
Regular Expression Search in Compressed Text
Extended Abstract

Pedro Valero∗
IMDEA Software Institute, Spain

pedro.valero@imdea.org

Pierre Ganty
IMDEA Software Institute, Spain

pierre.ganty@imdea.org

Javier Esparza
Technical University of Munich,

Germany
esparza@in.tum.de

ABSTRACT
Companies like Facebook, Google or Amazon store and process
huge amounts of data. Lossless compression algorithms such as
brotli1 and zstd2 are used to store textual data in a cost-effective
way. On the other hand, it is common to process textual data using
regular expression engines as evidenced by the number of highly-
performant engines under development such asHyperscan3 or RE24.
For the scenario in which the input to the regular expression engine
is only available in compressed form, the state of the art approach is
to feed the output of the decompressor into the regular expression
engine. We challenge this approach by searching directly on the
compressed file. The experiments show that our purely sequential
implementation, called zearch, outperforms the state of the art
even when decompressor and search engine each have a distinct
computing unit. Based on theoretical studies that suggest zearch’s
algorithm is easily parallelizable, we take the challenge to boost
the performance of zearch using parallel processing capabilities of
modern architectures: SIMD instructions, multi-threading, multi-
processing and general-purpose computing on GPUs.

CCS CONCEPTS
• Theory of computation → Regular languages; Shared mem-
ory algorithms; Vector / streaming algorithms; Massively parallel
algorithms;
ACM Reference Format:

: Extended Abstract. In Proceedings of 12th EuroSys Doctoral Workshop
(EuroDW’18). ACM, New York, NY, USA, 3 pages.

INTRODUCTION
Lossless compression of textual data is achieved by finding rep-
etitions and replacing them by references to the repeated string.
These strings are then encoded together with the remaining text as
the output of the compression.

The state of the art approach to search on compressed text is to
feed the output of the decompressor into the regular expression en-
gine. Observe that with this approach the regular expression engine
has no information about repetitions even though this information
was computed by the compression algorithm.

Zearch’s novelty is to take advantage of the information about
repetitions to save on search work. As we describe next, zearch
∗Corresponding author.
1https://github.com/google/brotli
2https://github.com/facebook/zstd
3https://github.com/intel/hyperscan
4https://github.com/google/re2

EuroDW’18, April 2018, Porto, Portugal

relies on well-established algorithms from Language Theory to
report all lines of the original text containing a match of the reg-
ular expression. Our experiments, summarized in Table 1, show
that zearch outperforms the state of the art approach even when
comparing our sequential implementation with decompressing and
searching in parallel.

ZEARCH
Zearch operates over grammar-compressed text. Grammar-based
compression algorithms, such as LZ78 [6], LZW [5], Recursive
Pairing [2] and Sequitur [3], use repetitions in the text to build a
context-free grammar as shown in Fig. 1.

S1 → ab S2 → S1$ S3 → a$ S4 → S3b
S → xS2S2yS4S4zS2

S

S2

$

S1

baz

S4

b

S3

$a

S4

b

S3

$ay

S2

$

S1

ba

S2

$

S1

bax

Figure 1: List of grammar rules (on top) generating the string “xab$
abyaba$bzab$” (and no other) as evidenced by the parse tree (bot-
tom).

In the settings of grammar-based compressed text, finding reg-
ular expression matches is conceptually close to the problem of
deciding whether the languages of a context-free grammar (the
compressed text) and an automaton (the regular expression) inter-
sect. Indeed, if the two intersect it means there is a match of the
regular expression in the original text.

Esparza et al. [1] proposed the saturation construction which
allows to decide whether or not the intersection of a context-free
grammar and an automaton is empty. The saturation construction
processes grammar rules sequentially adding, for each rule, zero or
more transitions to the automaton. We illustrate the construction
by considering the rule S2→S1 $ of Fig. 1. If the automaton con-

tains q1 q2 q3
S1 $ for some q1,q2,q3, then the saturation adds

a transition q1 q3
S2 . Intuitively, q1 q3

S2 means that the string
“ab$” generated by variable S2 labels a path in the automaton from
state q1 to state q3. Thus deciding the emptiness of the intersection
amounts to check whether there exists a transition from initial
to final states with label S . Observe that the construction adds no
states, only transitions.

https://github.com/google/brotli
https://github.com/facebook/zstd
https://github.com/intel/hyperscan
https://github.com/google/re2

EuroDW’18, April 2018, Porto, Portugal Pedro Valero, Pierre Ganty, and Javier Esparza

Subtitles CSV Log
zearch Zgrep PZgrep zearch Zgrep PZgrep zearch Zgrep PZgrep

“pedro” 239 304 228 454 397 355 107 258 183
“.” 285 364 269 558 529 405 125 221 188
“I .* you” 380 382 270 517 372 346 125 261 185
“[a-z]{4}” 394 492 347 661 611 466 155 259 182
“ [a-z]{4} ” 386 688 518 532 698 467 132 403 255
“[a-z]{6}” 480 592 430 727 614 469 172 294 188
“[a-z]*[a-z]{10}” 567 658 493 852 616 466 191 436 293
“([a-z]{5})*” 400 357 252 540 519 391 125 219 189

Table 1: Running time (milliseconds) required for regular expression search on compressed text. Each column shows the running times required
to search with a regular expression on a 100 MB long (uncompressed) file. Zearch uses a single process to search on the repair-compressed file.
Zgrep and PZgrep decompress the file with zstd and search on the output with grep. Zgrep forces the decompression and search to be carried on
in a single CPU while PZgrep imposes no such restriction. All tools are asked to report the number of lines on the uncompressed text containing
a match of the regular expression. We underline the runtime of the fastest tool working on a single CPU and highlight in bold text the runtime
of the fastest tool when there is no limitation in the number of CPUs used.

Finding all matches.
Tools like grep5 or ripgrep6 and others go beyond answering an
emptiness problem and report all the lines in the original text con-
taining a match of the regular expression. For the sake of concise-
ness we omit the description of how zearch reports all the matching
lines and focus on how it counts them.

To count all matching lines, zearch attaches to each transition in
the automaton extra information about potential match. Consider
the grammar of Fig. 1 and let symbol “$” be an end-of-line delimiter
so that the string generated by S consists of 5 lines. For the regular
expression “a|b” we have that both symbols S2 and S4 generate a
string matching against the expression. Indeed they both generate
two matches of the expression although the string “ab$” gener-
ated by S2 produces a single matching line while the string “a$b”
generated by S4 produces two.

Attaching to each transition information about the number of
matching lines its label generates and defining the proper combina-
tion rules enables zearch to report the exact count of all matching
lines.

Empirical Evaluation
Table 1 summarizes the results of searching compressed text with
zearch and with the state of the art approach which feeds the output
of the decompressor zstd into the regular expression engine grep.

We considered three types of textual data representative of the
inputs fed into regular expression engines: English text, CSV and
a computer generated log. Each table column corresponds to one
text file that is compressed using the grammar-based compression
algorithm repair [2] and zstd to feed our approach and the state of
the art, respectively.

For the regular expressions we also aimed at a representative
sample of commonly used regular expressions. The expressions
considered range from simple patterns with few occurrences on
the files to more complex expressions that match almost all lines of
the uncompressed text.

5https://www.gnu.org/software/grep/
6https://github.com/BurntSushi/ripgrep

Finally, we contrived two experiments to identify the situations
where our approach vastly outperforms the state of the art. In
the first experiment, we contrived textual data by repeating the
same line over and over. Since the compressor turns 100 MB of
repeated lines into a few bytes, zearch process it in little time (less
than 3 milliseconds). In the second, we contrived a set of regular
expressions of the form “[0-1]*1[0-1]{n}2” whose representation
by a deterministic automaton is exponentially larger (in n) than
representations by non-deterministic automata. Byworking directly
on the non-deterministic representation zearch outperforms the
state of the art which relies on the deterministic one. For instance,
searching on a randomly generated string of the form “{0, 1}1082”,
zearch reports a match of the expression “[0-1]*1[0-1]{11}2”
within 1.3 seconds while grep requires 7 min.

We have carried out more experiments varying the regular ex-
pressions used, the size of the uncompressed files and the type
of files on which the search is done. The results of these experi-
ments are publicly available through zearch’s website7 as interactive
graphs.

In summary zearch, which is purely sequential, outperforms the
state of the art even when decompression and search are done
in parallel. These results evidence the benefits of performing the
search directly on the compressed representation of the data.

PARALLEL ZEARCH
Intuitively, rules like S2→S1$ and S4→S3b from Fig. 1 can be pro-
cessed in parallel since it will cause no concurrent reads and writes
of any shared memory location. The same happens with rules
S1→ab and S3→a$. In general, any set of rules such that the sets of
symbols on the left and on the right hand side are disjoint can be
processes simultaneously. Also each symbol could yield to parallel
processing if the corresponding transitions in the automaton share
no common state.

On the other hand, a theoretical result by Ullman et al. [4] on
the parallelization of Datalog queries can be interpreted in our

7https://pevalme.github.io/zearch/graphs/index.html

https://www.gnu.org/software/grep/
https://github.com/BurntSushi/ripgrep
https://pevalme.github.io/zearch/graphs/index.html

Regular Expression Search in Compressed Text EuroDW’18, April 2018, Porto, Portugal

setting to show that the regular expression search on grammar-
compressed text is in NC8 when the automaton built from the
expression is acyclic. This result indicates some variant of our
problem has efficient parallel solution.

Future Work
Nowadays, numerous options are available to compute in parallel:
SIMD9 instructions, multiple processes, multiple threads, compute
kernel for GPU or FPGA. . .However, each comes with different
restrictions and different guarantees which are difficult to compare,
especially without prior experience. Incidentally, the success of
moving to a particular parallel architecture often depends on sub-
tleties: computing on GPU might result in no gain for small data
because of the latency of the data bus.

Moreover, committing to a parallel computing platform often im-
plies rethinking the algorithm and its data structures. For instance,
the data layout can have a dramatic influence on the effectiveness
of SIMD instructions. Thus to achieve a performance gain using
SIMD one might have to re-define data structures.

REFERENCES
[1] Javier Esparza, Peter Rossmanith, and Stefan Schwoon. 2000. A Uniform Frame-

work for Problems on Context-Free Grammars. Bulletin of the EATCS 72 (2000),
169–177.

[2] N Jesper Larsson and Alistair Moffat. 2000. Off-line dictionary-based compression.
Proc. IEEE 88, 11 (2000), 1722–1732.

[3] Craig G Nevill-Manning and Ian H Witten. 1997. Compression and explanation
using hierarchical grammars. Comput. J. 40, 2_and_3 (1997), 103–116.

[4] Jeffrey D Ullman and Allen Van Gelder. 1988. Parallel complexity of logical query
programs. Algorithmica 3 (1988), 5–42.

[5] Terry A. Welch. 1984. A technique for high-performance data compression.
Computer 6, 17 (1984), 8–19.

[6] Jacob Ziv and Abraham Lempel. 1978. Compression of individual sequences
via variable-rate coding. IEEE transactions on Information Theory 24, 5 (1978),
530–536.

8Solvable in poly-logarithmic time using a polynomial number of processors
9Single Instruction, Multiple Data

	Abstract
	References

