
Fixed transaction ordering and admission in blockchains
Paulo Mendes da Silva

INESC-ID / Instituto Superior Técnico
Universidade de Lisboa

Portugal
psilva@gsd.inesc-id.pt

Miguel Matos
INESC-ID / Instituto Superior Técnico

Universidade de Lisboa
Portugal

miguel.matos@inesc-id.pt

João Barreto
INESC-ID / Instituto Superior Técnico

Universidade de Lisboa
Portugal

joao.barreto@tecnico.ulisboa.pt

ABSTRACT
Blockchain cryptocurrencies such as Ethereum offer a secure and
decentralized transaction system and have the potential to replace
legacy financial transaction systems. Despite their potential, they
suffer from transaction ordering and admission problems. These
stem from having miners deciding the transaction execution order,
as well as which transactions are admitted in the blockchain. Trans-
action censorship, transaction removal due to double-spending
attacks and long transaction commit delays are some of the result-
ing problems. In this work in progress, we will propose a Fixed
Transaction Ordering and Admission (FTOA) algorithm to mitigate
these problems, using EpTO logical timestamps in a Byzantine set-
ting. We focus on Ethereum, but the general ideas can be applied
to other blockchains.

CCS CONCEPTS
• Computer systems organization → Peer-to-peer architec-
tures; • Networks→ Network protocols;

KEYWORDS
Distributed systems, blockchain, total order

1 INTRODUCTION
Blockchain is the technology underpinning cryptocurrencies like
Bitcoin and Ethereum [6]. Blockchains have become increasingly
important for a broad range of applications such as medical records
and asset ownership [4]. A blockchain is a distributed ledger that
securely stores a permanent and verifiable history of confirmed
transactions in a sequence of blocks. It relies on a peer-to-peer
network of computation nodes known as miners [11]. No central
trusted party is required [6]. Miners periodically generate blocks,
roughly every 10 minutes in Bitcoin [6] and every 12-15 seconds in
Ethereum [11]. When a miner generates a block, it gets a reward.
In order to generate a block, miners are required to solve a proba-
bilistic computation puzzle called "proof-of-work" (PoW) [6]. The
solution to this puzzle is stored in the block header and can be easily
verified by other miners for consensus and block admission into
the blockchain [6]. A transaction list is also included in each block.
Miners decide the transaction execution order when creating a new
block to be mined [11]. This work considers open permissionless
blockchains only. These allow any node to participate, whereas
permissioned blockchains restrict participating nodes [2].

Blockchain forks may occur when multiple distinct versions of
the next block are successfullymined and propagated. Consensus on
the set of transactions is temporarily broken and then re-established
by using the longest chain, that is, the one with the highest number
of blocks [4].

Ethereum is a popular and groundbreaking cryptocurrency, offer-
ing complex transactions using programs residing in the blockchain
known as smart contracts [11]. Ethereum transactions may include
coin transfer between accounts and also smart contract execution
updating internal contract state. Miners get an additional variable
reward for executing such transactions.

Problems. Several transaction ordering and admission problems
have been identified in blockchains. We will focus on Ethereum,
but the general ideas can be applied to other blockchains. Ethereum
transactions are not guaranteed to be executed in the same order
they are submitted, that is, later transactions can be executed before
transactions submitted earlier. This means dependent transactions
may have problems [9]. For example, when a later payment depends
on an earlier payment, the miner that happens to mine the next
block can decide to run the later payment first thus causing the
earlier payment to fail due to insufficient funds.

Transaction order can even change after a transaction is seen in
a block. This is the case when a double-spending attack is executed
by replacing the block including the transaction with a new version
of that block without that transaction. Furthermore, this action can
go undetected since the old version of the block is not stored [9].

In the case of fork, a transaction included in a block of a losing
forked branch can be discarded. Despite offering mechanisms to
consider such a transaction again for inclusion in a block, Ethereum
offers no guarantee that it will always be re-included in a future
block, since miners may silently drop it. This means submitted
transactions are not guaranteed to be executed. On the other hand,
no miner can be sure that every other miner has dropped a given
transaction, meaning there is no upper bound for the time a trans-
action can live in the system without being executed [11].

Due to the unpredictability that phenomena like the above-
mentioned ones cause, blockchain clients are typically conservative
and only consider a transaction as committed after receiving a
sequence of consecutive blocks mined after the first block that in-
cluded it. The length of such a sequence of blocks is usually 12
blocks in Ethereum. As a consequence, most Ethereum transactions
usually take more than 3 minutes to commit, after submission [11].

Miners can join a mining pool expecting sustained shared re-
wards upon solving PoW computation sub-puzzles distributed by
the pool operator. Around 80% of the mining power in Ethereum
resides in only six mining pools. Since mining pools can select
which transactions to include in the blockchain, this means mining
pools can potentially collude to control the network with a 51%
attack and censor transactions [6].



Contribution. This work intends to make the following contribu-
tion: provide fixed transaction ordering and admission to blockchains
using EpTO logical timestamps in a Byzantine setting.

The main advantages of this work will be guaranteeing the same
transaction order for all miners in the Ethereum network and en-
suring a valid submitted transaction cannot be discarded. As a
consequence, all valid submitted transactions will be guaranteed
to be executed and mining pools will not be able to censor them.
Furthermore, transaction commit delay will also be reduced since
transactions showing up in a mined block will be guaranteed not
to be discarded.

Existing Ethereum transaction dissemination mechanisms are
insufficient since they do not provide any transaction ordering or
admittance guarantees. This also applies to manually attempting to
submit the same transaction tomultiple entry points, such asmining
pools, which would also rely on these mechanisms. The current
Ethereum blockchain consensus already provides a total order for
transactions, which may explain why there has been no attempt
to provide a new total order mechanism for enforcing miners to
mine blocks with the same transactions in the same fixed order. On
the other hand, timestamps are often perceived as vulnerable to
manipulation attacks [10] which may explain why to the best of our
knowledge they have never been used in Ethereum transactions.

We anticipate a challenging implementation. It will require chang-
ing the Ethereum dissemination mechanisms, making them more
adequate for lower overall transaction commit times, at the the
same time as using logical timestamps in a Byzantine setting and
guaranteeing they are resistant to attacks, so as to make transaction
order and admittance fairer.

2 WORK IN PROGRESS DESCRIPTION
The intuition behind this work in progress is to develop a Fixed
TransactionOrdering andAdmission (FTOA) algorithm for Ethereum,
so as to prevent miners from deciding how to order transactions
and which to include. In order to achieve this goal, the EpTO (Epi-
demic Total Order) algorithm will be adapted to Ethereum and
its Byzantine setting by adjusting parameters (e.g. fanout) and
adding logical timestamps to Ethereum transactions. The existing
Ethereum Byzantine consensus setting will be considered for this
work. It can be described as PoW-based. This means consensus
can be reached as long as an adversary controls less than half of
the network computing power. In such a setting, a 51% attack is
possible, thereby allowing the attacker to arbitrarily manipulate
the blockchain, for instance, in order to exclude transactions or
modify their order [5]. The FTOA implementation using EpTO will
likely not be trivial, since similar gossip based consensus systems
are known to be challenging to implement [7], but our previous
experience makes us confident it will be successful.

Logical timestamps will be used to order transactions. This will
allow detecting missing and spurious transactions, as well as ensur-
ing dependent transactions will be executed in the expected order.
For this to happen, transactions will be disseminated and aged until
there is a high probability they have been delivered to all nodes,
before being considered for inclusion in a block. As a consequence,
the system will converge to having all miners mining the same
transactions in the same order. We do not expect any significant

performance impact by adding logical timestamps to transactions
and we do not anticipate any scalability issues.

FTOA will offer protection against against Denial-of-Service
(DoS) attacks using malicious timestamps by restricting timestamp
validity to a time window for aging all transactions for the current
block. Transactions arriving outside the current time window will
be discarded. Transaction timestamps will be signed be the issu-
ing Ethereum address using PKI cryptography, thereby preventing
tampering by an attacker. Miners will have no advantage in mining
blocks with missing transactions since other miners will know the
correct transaction set and will discard them.

2.1 Background on EpTO
EpTO is an Epidemic Total Order algorithmwith probabilistic agree-
ment. Its intuition is making events available quickly at all nodes
with high probability. It guarantees processes eventually agree on
total order of events with high probability. The probability of holes
in an event sequence can be made arbitrarily small. Processes do
not necessarily know when a hole occurs and delayed events may
either be dropped or tagged as "out-of-order" when their delivery
would result in an order violation. EpTO uses a logical clock, times-
tamps and time to live for aging events before delivering them in
timestamp order to applications [8].

A balls-and-bins approach is used for dissemination. Processes
are modeled as bins and events as balls. The algorithm then tries to
find howmany balls have to be thrown so that a bin receives at least
one ball with arbitrarily high probability. Events are disseminated
in a small number of rounds that increases logarithmically with the
number of processes. The round duration can be set to the latency of
the well-behaving nodes for guaranteeing the well-behaving part of
the network will satisfy the probabilistic agreement. EpTO is fully
decentralized and therefore does not require central coordination
for processes. Process churn and message loss can be mitigated
increasing the fanout parameter, which defines how many balls
are sent by each process in each round and is logarithmic in the
number of processes [8].

2.2 FTOA algorithm overview
The Fixed TransactionOrdering andAdmission (FTOA) algorithm for
Ethereum will work as follows. Logical timestamps will be asso-
ciated to transactions. Ethereum nodes will have a local clock for
generating transaction timestamps.When a transaction is generated
at a given node, it will receive the local clock value as timestamp,
in a new field. The local clock will then be incremented by one
unit. Transactions will be disseminated to all nodes using EpTO.
Upon receiving a transaction, nodes may update their local clocks
according to the received transaction timestamp. If transaction
timestamps are received in order with no holes (that is, with no
missing transactions and no missing timestamp values), nodes up-
date their local clock to the received timestamp value. On the other
hand, if the received timestamp originates a hole or if there is still
a hole in the transaction timestamp list after adding it to the list,
the local clock is not updated. In this case, the local clock is only
updated again when a new sequence of transactions with no holes
results from the new timestamp being added to the list and it is
assigned the value of the highest timestamp of that sequence. This



will prevent spurious timestamp attacks that would result in nodes
generating transactions with arbitrarily high timestamps that could
consequently be delayed for a long time.

Miners will order transactions according to their logical times-
tamps. Transactions will have to wait in a staging list before being
considered for inclusion in a block in order to guarantee high deliv-
ery probability to all nodes and low missing transaction probability.
This waiting period can be defined as aging. The aging time encom-
passes the sum of the durations of all EpTO dissemination rounds
required for ensuring high delivery probability to all nodes. The
number of dissemination rounds and the time between dissemina-
tion rounds are EpTO parameters. After aging, aged transactions
will be included in a block to be mined in a fixed logical timestamp
order. Miners will attempt to mine full blocks, that is, blocks with
the maximum possible number of transactions, a parameter dynam-
ically agreed upon by the Ethereum network. Miners will order
distinct transactions with the same logical timestamp using a fair
criterion based on the previous block number and on the Ethereum
accounts that issued them.

All the above leads miners to mine the same sequence of transac-
tions for a given block. When a block is successfully mined, it will
be disseminated to other miners. In the unlikely case a block with an
incomplete transaction set is received by a miner that has received
all transactions, it will be discarded due to its missing transactions.
When 51% of network is well-behaving and all nodes have received
all transactions with high probability, no blocks with missing trans-
actions are expected to be accepted into the blockchain since miners
will discard them and will converge to adopting blocks containing
the complete transaction sets.

Miners will stop mining their current block and start mining a
new one with a more completed transaction set when previously
unknown transactions are received. The new transaction set will
be the union of the old transaction set with the new received trans-
actions. Transactions can be received during individual transaction
dissemination or within a transaction list of a disseminated mined
block.

As an example, by setting the EpTO round duration to the av-
erage Ethereum 120 ms latency value [3], having blocks carrying
95 transactions, considering a 12 second block mining time and a
10 second block propagation time, we can estimate a transaction
commit time around 40 seconds. This is substantially lower than the
usual 3 minutes commit time and includes aging all 95 transactions
included in the block and the time required to fill the block up
with those transactions, considering an observed Ethereum average
generation of 11.5 transactions per second.

2.3 FTOA attack mitigation
Ethereum transaction fees offer protection against Denial-of-service
(DoS) attacks. An attacker might try to overwhelm the network by
continuously issuing new transactions. However, such a sustained
attack is considered to be too expensive [1] and can be estimated to
cost around 250 USD per block full of transactions, as of December
2017. Therefore, as an example, issuing 1000 blocks of transactions
would have an estimated cost of 250000 USD for the attacker. This
is also valid for an attacker attempting to issue transactions with
malicious timestamps. A transaction timestamp can be within or

outside the interval defined by the earliest and latest transaction
timestamps to be included in the current block. Timestamps in the
past will be discarded. Transactions with timestamps in the future
will be queued until all consecutive timestamps in between are
received. In case an attack is attempted with timestamps within
that interval, the corresponding transactions will be accepted and
ordered with the remaining valid transactions, in case the aging
time of the oldest transaction with an equal or higher timestamp
has not yet elapsed. In case that aging time has elapsed, transactions
with lower or equal timestamp are discarded, since they should
already have been received with high probability. The only short-
term advantage for the attackerwill be having transactions executed
slightly before other valid transactions during this aging time. As
it happens today with Ethereum, no long-term advantage can be
foreseen from flooding the network with transactions as it would
be too expensive.

Furthermore, an Ethereum address will only be able to provide
transactions with monotonic increasing timestamps. This means an
attacker wishing to overload the network with transactions with
a repeated timestamp, for instance, would have to use different
Ethereum addresses for each transaction. An attacker will also not
be able to tamperwith the transaction timestamps, since timestamps
will be signed by the Ethereum address issuing the transaction using
PKI cryptography. Thus, an attacker will only be able to produce
new transactions. On the other hand, miners will have no advantage
in mining blocks with missing transactions since other miners will
know with high probability there are additional transactions and
will discard those blocks.

2.4 Status and future directions
This work is at an early stage. The algorithm definition is still in
progress and there is no implementation yet. As short term direc-
tions, we anticipate to finish the algorithm definition, in particular
on how to adjust EpTO to the Ethereum Byzantine setting. Then we
expect to implement a prototype to validate the algorithm and fi-
nally to implement it in Ethereum. In the long term, wewill evaluate
the solution suitability for other blockchains such as Bitcoin.

ACKNOWLEDGMENTS
This work is supported by the Portuguese National Science Foun-
dation under Grant No. SFRH/BD/130017/2017.

The authors would like to thank the anonymous referees for
their valuable comments and helpful suggestions.

REFERENCES
[1] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A survey of attacks

on Ethereum smart contracts (SoK). In International Conference on Principles of
Security and Trust. Springer, 164–186.

[2] Christian Cachin. 2016. Architecture of the Hyperledger blockchain fabric. In
Workshop on Distributed Cryptocurrencies and Consensus Ledgers.

[3] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, and Emin Gün
Sirer. 2018. Decentralization in Bitcoin and Ethereum Networks. arXiv preprint
arXiv:1801.03998 (2018).

[4] Lucianna Kiffer, Dave Levin, and Alan Mislove. 2017. Stick a fork in it: Analyzing
the Ethereum network partition. In Proceedings of the 16th ACMWorkshop on Hot
Topics in Networks. ACM, 94–100.

[5] Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen. 2017. A survey
on the security of blockchain systems. Future Generation Computer Systems
(2017).



[6] Loi Luu, Yaron Velner, Jason Teutsch, and Prateek Saxena. 2017. SMART POOL:
Practical Decentralized Pooled Mining. IACR Cryptology ePrint Archive 2017
(2017), 19.

[7] Francisco Maia, Miguel Matos, José Pereira, and Rui Oliveira. 2011. Worldwide
consensus. In IFIP International Conference on Distributed Applications and Inter-
operable Systems. Springer, 257–269.

[8] Miguel Matos, Hugues Mercier, Pascal Felber, Rui Oliveira, and José Pereira. 2015.
EpTO: An epidemic total order algorithm for large-scale distributed systems. In
Proceedings of the 16th Annual Middleware Conference. ACM, 100–111.

[9] Christopher Natoli and Vincent Gramoli. 2016. The blockchain anomaly. In Net-
work Computing and Applications (NCA), 2016 IEEE 15th International Symposium
on. IEEE, 310–317.

[10] Marko Vukolić. 2015. The quest for scalable blockchain fabric: Proof-of-work vs.
BFT replication. In International Workshop on Open Problems in Network Security.
Springer, 112–125.

[11] Ingo Weber, Vincent Gramoli, Alex Ponomarev, Mark Staples, Ralph Holz,
An Binh Tran, and Paul Rimba. 2017. On availability for blockchain-based
systems. In Reliable Distributed Systems (SRDS), 2017 IEEE 36th Symposium on.
IEEE, 64–73.


	Abstract
	1 Introduction
	2 Work in progress description
	2.1 Background on EpTO
	2.2 FTOA algorithm overview
	2.3 FTOA attack mitigation
	2.4 Status and future directions

	Acknowledgments
	References

