
A Provider-Friendly Serverless Framework for Latency-Critical
Applications
Simon Shillaker

Imperial College London

ABSTRACT
Serverless is an important step in the evolution of cloud comput-
ing. First virtualisation enabled sharing a physical machine, then
containers enabled sharing an operating system, now serverless
targets sharing a runtime. Serverless platforms allow users to build
distributed systems from individual functions, knowing little about
the underlying infrastructure. They are free from concerns around
configuration, maintenance and scalability. Meanwhile providers
guarantee timely execution in a secure, isolated environment with
pay-as-you-execute billing.

Although many prominent serverless platforms exist there are
still several significant open problems. The most notable is the
highly variable performance seen by users, which goes hand-in-
handwith unpredictable resource consumption seen by the provider.
Another sticking point is the almost universal lack of statefulness,
which precludes many applications.

Containers are used extensively to provide an isolated environ-
ment for serverless functions, but introduce undesirable overheads
and obstruct sharing resources. I plan to build a new multi-tenant
serverelss language runtime focused on low overheads and resource
reuse, using lightweight isolation built into the runtime itself. This
has potential to greatly reduce variance in latency, improve re-
source efficiency and allow for smarter scheduling decisions. I will
also investigate native support for stateful functions backed by
distributed remote memory, hence opening the door to previously
unfeasible data-intensive applications.

BACKGROUND
Serverless computing raises the level of abstraction such that a
user is totally decoupled from the execution environment. In so
doing, it makes distributed systems more accessible, flexible and
potentially much cheaper. The associated programming model of
small, parallelisable functions fits perfectly with microservice archi-
tectures and has potential applications in big data processing [1].
The technology has further wide-ranging use-cases in mobile back-
ends, internet-of-things and downstream data processing. In spite
of its clear potential, serverless is yet to gain significant traction
and several open problems remain.

An almost ubiquitous design decision is to run each individual
serverless function in its own Docker container, as is the case in
OpenLambda [2], OpenWhisk [3] and OpenFaaS [4]. This is easy
to reason about and gives good isolation guarantees. Platforms can
also take advantage of existing container orchestration frameworks
like Kubernetes [5] and get load balancing, networking and con-
tainer management features for free. Finally, containers are familiar
to many users and mature tooling makes them easy to work with.

12th Eurosys Doctoral Workshop, April 23rd 2018, Porto, Portugal
.

An unfortunate downside to containers is their start-up overhead,
contributing to the “cold start” problem in serverless platforms.
A cold start occurs when a container is not available to service
a request, and booting a clean execution environment causes a
spike in latency and resource consumption. Container boot times
can be of the order of hundreds of milliseconds [6], an order of
magnitude higher than the duration of many requests in latency-
critical systems. This unpredictable hit to response times makes
implementing low-latency serverless applications unfeasible. This
issue is covered in more detail in [2] and [7], especially in relation
to very low throughput when users see a high percentage of cold
starts.

Cold starts can be mitigated by up-front provisioning of re-
sources, an approach taken in OpenFaaS [4]. OpenFaaS keeps a
single container running for every function that’s deployed, hence
solving part of the problem but adding overhead for idle users. This
approach does not mitigate the other form of cold start experienced
when the system scales horizontally.

By isolating functions in their own individual containers we
lose much of our ability to share and reuse resources. This leads to
rapid growth in overheads as more functions are deployed. Serving
thirty requests a second to a single function may require a single
container, conversely thirty functions each receiving one request a
second requires thirty separate containers yet may be performing
an equivalent amount of work. When functions have a common
runtime or similar dependencies, this hard isolation seems wasteful
and there is much to be gained from alternative approaches that
enable sharing and reuse.

Another interesting problem in serverless computing is that of
shared state. Most serverless platforms only support stateless func-
tions, requiring users to provide and manage external storage to
share data between requests. This rules out most data-intensive
applications as I/O to this external storage on every function in-
vocation is prohibitively time consuming. Running data-intensive
applications onOpenLambda is dealt with in PyWren [1] which uses
a combination of system tweaks and external storage to achieve
good performance and elastic scaling. Unfortunately this is still
unfeasible for the average user and a long way from a fully-fledged
big data environment. Preliminary attempts have been made to
build stateful serverless frameworks such as AWS Step Functions
[8] and Apache Openwhisk Composer [9], but these are still in their
infancy.

INVESTIGATION
Openwhisk
Apache OpenWhisk [3] is a prominent open-source serverless plat-
form built using the Akka framework [10]. Users are able to submit
functions written in several supported languages to be run on
demand or according to triggers. If their desired language is not



12th Eurosys Doctoral Workshop, April 23rd 2018, Porto, Portugal Simon Shillaker

0 100 200

Throughput (resp/s)

0

10

20

30

40

L
a
te

n
cy

(m
s)

50 functions

25 functions

5 functions

1 functions

(a) Round trip latency

0 100 200

Throughput (resp/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
P

U
cy

cl
es

×1012

50 functions

25 functions

5 functions

1 functions

(b) Total CPU cycles required to sustain throughput
for 1 minute

0 100 200

Throughput (resp/s)

0

2000

4000

6000

8000

M
B

50 functions

25 functions

5 functions

1 functions

(c) Average memory required to sustain throughput

Figure 1: OpenWhisk behaviour with increasing throughput spread across different numbers of functions

supported by default they are able to specify their own custom
Docker images to execute their code. Functions have no resources
assigned up-front, so a container with the required dependencies is
created upon receipt of the first request. Containers are paused after
processing a request and will be cleared away after a certain time-
out. If a repeat request is made within this timeout, the container
is unpaused and reused. If more frequent requests are made, multi-
ple containers will be created to run the same function. When the
system is overloaded, paused containers will be destroyed to make
room for new ones. This approach is similar to that of OpenLambda
which is discussed in detail in [7].

Scheduling is centralised and handled by one or more “controller”
nodes which forward requests to “invoker” nodes where they are
executed. The controllers will always try to route each function’s
requests to the same invoker node to maximise the probability of a
“warm start”. If the desired invoker is overloaded, the controller will
pick another invoker which will begin creating more containers to
run the function.

Investigation
Although Openwhisk is a popular high-profile framework, it seems
that little existing work has focused on its performance. The fol-
lowing experiments were run on an OpenWhisk cluster with two
invoker machines and one controller machine. Each invoker had
an Intel Xeon E3-1220 3.1Ghz processor and 16GB DRAM. All func-
tions were the same no-op written in Java (note that language
choice made little different to the results). Invokers were allowed
up to 64 containers in their pool, giving the system potential to run
up to 128 containers concurrently.

Under very low load we observe high latency as containers are
instantiated, used and cleared away on every request. This is same
effect as discussed in [2] on OpenLambda.

Figure 1 shows OpenWhisk’s behaviour under moderate to high
loads. All plots show system metrics at equivalent throughputs
spread over different numbers of functions, i.e. for 10 functions

each function is handling one tenth of the throughput and for one
function a single function is handling all of the load.

In Figure 1a we see how latency increases with throughput. The
increase for smaller numbers of functions is sharp as the system
begins queueing requests.When the load is spread across more func-
tions this increase is less steep as the system is able to spread the
work across more containers. All requests at this level of throughput
will be served by warm starts so latency is in the tens of millisec-
onds.

In Figure 1b and Figure 1c we see the change in resource re-
quirements with increasing throughput. Figure 1b shows the total
number of CPU cycles used by the invoker machines to sustain
a given throughput for one minute. As is shown, this number in-
creases significantly as we use more functions. Figure 1c shows
the average memory requirements on the invoker machines and
tells a similar story. The difference between memory requirements
for different numbers of functions is significant, exacerbated by
running a separate JVM in every container.

At a certain throughput invoker machines start hitting their
container limit and are unable to scale out any further. When this
happens Openwhisk evicts warm containers, hence forcing a higher
rate of cold starts than normal. This behaviour causes a downward
spiral and results in thrashing as demonstrated in Figure 2. Here we
see the rate of requests submitted vs. the actual throughput achieved.
At certain points the system can no longer handle the incoming
requests and the response rate collapses. This is down to both the
scheduling approach and the isolation imposed by containers.

RESEARCH TOPICS
Runtime
As outlined above, a container-based runtime has some shortcom-
ings. Boot times are unacceptable for low-latency applications and
total isolation precludes resource reuse. I will investigate isolation
within the language runtime itself, focusing on running untrusted
functions side-by-side with low overheads and minimal start-up



12th Eurosys Doctoral Workshop, April 23rd 2018, Porto, Portugal

0 100 200 300 400

Requests/s

0

100

200

300

400

500

R
es

p
o
n

se
s/

s

50 functions

25 functions

1 functions

Figure 2: Frequency of responses received as throughput is
spread over different numbers of functions.

times. The isolation mechanism will likely be based on OS abstrac-
tions, a common theme in existing literature [11–13]. To reduce
boot times, support for language-specific dependency management
and reuse is crucial. This topic is discussed in the context of server-
less Python in [7]. The use of unikernels and fast-booting VMs
to establish lightweight environments [6, 14] is interesting and
something I will investigate. By building such a runtime I aim to
reduce the magnitude of cold starts and allow for better resource
management on the part of the provider.

Scheduling
Current open-source serverless platforms have fairly simple sched-
uling logic, lacking SLOs and offering minimal fairness guarantees.
Most are scheduling short-lived containers with no benefits to
colocation so are limited in how smart they can be. With the intro-
duction of a runtime allowing resource sharing, it’s possible to take
advantage of colocation and dependency management when sched-
uling. By including these considerations and introducing stricter
fairness, I plan to reduce latency seen by users while improving re-
source efficiency for the provider. Existing literature on scheduling
cloud workloads, SLOs and fairness will be relevant here [15, 16]
as will work on low-latency scheduling [17, 18].

Shared State
Lack of native support for state in serverless platforms puts a burden
on the user whilst ruling out many use-cases, especially those
handling large amounts of data. By bringing state management into
the platform I will be able to investigate mutable distributed state,
caching, colocation and their related programming abstractions. To
achieve any goal in this area a suitable infrastructure for distributed
remote memory is required. As discussed in [19], RDMA and faster
networks have decreased the latency involved in remote memory by
orders of magnitude, so systems like FaRM and RAMCloud [20, 21]
could be extremely useful. Handling mutability, fault tolerance and
synchronisation of system-wide state introduces many challenges
already considered in the world of big data. An example of one

approach is RDDs in Spark which provide both a programming
abstraction and handle fault-tolerance [22].

CONCLUSION
Serverless computing is growing rapidly and quickly gaining ac-
ceptance as a new frontier of cloud computing. By tackling the
problems of serverless runtimes, scheduling and shared state I plan
to address several of the key open problems. Undoubtedly much
complementary work will be done in the coming years and the
space should evolve quickly into a fruitful area of research.

REFERENCES
[1] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.

Occupy the Cloud: Distributed Computing for the 99%. pages 1–8, 2017.
[2] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkatara-

mani, Andrea C Arpaci-dusseau, and Remzi H Arpaci-dusseau. Serverless Com-
putation with openLambda. In Proceedings of the 8th USENIX Conference on Hot
Topics in Cloud Computing, HotCloud’16, pages 33–39, Berkeley, CA, USA, 2016.
USENIX Association.

[3] Apache Project. Openwhisk, 2016.
[4] Alex Ellis. OpenFaaS.
[5] The Linux Foundation. Kubernetes.
[6] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit

Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My VM is Lighter (and
Safer) than your Container. In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 218–233. ACM, 2017.

[7] E Oakes, L Yang, K Houck, T Harter, A C Arpaci-Dusseau, and R H Arpaci-
Dusseau. Pipsqueak: Lean Lambdas with Large Libraries. In 2017 IEEE 37th
International Conference on Distributed Computing Systems Workshops (ICDCSW),
pages 395–400, jun 2017.

[8] Amazon. AWS Step Functions.
[9] Apache Project. Openwhisk Composer.
[10] Lightbend. Akka Framework.
[11] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby

Bhattacharjee, and Peter Druschel. Light-Weight Contexts: An {OS} Abstrac-
tion for Safety and Performance. In 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), pages 49–64, Savannah, GA, 2016.
{USENIX} Association.

[12] Y Chen, S Reymondjohnson, Z Sun, and L Lu. Shreds: Fine-Grained Execution
Units with Private Memory. In 2016 IEEE Symposium on Security and Privacy
(SP), pages 56–71, may 2016.

[13] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge: Splitting
Applications into Reduced-Privilege Compartments. In NSDI, 2008.

[14] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire,
David Sheets, Dave Scott, Richard Mortier, Amir Chaudhry, Balraj Singh, Jon Lud-
lam, Jon Crowcroft, and Ian Leslie. Jitsu: Just-In-Time Summoning of Unikernels.
In 12th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 15), pages 559–573, Oakland, CA, 2015. {USENIX} Association.

[15] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fon-
toura, and Ricardo Bianchini. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
Proceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17,
pages 153–167, New York, NY, USA, 2017. ACM.

[16] Pawel Janus and Krzysztof Rzadca. SLO-aware Colocation of Data Center Tasks
Based on Instantaneous Processor Requirements. arXiv preprint arXiv:1709.01384,
2017.

[17] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. Tarcil: Reconciling
Scheduling Speed and Quality in Large Shared Clusters. In Proceedings of the
Sixth ACM Symposium on Cloud Computing, SoCC ’15, pages 97–110, New York,
NY, USA, 2015. ACM.

[18] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow: Dis-
tributed, Low Latency Scheduling. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, pages 69–84, New York,
NY, USA, 2013. ACM.

[19] Marcos K Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,
Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian,
and Michael Wei. Remote Memory in the Age of Fast Networks. In Proceedings
of the 2017 Symposium on Cloud Computing, SoCC ’17, pages 121–127, New York,
NY, USA, 2017. ACM.

[20] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
FaRM: Fast Remote Memory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 2014). USENIX âĂŞ Advanced Computing
Systems Association, apr 2014.



12th Eurosys Doctoral Workshop, April 23rd 2018, Porto, Portugal Simon Shillaker

[21] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee,
Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen Rumble, Ryan Stutsman, and Stephen Yang. The RAMCloud Storage
System. ACM Trans. Comput. Syst., 33(3):7:1—-7:55, aug 2015.

[22] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster comput-
ing. In Proceedings of the 9th USENIX conference on Networked Systems Design
and Implementation, page 2. USENIX Association, 2012.


	Abstract
	References

