Low-Latency Network-Scalable Byzantine Fault-Tolerant Replication

12th EuroSys Doctoral Workshop (EuroDW 2018)

Ines Messadi, TU Braunschweig, Germany, 2018-04-23

New PhD student (Second month) in the distributed systems group

Research area: Resiliency of distributed systems, Byzantine Fault Tolerance

Advisor: Rüdiger Kapitza
Overview

Client

Replica 1

Replica 1

Replica 1

Replica 4 Byzantine Fault

$3f + 1$ nodes to tolerate f faults
Problem: Agreement latency overhead & message complexity in BFT
Reason: Multiple communication rounds & slow TCP networking
New trend: Availability of modern hardware technology such as Remote Direct Memory Access (RDMA)
Consequence: A need to redesign current BFT systems

How can we build a secure fast and scalable RDMA-based BFT?
- **Problem:** Agreement latency overhead & message complexity in BFT
- **Problem:** Agreement latency overhead & message complexity in BFT
- **Reason:** Multiple communication rounds & slow TCP networking
- **Problem:** Agreement latency overhead & message complexity in BFT
- **Reason:** Multiple communication rounds & slow TCP networking
- **New trend:** Availability of modern hardware technology such as Remote Direct Memory Access (RDMA)
Problem: Agreement latency overhead & message complexity in BFT

Reason: Multiple communication rounds & slow TCP networking

New trend: Availability of modern hardware technology such as Remote Direct Memory Access (RDMA)

Consequence: A need to redesign current BFT systems

How can we build a secure fast and scalable RDMA-based BFT?
Remote Direct Memory Access (RDMA)

- Why RDMA?
 - Zero-copy data transfer
 - Reduce communication CPU usage
 - Low latency and CPU efficiency

![Graph showing latency vs payload for TCP, RDMA Send/Recv, and RDMA Read/Write]

Challenges
- Different communication mechanisms
- Inappropriate design ⇒ unexpected bad performance
- Security issues
 - Require an explicit design of applications

Observation
- Necessity to redesign the existing BFT protocols for RDMA
Remote Direct Memory Access (RDMA)

- Why RDMA?
 - Zero-copy data transfer
 - Reduce communication CPU usage
 - Low latency and CPU efficiency

- Challenges
 - Different communication mechanisms
 - Inappropriate design \(\Rightarrow\) unexpected bad performance
 - Security issues
 - Require an explicit design of applications
Remote Direct Memory Access (RDMA)

- **Why RDMA?**
 - Zero-copy data transfer
 - Reduce communication CPU usage
 - Low latency and CPU efficiency

- **Challenges**
 - Different communication mechanisms
 - Inappropriate design ⇒ unexpected bad performance
 - Security issues
 - Require an explicit design of applications

Observation

Necessity to redesign the existing BFT protocols for RDMA
Towards building RDMA-based BFT

- Basis BFT protocol: **Hybster** [Behl et al., EuroSys’17]
 - Building an RDMA-tailored BFT protocol
 - Investigating RDMA communication tradeoffs
 - Counter-measures for the resilient use of RDMA
Towards building RDMA-based BFT

- Basis BFT protocol: **Hybster** [Behl et al., EuroSys’17]
 - Building an RDMA-tailored BFT protocol
 - Investigating RDMA communication tradeoffs
 - Counter-measures for the resilient use of RDMA

- Preliminary approach
 - Build similar interfaces to TCP programming using RDMA
 ⇒ Aiming to take fully advantage of RDMA
Towards building RDMA-based BFT

- Basis BFT protocol: **Hybster** [Behl et al., EuroSys’17]
 - Building an RDMA-tailored BFT protocol
 - Investigating RDMA communication tradeoffs
 - Counter-measures for the resilient use of RDMA

- Preliminary approach
 - Build similar interfaces to TCP programming using RDMA
 ⇒ Aiming to take fully advantage of RDMA

- Example applications: Blockchain & coordination services