
EuroDW 2018
April 23, 2018
Porto, Portugal

Eduardo Rosales

Optimization Coaching for Fork/Join
Applications on the Java Virtual Machine

Advisor: Prof. Walter Binder

Research area: Parallel applications, performance analysis

PhD stage: Planner

Optimization Coaching for Fork/Join
Applications on the Java Virtual Machine

§ The problem: despite the complexities associated with developing and
tuning fork/join applications, there is little work focused on assisting
developers in optimizing such applications on the JVM.

§ Relevance: fork/join parallelism has an increasing popularity among
developers targeting the JVM. It has been integrated to support parallel
processing on the Java library, thread management in JVM languages
and a variety of parallel applications based on Actors, MapReduce, etc.

§ Our proposal: coaching developers towards optimizing fork/join
applications by diagnosing performance issues on such applications and
further suggest concrete code refactoring to solve them.

§ Expected outcome: in contrast to the manual experimentation often
required to tune fork/join applications on the JVM, we devise a tool able
to automatically assist developers in optimizing a fork/join application.

Fork/join Application

§ What is a fork/join application?
fork

join join

for
k

fo
rk jo

in

join fork fo
rk jo

in

join fork

solve(Problem problem) {
if (problem is small)

directly solve problem sequentially
else {

recursively split problem into
independent parts:
fork new tasks to solve each part
join all forked tasks

}
}

The Java Fork/Join Framework

§ The Java fork/join framework [1] is the implementation enabling
fork/join applications on the JVM
§ It implements the work-stealing [2] scheduling strategy:

[1] D. Lea. A Java Fork/Join Framework. JAVA 2000.
[2] Burton et al. Executing Functional Programs on a Virtual Tree of Processors. FPCA 1981.

Task
Submission

Take
Push

Pop

Pop

Push
Steal

Worker
thread 1

Worker
thread 2Take

Deque 1

Deque 2

task

CPU
CORE CORE

The Java Fork/Join Framework

§ The Java fork/join framework [1] is the implementation enabling
fork/join applications on the JVM
§ It implements the work-stealing [2] scheduling strategy:

[1] D. Lea. A Java Fork/Join Framework. JAVA 2000.
[2] Burton et al. Executing Functional Programs on a Virtual Tree of Processors. FPCA 1981.

Task
Submission

Take
Push

Pop

Pop

Push

Worker
thread 1

Worker
thread 2Take

Deque 1
Deque 2

task

CPU
CORE CORE

The Java Fork/Join Framework

§ Supports parallel processing in the Java library:
• java.util.Array

• java.util.streams (package)

• java.util.concurrent.CompletableFuture<T>

§ Supports thread management for other JVM languages:
• Scala
• Apache Groovy
• Clojure

§ Supports diverse fork/join parallelism, including applications
based on Actors and MapReduce

The Java Fork/Join Framework

[3] D. Lea. Concurrent Programming in Java. Second Edition: Design Principles and Patterns. Addison-Wesley
Professional, 2nd edition, 1999.

§ Many of the design forces encountered when implementing fork/join
designs surround task granularity at four levels [3]:

Minimizingoverheads

Minimizing contention
Maximizing parallelism

Maximizing locality

Task granularity

Example of a common performance issues 1/4

§ Suboptimal forking
§ Excessive forking

CPU
CORE CORE

CORE CORE

• Deque accesses
• Object creation/reclaiming

✗ Parallelization overheads due to excessive:

Ta
ke

Push

Pop

Take Push

Pop

Take

Pop
Take

Pop

Push

Push

Too fine-grained tasks

§ Suboptimal forking
§ Sparse forking

Ta
ke

Push

Pop

Take

Push

Pop

Take

Pop
Take

Pop

CPU
CORE CORE

CORE CORE

• Low CPU utilization
• Load imbalance

Missed parallelization opportunities:✗

Push

Push

Steal

idle

Few coarse-grained tasks

✗

Example of a common performance issues 2/4

The problem

CPU
CORE CORE

CORE CORE

Memory
CPU

CORE CORE

CORE CORE

CPU
CORE CORE

CORE CORE

CPU
CORE CORE

CORE CORE

A single shared-memory
multicore

Fork/join applications
running in a single

JVM

Despite the complexities associated with developing and tuning
fork/join applications, there is little work focused on assisting
developers towards optimizing such applications on the JVM.

The scope:

Our Approach

Optimization
Coaching

Profiling
techniques

Our
Approach

In contrast to manual experimentation used to tune a fork/join
application, we propose an approach based on:

Our Approach

Optimization
Coaching

Profiling
techniques

Our
Approach

In contrast to manual experimentation often used to tune a fork/join
application, we propose an approach based on:

Static and dynamic analysis
to automatically diagnose

performance issues

Our Approach

Optimization
Coaching

Profiling
techniques

Our
Approach

In contrast to manual experimentation often used to tune a fork/join
application, we propose an approach based on:

§ Static analysis: to automatically inspect the source code to
detect fork/join anti patterns.

§ Dynamic analysis: to automatically diagnose performance
issues noticeable at runtime (e.g., suboptimal forking,
excessive garbage collection, low CPU usage, contention).

Our Approach

Optimization
Coaching

Profiling
techniques

Our
Approach

In contrast to manual experimentation often used to tune a fork/join
application, we propose an approach based on:

[4] St-Amour et al. Optimization Coaching: Optimizers Learn to Communicate with Programmers. OOPSLA 2012.

Optimization coaching [4]: processing the output
generated by the compiler’s optimizer to suggest concrete
code modifications that may enable the compiler to
achieve missed optimizations.

Our Approach

Optimization
Coaching

Profiling
techniques

Our
Approach

In contrast to manual experimentation often used to tune a fork/join
application, we propose an approach based on:

Inspired by Optimization Coaching
the goal is automatically suggesting
concrete code modifications to solve

the detected issues

§ Methodology for the automatic diagnosing of performance issues:
§ Define a model to characterize fork/join tasks
§ Characterize all tasks spawned by a fork/join application
§ Determine the metrics and entities worth to consider to

automatically diagnose performance issues

§ Methodology for the automatic suggestion of optimizations:
§ Automatic recognition of fork/join anti patterns and matching to

concrete suggestions to avoid them

§ Validation of the results:
§ Discover fork/join workloads, suitable for validating both

aforementioned methodologies

Future Work

BACKUP SLIDES.

Related Work

[10] Teng et al. THOR: a Performance Analysis Tool for Java Applications Running on Multicore Systems. IBM
Journal of Research and Development, 54(5):4:1–4:17, 2010.

18

[9] Adhianto et al. HPCTOOLKIT: Tools for Performance Analysis of Optimized Parallel Programs. Concurr.
Comput.: Pract. Exper., 22(6): pp. 685–701, 2010.

§ Analysis of parallel applications on the JVM
§ A number of parallelism profilers focus on the JVM [9][10]

The goal Characterizing processes or threads over time.

Limitations o None of the existing tools targets fork/join applications.

JProfiler YourKit Java
Profiler

Java
Mission ControlIntel vTune

Related Work

[6] Gong et al. JITProf: Pinpointing JIT-unfriendly JavaScript Code. ESEC/FSE 2015.
19

[5] St-Amour et al. Optimization Coaching for Javascript. ECOOP 2015.

[4] St-Amour et al. Optimization Coaching: Optimizers Learn to Communicate with Programmers. OOPSLA 2012.

§ Assisted optimization of applications
§ “Optimization Coaching” was first coined to describe

techniques to optimize Racket [4] and JavaScript [5] [6]
applications

The goal Report to the developer precise changes in the code that may
enable the compiler’s optimizer to achieve missed optimizations.

Limitations o The techniques were not designed for optimizing parallel
applications.

o The prototyped techniques target only specific compilers.

Related Work

[8] Pinto et al. Understanding Parallelism Bottlenecks in ForkJoin Applications. ASE 2017.

20

[7] De Wael et al. Fork/Join Parallelism in the Wild: Documenting Patterns and Antipatterns in Java Programs Using
the Fork/Join Framework. PPPJ 2014.

§ Analyses on the use of concurrency on the JVM
§ Documenting fork/join anti patterns on the JVM [7][8]

The goal Identification of common bad practices and bottlenecks on real
fork/join applications.

Limitations o Focus on detecting performance issues by using code inspection
(manual code inspection and static analysis).

o Do not consider the granularity of the tasks spawned by the
fork/join application.

o Do not mentor the developer towards optimizing a fork/join
application.

Challenges

§ Automatic detection of performance issues and suggestion of fixes
- Combination of program-analysis and machine-learning

techniques to automatically identify performance problems,
to pinpoint them in the source code, and to recommend concrete
optimizations.

§ Accurately measure granularity of each task
- Recursion, fine-grained parallelism, task scheduling,
exception handling, auxiliary task, etc.

§ Low perturbation in metric collection
- Use of efficient and reduced instrumentation code.
- Avoid any heap allocation in the target application.

Ongoing Research

§ tgp: a Task-Granularity Profiler for multi-threaded, task-parallel
applications executing on the JVM [11]

§ Features as a vertical profiler [12] collecting metrics from the full
system stack at runtime to characterize task granularity

§ Shows the impact of task granularity on application and system
performance

§ Generates actionable profiles [13]

§ Developers can optimize code portions suggested by tgp

21

[12] M. Hauswirth et al. Vertical Profiling: Understanding the Behavior of Object-oriented Applications.
OOPSLA 2004.

[11] Rosales et al. tgp: a Task-Granularity Profiler for the Java Virtual Machine. APSEC 2017.

[13] Mytkowicz et al. Evaluating the Accuracy of Java Profilers. PLDI 2010.

§ We analyzed task granularity in DaCapo [14] and ScalaBench [15]

§ We revealed fine- and coarse-grained tasks mainly in Java thread
pools causing performance drawbacks [11]

§ We optimized suboptimal task granularity in pmd and lusearch [16]

§ Speedups up to 1.53x (pmd) and 1.13x (lusearch)

Ongoing Research

22

[11] Rosales et al. tgp: a Task-Granularity Profiler for the Java Virtual Machine. APSEC 2017.

[16] Rosá, Rosales and Binder. Analyzing and Optimizing Task Granularity on the JVM. CGO 2018.

[14] Blackburn et al. The DaCapo Benchmarks: Java Benchmarking Development and Analysis.
OOPSLA 2006.
[15] Sewe et al. DaCapo con Scala: Design and Analysis of a Scala Benchmark Suite for the JVM .
OOPSLA 2011.

§ Heavy copying on fork

✗ Parallelization overheads due to:
• Excessive object creation
• High memory load
• Frequent garbage collection

Shared data structure

Full copy

Full copy

Full copy

Full copy

Full copy
Full copy Full copy

Example of a common performance issues

Automatic detection of performance issues

§ Static analysis: analysis of source code for detecting fork/join anti-
patterns, including:

§ Heavy copy on fork (e.g., detecting the use of methods such as
System.arraycopy, sublist).

§ Heavy merging on join (e.g., detecting the use of methods such as
addAll, putAll).

§ Inappropriate synchronization (e.g., detecting the use of improper
synchronization during task execution, for example to wait for the result
of another computation).

§ The lack of a sequential threshold (i.e., a threshold which determines
whether a task will execute a sequential computation rather than forking
parallel child tasks).

Automatic detection of performance issues

§ Dynamic analysis: analysis of the fork/join application at runtime
to deal with polymorphism and reflection along with detecting:

§ Suboptimal forking (i.e., the presence of too fine-grained tasks or few
too coarse-grained tasks).
§ According to the Java fork/join framework documentation: “a task

should perform more than 100 and less than 10000 basic
computational steps”. [17]
§ Strategy: collection and automatic of metrics from the full system

stack at runtime:
§ Framework-level metrics (e.g., the number of already queued

tasks via getSurplusQueuedTaskCount method).
§ JVM-level metrics (e.g., garbage collections)
§ OS-level metrics (e.g., CPU usage, memory load)
§ Hardware Performance Counters (e.g., reference cycles,

machine instructions)
[17] https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

§ Inappropriate sharing

✗ Parallelization overheads due to significant:
• Thread synchronization
• Inter-thread communication

Shared resource

Example of a common performance issues

Automatic detection of performance issues

§ Dynamic analysis: analysis of the fork/join application at runtime
to detect:

§ Inappropriate sharing of resources (e.g., the use of shared
objects, locks, files, data bases and other resources by several
parallel tasks).
§ Strategy: collection and automatic analysis of performance

metrics:
§ VM-level metrics (e.g., allocations in Java Heap)
§ OS-level metrics (e.g., context switches, cache misses, page

faults)

Validation of the results

AutoBench [18], a toolchain combining:
§ code repository crawling
§ pluggable hybrid analyses, and
§ workload characterization techniques

to discover candidate workloads satisfying the needs of domain-
specific benchmarking.

[18] Zheng et al. AutoBench: Finding Workloads that You Need Using Pluggable Hybrid Analyses. SANER 2016.

Achievements
Publications

§ E. Rosales, A. Rosà, and W. Binder. tgp: a Task-Granularity Profiler for the Java
Virtual Machine. 24th Asia-Pacific Software Engineering Conference (APSEC’17),
Nanjing, China, December 2017. IEEE Press, ISBN 978-1-5386-3681-7, pp. 570-575

§ A. Rosà, E. Rosales, and W. Binder. Accurate Reification of Complete Supertype
Information for Dynamic Analysis on the JVM. 16th International Conference on
Generative Programming: Concepts & Experiences (GPCE’17), Vancouver, Canada,
October 2017. ACM Press, ISBN 978-1-4503-5524-7, pp. 104-116.

§ A. Rosà, E. Rosales, and W. Binder. Analyzing and Optimizing Task Granularity on
the JVM. International Symposium on Code Generation and Optimization (CGO’18),
Vienna, Austria, February 2018. ACM Press, ISBN 978-1-4503-5617-6, pp. 27-37.

§ A. Rosà, E. Rosales, F. Schiavio, and W. Binder. Understanding Task Granularity on
the JVM: Profiling, Analysis, and Optimization. Accepted to be presented on the
Workshop on Modern Language Runtimes, Ecosystems, and VMs (MoreVMs’18),
Nice, France, April 2018.

§ E. Rosales and W. Binder. Optimization Coaching for Fork/Join Applications on the
Java Virtual Machine. Accepted to be presented on the 12th EuroSys 2018 Doctoral
Workshop (EuroDW’18), Porto, Portugal, April 2018.

Concepts

§ Reference cycle: reference cycle elapses at the nominal
frequency of the CPU, even if the actual CPU frequency is scaled
up or down.

§ Context switches: occurs when the kernel switches the
processor from one thread to another—for example, when a
thread with a higher priority than the running thread becomes
ready.

§ Page fault: is a type of exception raised by computer hardware
when a running program accesses a memory page that is not
currently mapped by the memory management unit (MMU) into
the virtual address space of a process.

