Universita
della
Svizzera
italiana

Optimization Coaching for Fork/Join
Applications on the Java Virtual Machine

Eduardo Rosales

Advisor: Prof. Walter Binder

Research area: Parallel applications, performance analysis ¢ .opw 2018

April 23, 2018
PhD stage: Planner Porto, Portugal

‘E"t Optimization Coaching for Fork/Join
italiana Applications on the Java Virtual Machine

= The problem: despite the complexities associated with developing and
tuning fork/join applications, there is little work focused on assisting
aevelopers in optimizing such applications on the JVM.

" Relevance: fork/join parallelism has an increasing popularity among
developers targeting the JVM. It has been integrated to support parallel
processing on the Java library, thread management in JVM languages
and a variety of parallel applications based on Actors, MapReduce, etc.

= Qur proposal: coaching developers towards optimizing fork/join
applications by diagnosing performance issues on such applications and
further suggest concrete code refactoring to solve them.

= Expected outcome: in contrast to the manual experimentation often
required to tune fork/join applications on the JVM, we devise a tool able
to automatically assist developers in optimizing a fork/join application.

Universita
della
Svizzera

italiana

Fork/join Application
" What is a fork/join application?
solve(Problem problem) {

if (problem 1is small)
else {

directly solve problem sequentially
recursively split problem into
I1ndependent parts:

fork new tasks to solve each part
join all forked tasks

}
}

@ I The Java Fork/Join Framework

= The Java fork/join framework [1] is the implementation enabling
fork/join applications on the JVM

» [t implements the work-stealing [2] scheduling strategy:

Worker
thread 1

push
/\/\/__H
Task »‘W o—

Po,
. SubmissiorL m m w
Worker

—_——— -
—————
e
-

2
task 2 thread 2 _P/ushv
\
Po
CPU w Deque 2
CORE CORE
Hioo

[1] D. Lea. A Java Fork/Join Frarmework. JAVA 2000.
[2] Burton et al. Executing Functional Programs on a Virtual Tree of Processors. FPCA 1981.

Universita

@ I The Java Fork/Join Framework

= The Java fork/join framework [1] is the implementation enabling
fork/join applications on the JVM

» [t implements the work-stealing [2] scheduling strategy:

Worker
thread 1 push
—~~—_ BB
. Submission m m ‘/ P Deque 1
Worker Deque 2
2
task 2 thread 2 P/UshV.
\
Pop
CPU
CORE CORE
Lo]

[1] D. Lea. A Java Fork/Join Frarmework. JAVA 2000.
[2] Burton et al. Executing Functional Programs on a Virtual Tree of Processors. FPCA 1981.

@ I The Java Fork/Join Framework

= Supports parallel processing in the Java library:

* jJava.util.Array
* java.util.streams (package)

* jJava.util.concurrent.CompletableFuture<T>

= Supports thread management for other JVM languages:
« Scala
» Apache Groovy
o Clojure

= Supports diverse fork/join parallelism, including applications
based on Actors and MapReduce

@ I The Java Fork/Join Framework

= Many of the design forces encountered when implementing fork/join
designs surround task granularity at four levels [3].

Minimizing
contention
Maximizin

parallelism

Minimizing
overheads

Task granularity

[3] D. Lea. Concurrent Programming in Java. Second Edition. Design Principles and Patterns. Addison-Wesley
Professional, 2nd edition, 1999.

Universita
della .
@ Ig;:f;:;a Example of a common performance issues 1/4

« Suboptimal forking Too fine-grained tasks

|

Excessive forking

0
<&

CPU X Parallelization overheads due to excessive:

‘- .. * Deque accesses

« QObject creation/reclaiming

Universita
della
Svizzera
italiana

Example of a common performance issues 2/4

« Suboptimal forking

Sparse forking

o
o

Take

%

CPU

CORE

CORE

CORE

CORE

B -

push
oo~ " ~—__
¢

Few coarse-grained tasks

-
M

|

v

push ==

e ———

X Missed parallelization opportunities:

Low CPU utilization
Load imbalance

@ I The problem

Despite the complexities associated with developing and tuning
fork/join applications, there is little work focused on assisting
adevelopers fowards optimizing such applications on the JVM.

The scope:
CPU
s _— CORE | CoRe Memory core | core
Java o
Fork/join applications

running in a single A single shared—memory
JVM multicore

@ I Our Approach

In contrast to manual experimentation used to tune a fork/join
application, we propose an approach based on:

Profiling Optimization

techniques Coaching

Universita
della

Our Approach

italiana

In contrast to manual experimentation often used to tune a fork/join
application, we propose an approach based on:

Optimization
Coaching

Profiling
techniques

//

Static and dynamic analysis
to automatically diagnose
performance issues

@ I Our Approach

In contrast to manual experimentation often used to tune a fork/join
application, we propose an approach based on:

Profiling
techniques

Y

= Static analysis: to automatically inspect the source code to
detect fork/join anti patterns.

= Dynamic analysis: to automatically diagnose performance
iIssues noticeable at runtime (e.g., suboptimal forking,
excessive garbage collection, low CPU usage, contention).

Optimization
Coaching

@ I Our Approach

In contrast to manual experimentation often used to tune a fork/join
application, we propose an approach based on:

Optimization
Coaching

N

Optimization coaching [4]: processing the output
generated by the compiler’'s optimizer to suggest concrete

code modifications that may enable the compiler to
achieve missed optimizations.

Profiling
techniques

[4] St-Amour et al. Optimization Coaching: Optimizers Learn to Communicate with Programmers. OOPSLA 2012.

@ I Our Approach

In contrast to manual experimentation often used to tune a fork/join
application, we propose an approach based on:

Profiling
techniques

Optimization
Coaching

W

Inspired by Optimization Coaching
the goal is automatically suggesting
concrete code modifications to solve

the detected issues

@ I Future Work

« Methodology for the automatic diagnosing of performance issues:
« Define a model to characterize fork/join tasks
« Characterize all tasks spawned by a fork/join application

= Determine the metrics and entities worth to consider to
automatically diagnose performance issues

» Methodology for the automatic suggestion of optimizations:

= Automatic recognition of fork/join anti patterns and matching to
concrete suggestions to avoid them

« Validation of the results:

= Discover fork/join workloads, suitable for validating both
aforementioned methodologies

BACKUP SLIDES.

@ I Related Work

= Analysis of parallel applications on the JVM
« A number of parallelism profilers focus on the JVM [9][10]

Amplifier

JProf”er YourKit Java
Profiler Intel vTune Mission Control

The goal Characterizing processes or threads over time.

Limitations | o None of the existing tools targets fork/join applications.

[9] Adhianto et al. HPCTOOLKIT: Tools for Perforrnance Analysis of Optimized Parallel/ Programs. Concurr.
Comput.: Pract. Exper., 22(6): pp. 685-701, 2010.

[10] Teng et al. THOR: a Perforrmance Analysis Tool for Java Applications Running on Multicore Systemns. IBM
Journal of Research and Development, 54(5):4:1-4:17, 2010.

18

@ I Related Work

« Assisted optimization of applications

“Optimization Coaching’ was first coined to describe
technigues to optimize Racket [4] and JavaScript [5] [6]
applications

The goal Report to the developer precise changes in the code that may
enable the compiler’s optimizer to achieve missed optimizations.

Limitations | o The techniques were not designed for optimizing parallel
applications.

o The prototyped techniques target only specific compilers.

[4] St-Amour et al. Optimization Coaching: Optimizers Learn to Communicate with Programmers. OOPSLA 2012.

[5] St-Amour et al. Optimization Coaching for Javascript. ECOOP 2015.

[6] Gong et al. JITProf: Pinpointing JIT-unfriendly JavaScript Code. ESEC/FSE 2015.
19

@ I Related Work

» Analyses on the use of concurrency on the JVM
« Documenting fork/join anti patterns on the JVM [7][8]

The goal |dentification of common bad practices and bottlenecks on real
fork/join applications.

Limitations | o Focus on detecting performance issues by using code inspection
(manual code inspection and static analysis).

o Do not consider the granularity of the tasks spawned by the
fork/join application.

o Do not mentor the developer towards optimizing a fork/join
application.

[7] De Wael et al. Fork/Join Farallelism in the Wild: Documenting Patterns and Antipatterns in Java Programs Using
the Fork/Join Framework. PPPJ 2014.

[8] Pinto et al. Understanding Farallelism Bottlenecks in ForkJoin Applications. ASE 2017.
20

@ I Challenges

= Automatic detection of performance issues and suggestion of fixes

- Combination of program-analysis and machine-learning
techniques to automatically identify performance problems,
to pinpoint them in the source code, and to recommend concrete
optimizations.

= Accurately measure granularity of each task

- Recursion, fine-grained parallelism, task scheduling,
exception handling, auxiliary task, etc.

= |Low perturbation in metric collection
- Use of efficient and reduced instrumentation code.

- Avoid any heap allocation in the target application.

@ I Ongoing Research

= tgp: a Task-Granularity Profiler for multi-threaded, task-parallel
applications executing on the JVM [11]

« Features as a vertical profiler [12] collecting metrics from the full
system stack at runtime to characterize task granularity

= Shows the impact of task granularity on application and system
performance

« (Generates actionable profiles [13]

« Developers can optimize code portions suggested by tgp

[11] Rosales et al. fgp. a Task-Granularity Profiler for the Java Virtual Machine. APSEC 2017 .

[12] M. Hauswirth et al. Vertical Profiling. Understanding the Behavior of Object-oriented Applications.
OOPSLA 2004.

[13] Mytkowicz et al. Evaluating the Accuracy of Java FProfilers. PLDI 2010.
21

@ I Ongoing Research

« We analyzed task granularity in DaCapo [14] and ScalaBench [15]

« We revealed fine- and coarse-grained tasks mainly in Java thread
pools causing performance drawbacks [11]

« We optimized suboptimal task granularity in pmd and lusearch [16]
« Speedups up to 1.53x (pmd) and 1.13x (lusearch)

[11] Rosales et al. fgp. a Task-Granularity Profiler for the Java Virtual Machine. APSEC 2017 .

[14] Blackburn et al. 7he DaCapo Benchmarks: Java Benchmarking Development and Analysis.
OOPSLA 2006.

[15] Sewe et al. DaCapo con Scala: Design and Analysis of a Scala Benchmark Suite for the JVM .
OOPSLA 2011.

[16] Rosa, Rosales and Binder. Analyzing and Optimizing Task Granularity on the JVM. CGO 2018.

22

italiana

Universita
della .
@ IS Example of a common performance issues

« Heavy copying on fork

" Adoa jny

Shared data structure

X Parallelization overheads due to:

« EXxcessive object creation

« High memory load
* Frequent garbage collection

Universita
della . . .
@ Ig;;izaz:;a Automatic detection of performance issues

« Static analysis: analysis of source code for detecting fork/join anti-
patterns, including:

« Heavy copy on fork (e.g., detecting the use of methods such as
System.arraycopy, sublist).

« Heavy merging on join (e.g., detecting the use of methods such as
addALL, putALL).

= Inappropriate synchronization (e.g., detecting the use of improper
synchronization during task execution, for example to wait for the result
of another computation).

« The lack of a sequential threshold (i.e., a threshold which determines
whether a task will execute a sequential computation rather than forking
parallel child tasks).

Universita
della . . .
@ Ig;;izaz:;a Automatic detection of performance issues

= Dynamic analysis: analysis of the fork/join application at runtime
to deal with polymorphism and reflection along with detecting:

« Suboptimal forking (i.e., the presence of too fine-grained tasks or few
too coarse-grained tasks).

« According to the Java fork/join framework documentation: “a fask
should perform more than 100 and less than 10000 basic
computational steps”. [17]

« Strategy: collection and automatic of metrics from the full system
stack at runtime:

« Framework-level metrics (e.g., the number of already queued
tasks via getSurplusQueuedTaskCount method).

« JVM-level metrics (e.g., garbage collections)
« OGS-level metrics (e.g., CPU usage, memory load)

- Hardware Performance Counters (e.g., reference cycles,
machine instructions)

[17] https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

Universita
della '
@ Ig;:iz;:;a Example of a common performance issues

= |nappropriate sharing

Xz

Shared resource

X Parallelization overheads due to significant:

* Thread synchronization
 |nter-thread communication

Universita
della . . .
@ Ig;;izaz:;a Automatic detection of performance issues

= Dynamic analysis: analysis of the fork/join application at runtime
to detect:

« Inappropriate sharing of resources (e.g., the use of shared
objects, locks, files, data bases and other resources by several
parallel tasks).

« Strategy: collection and automatic analysis of performance
metrics:

« VM-level metrics (e.g., allocations in Java Heap)

« OS-level metrics (e.g., context switches, cache misses, page
faults)

Universita
della

Svizzers Validation of the results

Open
Souyce Prolects .* Dynamic Analysis -§
Static Analysis &’1 cmeans
a B
= o5 el @@
B N)
X 5 (@
S5 ®
—
a) Finding b) Filtering c) Characterization

AutoBench [18], a toolchain combining:
= code repository crawling

= pluggable hybrid analyses, and

» workload characterization techniques

to discover candidate workloads satisfying the needs of domain-
specific benchmarking.

[18] Zheng et al. AutoBench. Finding Workloads that You Need Using Fluggable Hybrid Analyses. SANER 2016.

@ I Achievements

Publications

E. Rosales, A. Rosa, and W. Binder. figp. a Task-Granularity Profiler for the Java
Virtual Machine. 24th Asia-Pacific Software Engineering Conference (APSEC’17),
Nanjing, China, December 2017. IEEE Press, ISBN 978-1-5386-3681-7, pp. 570-575

A. Rosa, E. Rosales, and W. Binder. Accurate Reification of Cormplete Supertype
Information for Dynamic Analysis on the JVM. 16th International Conference on
Generative Programming: Concepts & Experiences (GPCE’17), Vancouver, Canada,
October 2017. ACM Press, ISBN 978-1-4503-5524-7, pp. 104-116.

A. Rosa, E. Rosales, and W. Binder. Analyzing and Optimizing Task Granularity on
the JVM. International Symposium on Code Generation and Optimization (CGO’18),
Vienna, Austria, February 2018. ACM Press, ISBN 978-1-4503-5617-6, pp. 27-37.

A. Rosa, E. Rosales, F. Schiavio, and W. Binder. Understanaing Task Granularity on
the JVM: Profiling, Analysis, and Optimization. Accepted to be presented on the
Workshop on Modern Language Runtimes, Ecosystems, and VMs (MoreVMs’18),
Nice, France, April 2018.

E. Rosales and W. Binder. Optimization Coaching for Fork/Join Applications on the
Java Virtual Machine. Accepted to be presented on the 12th EuroSys 2018 Doctoral
Workshop (EuroDW’18), Porto, Portugal, April 2018.

@ I Concepts

- Reference cycle: reference cycle elapses at the nominal
frequency of the CPU, even if the actual CPU frequency is scaled
up or down.

« Context switches: occurs when the kernel switches the
processor from one thread to another—for example, when a
thread with a higher priority than the running thread becomes
ready.

« Page fault: is a type of exception raised by computer hardware
when a running program accesses a memory page that is not
currently mapped by the memory management unit (MMU) into
the virtual address space of a process.

