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Optimization Coaching for Fork/Join 
Applications on the Java Virtual Machine

§ The problem: despite the complexities associated with developing and
tuning fork/join applications, there is little work focused on assisting
developers in optimizing such applications on the JVM.

§ Relevance: fork/join parallelism has an increasing popularity among
developers targeting the JVM. It has been integrated to support parallel
processing on the Java library, thread management in JVM languages
and a variety of parallel applications based on Actors, MapReduce, etc.

§ Our proposal: coaching developers towards optimizing fork/join
applications by diagnosing performance issues on such applications and
further suggest concrete code refactoring to solve them.

§ Expected outcome: in contrast to the manual experimentation often
required to tune fork/join applications on the JVM, we devise a tool able
to automatically assist developers in optimizing a fork/join application.



Fork/join Application

§ What is a fork/join application?
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solve(Problem problem) {
if (problem is small) 

directly solve problem sequentially
else {

recursively split problem into
independent parts:
fork new tasks to solve each part
join all forked tasks

}
}



The Java Fork/Join Framework

§ The Java fork/join framework [1] is the implementation enabling
fork/join applications on the JVM
§ It implements the work-stealing [2] scheduling strategy:

[1] D. Lea. A Java Fork/Join Framework. JAVA 2000. 
[2] Burton et al. Executing Functional Programs on a Virtual Tree of Processors. FPCA 1981.
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The Java Fork/Join Framework

§ Supports parallel processing in the Java library:
• java.util.Array

• java.util.streams (package)

• java.util.concurrent.CompletableFuture<T>

§ Supports thread management for other JVM languages:
• Scala
• Apache Groovy
• Clojure

§ Supports diverse fork/join parallelism, including applications 
based on Actors and MapReduce



The Java Fork/Join Framework

[3] D. Lea. Concurrent Programming in Java. Second Edition: Design Principles and Patterns. Addison-Wesley 
Professional, 2nd edition, 1999.

§ Many of the design forces encountered when implementing fork/join 
designs surround task granularity at four levels [3]:

Minimizingoverheads

Minimizing contention
Maximizing parallelism

Maximizing locality

Task granularity



Example of a common performance issues 1/4

§ Suboptimal forking
§ Excessive forking
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• Deque accesses
• Object creation/reclaiming

✗ Parallelization overheads due to excessive:
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§ Suboptimal forking
§ Sparse forking
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• Low CPU utilization
• Load imbalance

Missed parallelization opportunities:✗
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Example of a common performance issues 2/4



The problem
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A single shared-memory 
multicore

Fork/join applications 
running in a single 

JVM

Despite the complexities associated with developing and tuning 
fork/join applications, there is little work focused on assisting 
developers towards optimizing such applications on the JVM.

The scope:
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In contrast to manual experimentation often used to tune a fork/join 
application, we propose an approach based on:

Static and dynamic analysis
to automatically diagnose 

performance issues
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In contrast to manual experimentation often used to tune a fork/join 
application, we propose an approach based on:

§ Static analysis: to automatically inspect the source code to 
detect fork/join anti patterns. 

§ Dynamic analysis: to automatically diagnose performance 
issues noticeable at runtime (e.g., suboptimal forking, 
excessive garbage collection, low CPU usage, contention).
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In contrast to manual experimentation often used to tune a fork/join 
application, we propose an approach based on:

[4] St-Amour et al. Optimization Coaching: Optimizers Learn to  Communicate with Programmers. OOPSLA 2012.

Optimization coaching [4]: processing the output 
generated by the compiler’s optimizer to suggest concrete 
code modifications that may enable the compiler to 
achieve missed optimizations. 



Our Approach

Optimization 
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Profiling 
techniques 

Our 
Approach

In contrast to manual experimentation often used to tune a fork/join 
application, we propose an approach based on:

Inspired by Optimization Coaching
the goal is automatically suggesting 
concrete code modifications to solve 

the detected issues



§ Methodology for the automatic diagnosing of performance issues:
§ Define a model to characterize fork/join tasks
§ Characterize all tasks spawned by a fork/join application
§ Determine the metrics and entities worth to consider to 

automatically diagnose performance issues

§ Methodology for the automatic suggestion of optimizations:
§ Automatic recognition of fork/join anti patterns and matching to 

concrete suggestions to avoid them

§ Validation of the results:
§ Discover fork/join workloads, suitable for validating both 

aforementioned methodologies

Future Work



BACKUP SLIDES.



Related Work

[10] Teng et al. THOR: a Performance Analysis Tool for Java Applications Running on Multicore Systems. IBM 
Journal of Research and Development, 54(5):4:1–4:17, 2010.
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[9] Adhianto et al. HPCTOOLKIT: Tools for Performance Analysis of Optimized Parallel Programs. Concurr. 
Comput.: Pract. Exper., 22(6): pp. 685–701, 2010.

§ Analysis of parallel applications on the JVM
§ A number of parallelism profilers focus on the JVM [9][10]

The goal Characterizing processes or threads over time.

Limitations o None of the existing tools targets fork/join applications. 

JProfiler YourKit Java 
Profiler

Java 
Mission ControlIntel vTune



Related Work

[6] Gong et al. JITProf: Pinpointing JIT-unfriendly JavaScript Code. ESEC/FSE 2015.
19

[5] St-Amour et al. Optimization Coaching for Javascript. ECOOP 2015.

[4] St-Amour et al. Optimization Coaching: Optimizers Learn to  Communicate with Programmers. OOPSLA 2012.

§ Assisted optimization of applications
§ “Optimization Coaching” was first coined to describe 

techniques to optimize Racket [4] and JavaScript [5] [6]
applications

The goal Report to the developer precise changes in the code that may 
enable the compiler’s optimizer to achieve missed optimizations.

Limitations o The techniques were not designed for optimizing parallel 
applications.

o The prototyped techniques target only specific compilers.



Related Work

[8] Pinto et al. Understanding Parallelism Bottlenecks in ForkJoin Applications. ASE 2017.
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[7] De Wael et al. Fork/Join Parallelism in the Wild: Documenting Patterns and Antipatterns in Java Programs Using 
the Fork/Join Framework. PPPJ 2014.

§ Analyses on the use of concurrency on the JVM
§ Documenting fork/join anti patterns on the JVM [7][8]

The goal Identification of common bad practices and bottlenecks on real 
fork/join applications.

Limitations o Focus on detecting performance issues by using code inspection 
(manual code inspection and static analysis).

o Do not consider the granularity of the tasks spawned by the 
fork/join application.

o Do not mentor the developer towards optimizing a fork/join 
application.



Challenges

§ Automatic detection of performance issues and suggestion of fixes
- Combination of program-analysis and machine-learning

techniques to automatically identify performance problems, 
to pinpoint them in the source code, and to recommend concrete
optimizations.

§ Accurately measure granularity of each task
- Recursion, fine-grained parallelism, task scheduling, 
exception handling, auxiliary task, etc.

§ Low perturbation in metric collection
- Use of efficient and reduced instrumentation code.
- Avoid any heap allocation in the target application.



Ongoing Research

§ tgp: a Task-Granularity Profiler for multi-threaded, task-parallel 
applications executing on the JVM [11]

§ Features as a vertical profiler [12] collecting metrics from the full 
system stack at runtime to characterize task granularity

§ Shows the impact of task granularity on application and system 
performance

§ Generates actionable profiles [13]

§ Developers can optimize code portions suggested by tgp
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[12] M. Hauswirth et al. Vertical Profiling: Understanding the Behavior of Object-oriented Applications. 
OOPSLA 2004. 

[11] Rosales et al. tgp: a Task-Granularity Profiler for the Java Virtual Machine. APSEC 2017. 

[13] Mytkowicz et al. Evaluating the Accuracy of Java Profilers. PLDI 2010. 



§ We analyzed task granularity in DaCapo [14] and ScalaBench [15]

§ We revealed fine- and coarse-grained tasks mainly in Java thread 
pools causing performance drawbacks [11]

§ We optimized suboptimal task granularity in pmd and lusearch [16]

§ Speedups up to 1.53x (pmd) and 1.13x (lusearch)

Ongoing Research
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[11] Rosales et al. tgp: a Task-Granularity Profiler for the Java Virtual Machine. APSEC 2017. 

[16] Rosá, Rosales and Binder. Analyzing and Optimizing Task Granularity on the JVM. CGO 2018. 

[14] Blackburn et al. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. 
OOPSLA 2006.
[15] Sewe et al. DaCapo con Scala: Design and Analysis of a Scala Benchmark Suite for the JVM .
OOPSLA 2011. 



§ Heavy copying on fork

✗ Parallelization overheads due to:
• Excessive object creation
• High memory load
• Frequent garbage collection

Shared data structure

Full copy

Full copy

Full copy

Full copy

Full copy
Full copy Full copy

Example of a common performance issues



Automatic detection of performance issues

§ Static analysis: analysis of source code for detecting fork/join anti-
patterns, including:

§ Heavy copy on fork (e.g., detecting the use of methods such as 
System.arraycopy, sublist).

§ Heavy merging on join (e.g., detecting the use of methods such as 
addAll, putAll).

§ Inappropriate synchronization (e.g., detecting the use of improper 
synchronization during task execution, for example to wait for the result 
of another computation).

§ The lack of a sequential threshold (i.e., a threshold which determines 
whether a task will execute a sequential computation rather than forking 
parallel child tasks).



Automatic detection of performance issues

§ Dynamic analysis: analysis of the fork/join application at runtime 
to deal with polymorphism and reflection along with detecting:

§ Suboptimal forking (i.e., the presence of too fine-grained tasks or few 
too coarse-grained tasks).
§ According to the Java fork/join framework documentation: “a task 

should perform more than 100 and less than 10000 basic 
computational steps”. [17]
§ Strategy: collection and automatic of metrics from the full system 

stack at runtime:
§ Framework-level metrics (e.g., the number of already queued 

tasks via getSurplusQueuedTaskCount method).
§ JVM-level metrics (e.g., garbage collections)
§ OS-level metrics (e.g., CPU usage, memory load)
§ Hardware Performance Counters (e.g., reference cycles, 

machine instructions)
[17] https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html



§ Inappropriate sharing

✗ Parallelization overheads due to significant:
• Thread synchronization
• Inter-thread communication

Shared resource

Example of a common performance issues



Automatic detection of performance issues

§ Dynamic analysis: analysis of the fork/join application at runtime 
to detect:

§ Inappropriate sharing of resources (e.g., the use of shared 
objects, locks, files, data bases and other resources by several 
parallel tasks).
§ Strategy: collection and automatic analysis of performance 

metrics:
§ VM-level metrics (e.g., allocations in Java Heap)
§ OS-level metrics (e.g., context switches, cache misses, page 

faults)



Validation of the results

AutoBench [18],  a toolchain combining:
§ code repository crawling
§ pluggable hybrid analyses, and 
§ workload characterization techniques

to discover candidate workloads satisfying the needs of domain-
specific benchmarking.

[18] Zheng et al. AutoBench: Finding Workloads that You Need Using Pluggable Hybrid Analyses. SANER 2016.
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Concepts

§ Reference cycle: reference cycle elapses at the nominal
frequency of the CPU, even if the actual CPU frequency is scaled
up or down.

§ Context switches: occurs when the kernel switches the
processor from one thread to another—for example, when a
thread with a higher priority than the running thread becomes
ready.

§ Page fault: is a type of exception raised by computer hardware
when a running program accesses a memory page that is not
currently mapped by the memory management unit (MMU) into
the virtual address space of a process.


