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STANDARD ML

Robin sought to consolidate disparate work on ML to 
formulate a common language to support research on 
automated reasoning and functional programming.

The result was the language Standard ML.

The design and implementation of Standard ML set 
new standards for the field and led to a wealth of 
further developments.
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BOLD OBJECTIVES

A full-scale language with polymorphism, pattern 
matching, exceptions, higher-order functions, 
mutable references, abstract types, modules.

A precise definition that would admit analysis, inform 
implementation, and ensure portability.

An implementation based on the definition that would 
support application to mechanized proof.
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A PROVOCATIVE 
QUESTION

What does it mean for a language to exist?

Just what sort of thing is a language?

When is a language well-defined?

What can we prove about a language?

Robin’s thesis: a language is a formal object amenable 
to rigorous analysis.
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THE ENTERPRISE OF 
SEMANTICS

Answering such questions is the province of 
semantics, to which Robin’s work was devoted.

Generally speaking, one wishes to give a mathematical 
formulation of computational ideas, often using ideas 
from logic, algebra, and topology.

But such methods had never been tried at scale, and 
there was reason to doubt they would work.
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AN ELEGANT IDEA

Robin proposed an operational approach that stressed 
the symmetries between two aspects of a language:

Statics, which defines when programs are properly 
formed.

Dynamics, which defines the execution behavior of 
a program.

At the time denotational methods were more popular, 
but had more limited scope.
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NATURAL SEMANTICS

The statics consists of typing judgements

context ⊢ expression ⇒ type

The dynamics consists evaluation judgements

environment ⊢ expression ⇒ value

Both are given by inductive definitions in the form of 
inference rules like those used in formal logic.
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STATIC SEMANTICS

� ` e1 ) real ! int � ` e2 ) real

� ` e1(e2) ) int

� ` e1 ) int � ` e2 ) int
� ` e1 + e2 ) int

�, x ) ⌧ ` x ) ⌧
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STATIC SEMANTICS

Type inference, which is of great practical importance, 
is expressed by non-determinism in the rules.

Expressions have many types (are polymorphic).

Just “guess” the appropriate type for a particular 
situation:

�, x ) int ` x ) int
� ` �x.x ) int ! int
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DYNAMIC SEMANTICS

E, x ) 17 ` x ) 17

E ` e1 ) 17 E ` e2 ) 4
E ` e1 + e2 ) 21

E ` e1 ) �x.e E ` e2 ) v2 E, x ) v2 ` e ) v

E ` e1(e2) ) v
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TYPE SAFETY

A language is well-defined (aka type safe) if the statics 
and the dynamics are coherent.

The statics “predicts” the form of value.

The dynamics “realizes” the prediction.

For example, a number should not be given a 
function type, nor a function a numeric type.
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RIGHT AND WRONG

Expressing coherence is trickier than it seems!

What cannot happen, not just what does happen.

Robin’s answer was to introduce answers:

environment ⊢ expression ⇒ answer

An answer is either a value or wrong (a technical 
device to express impossibility).
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WELL-TYPED PROGRAMS 
DO NOT GO WRONG

Instrument dynamics with run-time checks:

Safety Theorem: If exp ⇒ typ and exp ⇒ ans, then ans 
is not wrong.

Show that answer admits type.

Show that wrong does not admit a type.

E ` e1 ) “abc”
E ` e1 + e2 ) wrong
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PRINCIPAL TYPES

Principal Type Theorem  In any given context a well-
typed expression has a most general, or principal, type 
of which all others are substitution instances.

Computed using unification (constraint solving).

Corollary Either context ⊢ exp ⇒ typ or not.

Compute principal type (if it has one).

Check that typ is an instance of it.
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PRINCIPAL TYPES

Consider the function

Constraints:

Solution:

�f.map f [1, 2, 3]

↵ = � ! �

� = �1 ! �2

�1 list = int list

(int ! �) ! �
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SCALING UP

This methodology works well for functional 
programs, but can it scale up?

Computational effects, such as mutable storage 
and exceptions.

Modularity and abstraction mechanisms.

Modules posed the most interesting challenges.

(But effects caused trouble too!)
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MODULES

The most ambitious aspect of Standard ML was the 
module system (designed by Dave MacQueen).

Signatures are the types of modules.

Structures are hierarchical modules.

Functors are functions over modules.

The crux is the concept of type sharing, which controls 
visibility of types across interfaces.
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SIGNATURES

signature QUEUE = sig
   type α queue
   val empty : α queue
   val insert : α × α queue → α queue
   val remove : α queue → α × α queue
end
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STRUCTURES

structure Queue : QUEUE = struct
  type α queue = α list × α list
  val empty = (nil, nil)
  val insert = λ(x,q)....
   val remove = λq....
end
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REALIZATION

The abstract signature QUEUE instantiates to the 
concrete signature QUEUE’ given by

signature QUEUE’ = sig
   type α queue = α list × α list
   val empty : α queue
   val insert : α × α queue → α queue
   val remove : α queue → α × α queue
end
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MODULES

Remarkably, the definition method scales to modules:

Statics: context ⊢ module ⇒ interface

Dynamics: environment ⊢ module ⇒ structure

Type sharing relationships are “guessed” non-
deterministically.

Generalizes polymorphic inference described 
above with type definitions.
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PRINCIPALITY, 
REVISITED

Principal Signature Theorem Every well-formed 
module has a most general interface of which all 
interfaces are realizations obtained by substitution.

Signature matching is mediated by realization.

(And enrichment, or “width” subtyping.)

Decidability of signature checking follows directly.
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SUCCESSES AND 
FAILURES

The Definition of Standard ML realizes Robin’s vision:

A language is defined by an inductive definition of 
its statics and dynamics.

Safety is formulated and proved using wrong 
answers.

Principality supports inference and checking.

At least seven compatible compilers exist for SML!
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SUCCESSES AND 
FAILURES

Nevertheless, The Definition has some shortcomings:

Interaction between polymorphism and effects is 
problematic (loss of safety and principality).

Dynamics “cheats” to manage exceptions.

Use of wrong seems needlessly indirect.

Fudge for the dynamic effect of enrichment order.

Spurred lots of further research in how to do better.
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TYPE-THEORETIC 
FOUNDATIONS

The type-theoretic foundations for modularity.

MacQueen: dependent types.

Leroy: manifest types, applicative functors.

H+Lillibridge, H+Stone: translucent sums, 
singleton kinds

Russo+Dreyer: higher-order polymorphism.

Crucial for code certification and mechanization.
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TYPE-THEORETIC 
FOUNDATIONS

Phase distinction: types are static, values dynamic.

Open-scope abstraction: Queue.queue is abstract in all 
contexts

Singleton kinds: τ has kind S(ρ) iff τ is equivalent to ρ.

Generativity: track effects, object identity/ownership

General ! and " signatures.
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REDEFINING A 
LANGUAGE

Statics is now elaboration from an “external language” 
to a type-theoretic “internal language”.

context ⊢ expression ⇒ term : type

Dynamics is defined on internal language using 
Plotkin’s structural operational semantics.

term [memory] ↦ term’ [memory’]
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REDEFINING A 
LANGUAGE

statics

dynamics

SML

SML TIL TIL
statics dynamics
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REDEFINING A 
LANGUAGE

Safety may be expressed as progress and preservation.

Progress: every well-formed state is either final or 
makes a transition.

Preservation: every transition from a well-formed 
state is well-formed.

No need for artificial wrong transitions that cannot 
occur (and avoids problems with exceptions).
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CERTIFYING COMPILERS

The type-theoretic framework is crucial to type-based 
code certification.

Transform a series of typed internal languages 
starting with elaboration through to assembly.

Transfer external language typing properties to 
object code.

Example: TILT/TAL compiler for Standard ML.
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CERTIFYING COMPILERS

The statics is the front-end, elaborating SML into a 
clean type theory.

Compiler transformations are type-preserving.

eg, continuation conversion a la Griffin

Object code is Morrisett’s typed assembly language.

type checking ensures safety
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CERTIFYING COMPILERS

SML TIL1 TIL2
elab phase1

TIL2 TIL3
phase2

...
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MECHANIZED 
METATHEORY

Doing meta-theory at scale is not humanly feasible.

Hundreds of twisty little cases, all alike.

(Except the one that isn’t.)

Mechanization is clearly desirable, but it proved 
difficult to use general provers to check safety of The 
Definition of Standard ML.

van Inwegen’s early effort to prove safety in HOL
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MECHANIZED META-
THEORY

The Redefinition of Standard ML is much more 
amenable to mechanization.

Type theory instead of “static semantic objects.”

Transitional, rather than relational, dynamics.

Twelf makes formalization and verification easy!

LF encoding of internal language

Relational meta-theory + coverage checking.
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MECHANIZED META-
THEORY

Safety of The Redefinition of Standard ML has been 
fully verified (Crary + D. Lee + H).

Statics and dynamics expressed in LF.

Relational meta-theory verified by Twelf coverage 
checking.

About 30,000 lines of Twelf developed using 
“extreme programming”.
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MECHANIZATION USING 
TWELF

LF encoding of statics and dynamics:

app_s : of (app M N) B ← of M (arr A B) ← of N A.

app_d : steps (app M N) (app M’ N) ← steps M M’.

Relational meta-theory acts on derivations:

pres : steps M M’ → of M A → of M’ A → type.

prog : of M A → val-or-step M.

Friday, April 27, 12



MECHANIZATION USING 
TWELF

State cases of a proof preservation and progress.

- : pres (app_d DM) (app_s SM SN) (app_s SM’ SN)
← pres DM SM SM’.

Twelf checks coverage and termination.

∀ D : steps M M’  ∀ S : of M A  ∃ S’ : of M’ A  ⊤
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A HUGE SUCCESS

Robin’s methods inspired much future work in 
language design, and will continue to do so:

eg, Haskell, O’Caml, F#, Scala

Precise language definition is not only possible, but 
practical and useful.

Compatibility among compilers.

Safety properties, code certification.
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