in the GDPR. It might be possible that the indi-
viduals do not want to store data in a cloud [16] at all. For privacy
concerns, approaches like Databox [17] require data to be processed
in an edge node.

Esposito et al. [6] argue that the use of edge computing eases data
privacy challenges. However, the trade-off between performance,
scalability, persistence, and reliability might not make it suitable for
every application. While processing, storage and analysis of data
can be leveraged using a cloud, mechanisms must be put in place
to ensure privacy. On the other hand, edge computing provides
privacy preserving processing, however it provides challenges such
as cost efficiency, real-time scheduling etc. The work also outlines
security challenges while dealing with edge computing as they can
be relatively easily exploited by an adversary.

Sahi et al. [21] explored the state of research of privacy in e-
Healthcare systems. Their work highlights the privacy concerns
in healthcare data as it is extremely personal and private. And any
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mismanagement of such data can lead to complications for both
the patient and the e-Healthcare enterprise. Their work also dis-
cusses how certain privacy requirements are given less importance
by the service providers while designing systems. Even though
strong legal regulations such as HIPAA [9] exist for medical data,
these systems rely on Role Based Access Control (RBAC) [7] mecha-
nisms to prevent any unauthorized access to the system. RBAC uses
the identity of the user/application to limit or allow access to the
data. The identity is associated with certain roles for which privacy
policies are defined. For example, a health practitioner, a nurse, or
a police personnel. In the context of a multitude of applications
which exist today, the solution is not feasible as the role of every
individual application or data processor is not clearly defined. For
GDPR, each application or data processor has to define an intent
which can be a complex set of permissions. The user may revoke
some of these permissions rendering the use of role-based access
not suitable for implementing a GDPR compliant system.

In Sieve [22], the use of Attribute Based Encryption (ABE) is lim-
ited to hiding the homomorphic keys and the metadata. Sieve relies
on encrypted data scheme which is only exposed to applications
with relevant/correct attributes as privacy policies. For any retrac-
tion or revocation of keys, re-encryption and re-labeling is required
by design. Complex privacy policies such as access to location data
only if it is more than one year old will be very difficult to implement
in Sieve. Sieve assumes and provides access to every data element
which has been consented by the user based on the label of the data.
Granular control is not available in Sieve. In contrast, Tolla provides
access to the data, only if the current state of privacy policy permits.

Similar to Sieve, approaches like [18, 19, 23] rely on homomor-
phic encryption [11] to provide privacy preserving computing in
the cloud. Homomorphic encryption allows computation on en-
crypted data which prevents the curious cloud provider from learn-
ing anything about the data. However, it is also known to have some
vulnerabilities. Security analysis such as [1, 4] demonstrate some
known weakness which can lead to leaking of the keys. Moreover, it
is well suited in cases where encrypted data is uploaded to the cloud
for processing. However, as shown in recent studies [15, 16] there is
a grown distrust about that. Sandboxing approaches like πBox [14]
isolate a user’s instance of an application from other instances and
users. πBox defines certain communication channels which may
suit some applications, however, some of the approaches require
accuracy and privacy trade-offs. Moreover, the finite amount of
communication channels assume that the applications and their
permissions do not change over time. Applications are assigned
a privacy rating according to their behavior and cannot evolve as
the user’s consent changes. There are no granular privacy controls
defined in πBox. The GDPR is likely to bring more transparency on
what our data is being used for. We believe that with transparency,
the individuals will be more aware of privacy risks and will define
their own privacy policies [5, 8]. Thus, there is a strong need for
granular privacy controls.

4 OUR APPROACH
We have built Tolla, a data management system for personal data.
Tolla runs in a container-based environment that is location-agnostic.
It provides granular privacy controls similar to Databox [17] with-
out the requirement of having an edge node. The privacy and access
controls are guaranteed based on certificate authentication to the
services which have been consented to by the individual. Extend-
ing further upon our previous work using meta-code [13], Tolla
uses Ciphertext-Policy Attribute Based Encryption (CP-ABE) [2]
as a mechanism to enforce any real-time changes in the consent
or privacy policies. Our goal is to provide a framework that offers
privacy and accountability by design. Application developers and
data scientists can write their queries without having to worry
about managing which users have consented or not.

The Tolla system is built to provide privacy guarantees on the
data by isolation. The use-cases for Tolla will be from the lifelogging
sport domain where we already provide services. Each individual’s
data is stored in a federated storage. This enables data to be moved
with the individual. Our design does not dictate where data should
be stored, locally, a distributed file system or a combination of both.
However, we assume that it is possible to load data into the con-
tainer in a secure way while bootstrapping. While bootstrapping,
the data of an individual is loaded into a Personal Data Storage
Unit (PDSU). Existing applications can utilize the Tolla framework
without having to worry about managing consent from each indi-
vidual. Existing data processing can be modified to point to Data
Processing Units or DPUs for querying user data. Each DPU is
capable of querying data stores while considering user’s content.
During our initial evaluation, we found out that a typical football
team member’s personal fitness and lifelogging data running inside
Tolla can be processed on a laptop with decent amount of memory.

Every access to the data stored in a Personal Data Storage Unit
(PDSU) is facilitated by the system and guarded by granular privacy
controls. Any request for data by an application is routed through
a Data Processing Unit (DPU). The DPU acts on behalf of the ap-
plication and provides the intent behind accessing a particular set
of data. The Certificate Authority (CA) verifies the identity of the
application. There is no need for one global CA for every instance
of Tolla. Similar to a certificate validation for SSL [10] in a browser,
an individual’s data storage unit can have more than one trusted
CA. If the individual has consented to the data processing by the
application for this intent, the CA signs the X.509 certificate of
DPU. While signing the certificate, the CA fetches policies from
the Policy Engine (PE) and adds them to the certificate along with
the intent defined by the DPU. The CA also provides a decryption
key based on Attribute Based Encyption to the DPU, which is used
later. The Policy Engine(PE) also provides addressing mechanisms
via CA to the DPU to access the available PDSU(s). After obtaining
the signed certificate, a DPU can then query a PDSU for data. For
opening a connection to a PDSU over TLS, the DPU provides the
signed certificate. The verifier running inside a PDSU authenticates
the received certificate from a DPU and creates a secure connection.
The verifier then verifies the data being asked and whether it is
compliant with the intent specified in the certificate. While the
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Figure 1: System Architecture

certificate is being verified, the logger logs the request along with
key identifiers for audit purposes. After verification, the requested
query is processed and the result is calculated. The calculated result
is then encrypted using CP-ABE while using the set of parameters
from the policy defined for the intent or data fields as the key. The
encrypted result is sent back to DPU. The received results can be
decrypted by DPU using the attributes from the signed certificate
provided by the CA earlier.

4.1 Accessing the data
A Data Processing Unit (DPU) works on behalf of an application.
Typical operations performed by a DPU are reading user data and
performing analytics on it. When a Data Processing Unit (DPU)
requests access to information based on an individual’s data, there
are two layers of authentication mechanisms in Tolla. The first
mechanism comes in place which has been approved by the Certifi-
cate Authority (CA). The connection between a DPU and a Personal
Data Storage Unit (PDSU) takes place over TLS. The DPU uses the
signed certificate which it obtained from CA in order to open a
connection to the PDSU. Only if the certificate matches the intent
which the user initially consented to, the further steps of obtaining
data can take place. In case the intent does not match or the cer-
tificate is not signed by a trusted CA, the connection is dropped
and the event is logged. Once the DPU has been authenticated
by the verifier, the DPU sends the required query over a secure
connection. Upon receiving the query, the logger logs the query for
auditing. If the received query matches the columns associated with
the intent, the PDSU queries the database and obtains results. Be-
fore sending the results to the requesting DPU, an Attribute Based
Encryption (ABE) scheme is used to encrypt the result. Depending
upon the type of query and the sensitivity of the data and the DPU,

the PDSU can employ a different set of attributes for the encryp-
tion. For example, aggregation queries without a time period filter
can be considered less sensitive. In such case, the PDSU can use
the ’application ID’, ’certificate signing date’ check as the set of
attributes for encrypting the result. The use of Ciphertext-Policy
ABE allows various logical evaluations which can be employed,
such as ’certificate signing date’ must be after 01-01-2018. Only if
the DPU has valid key relating to the certificate it presented and a
certificate which matches the signing date criteria, it will be able to
see the results. For relatively more sensitive data, such as a stream
of GPS coordinates from a fitness tracker or financial transactions
for last month, the PDSU can employ more attributes in order to
block decryption by unauthorized DPU. It is important that while
deciding the attributes for CP-ABE, the PDSU picks relevant privacy
policy stored in the PDSU for the requesting Data Processing Unit
(DPU).

The signed certificate requirement by verifier ensures that only
verified third-party services will be able to access an individual’s
data. Only when the individual has explicitly consented to the intent
of a third-party, will the request be processed. The use of CP-ABE
ensures that the real-time enforcement of consent and privacy poli-
cies. If the policy has been modified or consent has been revoked,
it will be first reflected in the privacy policies stored in the PDSU.
The PDSU then pushes policies to the Policy Engine (PE) so that
those can be reflected in the certificates signed by CA later. How-
ever, if a request is under processing and the individual decides
to revoke consent, the encryption scheme ensures that the DPU
and subsequently the application fails to obtain results. This is a
result of encrypting scheme (CP-ABE) utilizing the attributes from
the consent and policy available at the time of processing the re-
sult of the query. The decryption fails as the available attributes
in the decryption key with the DPU fail to match the ones used in
the encryption. In case of such failure, the DPU can approach the
Certificate Authority (CA) again and obtain a new set of signed cer-
tificate and decryption key with the updated privacy policy. If the
policy remained unchanged, the DPU is able to decrypt the result
using the key it obtained earlier while obtaining a signed certificate
from the CA. The verifier is also responsible for translating intent
to database fields and support for aggregation bounds defined in
the policies in a PDSU.

5 CONCLUSION
We have introduced Tolla, a location-agnostic framework for per-
sonal data management. Tolla demonstrates compliance for a set of
GDPR requirements. Tolla allows the same level of privacy as many
edge-based systems. Access control and logging for accountability
can be done on a per-user granularity without having to replicate
complex filtering logic in data processing units that read data from
a personal data storage unit (PDSU). The storage abstractions are
of significance in professional sports leagues where athletes can
now control access to their data. The athletes can also move their
data between teams as they do.
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