Revisiting: Algebraic laws for nondeterminism and concurrency

Matthew Hennessy

Milner-Symposium, Edinburgh April 2012

History of a paper

Algebraic laws for nondeterminism and concurrency, JACM 1985 Matthew Hennessy and Robin Milner

- Research in late 1979
 33 years ago
- Results presented at ICALP 1980 32 years ago (On Observing Nondeterminism and Concurrency)
- Rejected for publication 1982
- Rejected for publication 1983
- Published in JACM 1985

Edinburgh 1979 **33 years ago**

- No Labelled Transition Systems
- ► No CCS No CSP No ACP No ...
- No street lightening
- What happened to the sun ?
- Lots of mushrooms
- No Bisimulations
- When does the summer arrive?
- Walks on Arthurs seat
- Lots of parking near George Square

▶

▶

Edinburgh 1979: Lots of denotational semantics

$$D \cong [D \to D] \qquad \text{functions} \qquad \text{Scott, 1969}$$

$$P \cong V \to (V \times P) \qquad \text{transformers} \qquad \text{Milner 1971}$$

$$R \cong \mathcal{P}(S_{\perp} + (\mathcal{P}(S_{\perp}) \otimes R_{\perp}))^{S} \qquad \text{resumptions} \qquad \text{Plotkin 1976}$$

$$P_{L} \cong \mathcal{P}(\sum_{\beta \in L} (U_{\beta} \times (V_{\beta} \to P_{L}))) \qquad \text{processes} \qquad \text{Milne&Milner 1979}$$

- ∢ ⊒ →

Edinburgh 1979: Lots of algebraic semantics

The Auld Alliance

- Jean-Marie Cadiou (1972): Recursive Definitions of Partial Functions and their Computations
- ▶ Jean Vuillemin (1973): Proof Techniques for Recursive Programs
- Bruno Courcelle, Maurice Nivat (1978): The Algebraic Semantics of Recursive Programme Schemes
- Irene Guessarian (1981): Algebraic Semantics

Edinburgh 1979: Lots of algebraic semantics

The Auld Alliance

- Jean-Marie Cadiou (1972): Recursive Definitions of Partial Functions and their Computations
- Jean Vuillemin (1973): Proof Techniques for Recursive Programs
- Bruno Courcelle, Maurice Nivat (1978): The Algebraic Semantics of Recursive Programme Schemes
- Irene Guessarian (1981): Algebraic Semantics
- Magmas: ordered sets with operators
- Ideal completions: adding limit points
- Initial algebra semantics

A behavioural equivalence

ICALP 1980:

over P. Since in general there may be various means of communication we have a set of relations $(R_i \in P \times P, i \in I)$. Using these atomic experiments, we define a sequence of equivalence relations $\stackrel{\sim}{n}$ over P as follows: Let $p \underset{0}{\sim} q$ if $p,q \in P$ $p \underset{1}{\sim} n+1 q$ if i) Vi $\in I, qp,p' > \in R_i$ implies $\exists q'. < q,q' > \in R_i,p' \sim nq'$ and ii) Vi $\in I, < q,q' > \in R_i$ implies $\exists q'. < p,p' > \in R_i,p' \sim nq'$ Then p is <u>observationally equivalent</u> to q, written $p \sim q$, if $p \sim nq$ for every n.

Observational equivalence

1979

• Reduction semantics: $P \longrightarrow Q$

well-known

Observational equivalence

- Reduction semantics: $P \longrightarrow Q$
- Observational semantics: $P \xrightarrow{\mu} Q$

1979

well-known

new to me

Observatonal equivalence

- Reduction semantics: $P \longrightarrow Q$
- Observational semantics: $P \xrightarrow{\mu} Q$

Observing processes:

p ∼_o q for all p, q zero observations
 p ∼_{n+1} q if for every μ (n+1) observations
(i) p ^μ→ p' implies q ^μ→ q' such that p' ∼_n q'
(ii) q ^μ→ q' implies p ^μ→ p' such that p' ∼_n q'

Transfer properties

well-known

1979

new to me

Observational equivalence

- Reduction semantics: $P \longrightarrow Q$
- Observational semantics: $P \xrightarrow{\mu} Q$

Observing processes:

Observational equivalence:

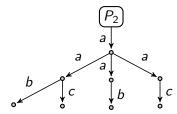
$$p \sim q ext{ if } p \left[\left(\cap_{n \geq 0} \sim_n
ight)
ight] q$$

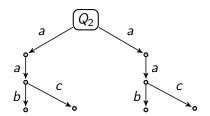
well-known

new to me

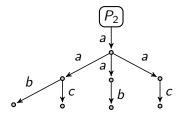
1979

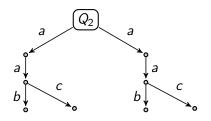
Observing processes





Observing processes



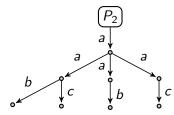


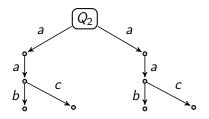
 $P_2 \sim_o Q_2$

 $P_2 \sim_1 Q_2$

 $P_2 \sim_2 Q_2 \qquad P_2 \not\rightarrow_3 Q_2$

Observing processes





 $P_2 \sim_o Q_2$ $P_2 \sim_1 Q_2$ $P_2 \sim_2 Q_2$ $P_2 \checkmark_3 Q_2$

Life could get much more complicated:

$$P_n \sim_n Q_n$$
 $P_n \checkmark_{(n+1)} Q_n$

Observational equivalence: Where from?

A Denotational Model

Milne&Milner 1979

$$\mathcal{P}_L \cong \mathcal{P}(\sum_{eta \in L} (U_eta imes (V_eta o \mathcal{P}_L)))$$

- L: set of ports
- U_{β} : output values on port β
- V_{β} : input values on port β
- A simplification $U_{\beta} = V_{\beta} = 1$:

$$P_L \cong \mathcal{P}(\sum_{\mu \in L} P_L)$$

How would you compare two elements p, q from P_L ?

Observational equivalence: a theorem

ICALP 1980:

10/29

A B > A B >

First research experiment

Process language:

finite non-deterministic machines

$$p \in W_{\Sigma_1} ::= \mathbf{0} \mid p + p \mid \mu.p$$

First research experiment

Process language:

finite non-deterministic machines

$$p \in W_{\Sigma_1} ::= \mathbf{0} \mid p + p \mid \mu.p$$

Result:

•
$$\bigcap_{n\geq 0}(\sim_n)$$
 is a Σ_1 - congruence

$$p \bigcap_{n \ge 0} (\sim_n) q \quad \text{iff } p =_A q$$
Axioms (A):
$$x + (y + z) = (x + y) + z \quad x + y = y + x$$

$$x + x = x \quad x + 0 = x$$

First research experiment

Process language:

finite non-deterministic machines

$$p \in W_{\Sigma_1} ::= \mathbf{0} \mid p + p \mid \mu.p$$

Result:

•
$$\bigcap_{n \ge 0} (\sim_n)$$
 is a Σ_1 - congruence

$$p \boxed{\bigcap_{n \ge 0} (\sim_n)} q \quad \text{iff } p =_A q$$
Axioms (A):
$$x + (y+z) = (x+y) + z \quad x+y = y+x$$

$$x + x = x \quad x + 0 = x$$

Denotational semantics:

$$p \left[\bigcap_{n \ge 0} (\sim_n) \right] q \qquad \text{iff } \llbracket p \rrbracket_{(W_{\Sigma_1} \setminus A)} = \llbracket q \rrbracket_{(W_{\Sigma_1} \setminus A)}$$

 $(W_{\Sigma_1} \setminus A)$: Initial algebra over W_{Σ_1} generated by axioms A

Robin had a lot of background

- ▶ 1973: Processes: A Mathematical model ...
- ▶ 1978: Algebras for Communicating Systems
- ▶ 1978: Synthesis of Communicating Behaviour
- ▶ 1978: Flowgraphs and Flow Algebras
- ▶ 1979: An Algebraic Theory for Synchronisation
- ▶ 1979: Concurrent Processes and Their Syntax

Robin had a lot of background

- ▶ 1973: Processes: A Mathematical model ...
- ▶ 1978: Algebras for Communicating Systems
- ▶ 1978: Synthesis of Communicating Behaviour
- ▶ 1978: Flowgraphs and Flow Algebras
- ▶ 1979: An Algebraic Theory for Synchronisation
- ▶ 1979: Concurrent Processes and Their Syntax

Combinators and their Laws proposed:

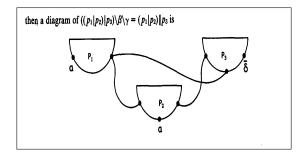
Robin had a lot of background

- ▶ 1973: Processes: A Mathematical model ...
- ▶ 1978: Algebras for Communicating Systems
- ▶ 1978: Synthesis of Communicating Behaviour
- ▶ 1978: Flowgraphs and Flow Algebras
- ▶ 1979: An Algebraic Theory for Synchronisation
- 1979: Concurrent Processes and Their Syntax

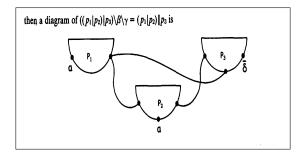
Combinators and their Laws proposed:

- Flowgraphs and flow algebras for static structure
- Synchronisation trees for dynamics

Justifying equations Flowgraphs:



Justifying equations Flowgraphs:



Synchronisation trees:

Let $p = \sum_i \lambda_i . p_i$, $q = \sum_j \mu_j . q_j$. Then

$$p|q = \sum_{i} \lambda_{i} \cdot (p_{i}|q) + \sum_{j} \mu_{j} \cdot (p|q_{j}) + \sum_{\mu_{j} = \lambda_{i}} \tau \cdot (p_{i}|q_{j})$$

Theorems for free

- $\Sigma_2=\Sigma_1 \text{ plus}$
 - Parallelism: |
 - Restriction: $\setminus \lambda$
 - ► Renaming: [S]

 \boldsymbol{S} a function over names

Result:

•
$$(\bigcap_{n\geq 0}\sim_n)$$
 is a Σ_2 - congruence

$$\blacktriangleright p \left[(\cap_{n \ge 0} \sim_n) \right] q \qquad \text{iff } p =_{A2} q$$

- ₹ 🖬 🕨

Theorems for free

- $\Sigma_2 = \Sigma_1 \text{ plus}$
 - Parallelism: |
 - Restriction: $\setminus \lambda$
 - ► Renaming: [S] S a function over names

Result:

•
$$(\cap_{n\geq 0}\sim_n)$$
 is a Σ_2 - congruence

$$\blacktriangleright p \left[(\cap_{n \ge 0} \sim_n) \right] q \qquad \text{iff } p =_{A2} q$$

 $A2 = A1 + existing axioms for |, \langle \lambda, [S] \rangle$

Weak case: abstracting from internal activity τ

Weak observational semantics:

$$P \stackrel{\mu}{\Longrightarrow} Q$$
 meaning $P \stackrel{\tau}{\longrightarrow}^* \stackrel{\mu}{\longrightarrow} \stackrel{\tau}{\longrightarrow}^* Q$

External observations:

look: no hats

Weak case: abstracting from internal activity -

Weak observational semantics:

$$P \stackrel{\mu}{\Longrightarrow} Q$$
 meaning $P \stackrel{\tau}{\longrightarrow}^* \stackrel{\mu}{\longrightarrow} \stackrel{\tau}{\longrightarrow}^* Q$

External observations:

Weak observational equivalence:

$$p \approx q$$
 if $p \left(\left(\cap_{n \geq 0} \approx_n \right) \right) q$

15/29

Equational characterisation

▶ Problem: $(\cap_{n\geq 0} \approx_n)$ is NOT preserved by operators + or |

Equational characterisation

Axioms WA1: add to A1 the τ -axioms:

$$x + \tau . x = \tau . x$$

$$\mu . (x + \tau . y) = \mu . (x + y) + \mu . y \qquad \mu . \tau . y = \mu . y$$

$$\mu . (x + \tau . y) = \mu . (x + \tau . y) + \mu . y$$

Equational characterisation

Axioms WA1: add to A1 the τ -axioms:

$$x + \tau . x = \tau . x$$

$$\mu . (x + \tau . y) = \mu . (x + y) + \mu . y \qquad \mu . \tau . y = \mu . y$$

$$\mu . (x + \tau . y) = \mu . (x + \tau . y) + \mu . y$$

Where did these come from?

An exercise in Behaviour Algebra $_{\tt notes \ by \ Robin \ on \ modelling \ queues}$

got the required result (17) from (18), we shall need
our first extra behaviour law
There any quark
$$\mu$$
, μ , τ , $X = \mu$, X (τ 1)
which can that a τ award with the absorbed in a anarded

An exercise in Behaviour Algebra $_{\tt notes \ by \ Robin \ on \ modelling \ queues}$

get the required result (17) from (18), we shall need
our first extra behaviour law

$$\frac{\int Ter any quark \mu, \mu, \tau, X = \mu, X}{(\tau 1)}$$
which can that a τ and which be absorbed in a duarded

(B)
$$\int -\frac{1}{7} d$$
. Here we shall need two extra behaviour laws
 $\begin{bmatrix} X + \tau, X = \tau, X \end{bmatrix}$ ($\tau 2$)
and
 $\begin{bmatrix} X + X = X \end{bmatrix}$ ($dempetence$).
They have logethar the important concillary
 $\begin{bmatrix} X + \tau (X+Y) = \tau.(X+Y) \end{bmatrix}$ ($\tau 2'$)
(B1). If $b \neq 0$, we get from (21)
 $q(s) \equiv queue_{i+1}(\hat{s}) + \sum_{j \in T} \tau. queue_{i+1}(\hat{s}_j)$

Hennessy Milner Logic where did this come from?

Observational equivalence $p\left[\left(\cap_{n\geq0}\sim_{n}
ight)
ight] q$

• Inspired by identity in domain $P_L \cong \mathcal{P}(\sum_{\mu \in L} P_L)$

Hennessy Milner Logic where did this come from?

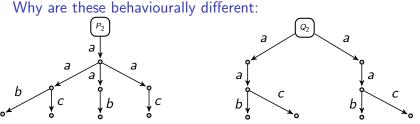
Observational equivalence $p\left[\left(\cap_{n\geq0}\sim_{n}
ight)
ight] q$

- Inspired by identity in domain $P_L \cong \mathcal{P}(\sum_{u \in L} P_L)$
- Requires independent justification

Hennessy Milner Logic where did this come from?

Observational equivalence $p \left[(\cap_{n \ge 0} \sim_n) \right] q$

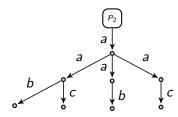
- Inspired by identity in domain $P_L \cong \mathcal{P}(\sum_{\mu \in L} P_L)$
- Requires independent justification

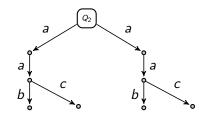


Discover difference using interaction games:

- can do action x
- can not do action x

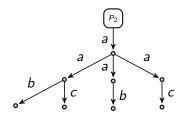
Discovering differences

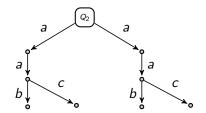




 Q_2 can perform a so that every time a is subsequently performed both b and c can be performed

Discovering differences





 Q_2 can perform a so that every time a is subsequently performed both b and c can be performed

$$Q_2 \models \langle a \rangle [a] (\langle b \rangle \mathrm{tt} \land \langle c \rangle \mathrm{tt}) \ P_2 \not\models \dots$$

Hennessy Milner Logic

$$A, B \in \mathcal{L} ::= \mathtt{tt} \mid A \land B \mid \neg A \mid \langle \mu
angle A$$

▶
$$p \models \langle \mu \rangle A$$
 if $p \xrightarrow{\mu} p'$ such that $p' \vdash A$
▶ $p \models A \land B$ if

Result:

•
$$p\left[(\cap_{n\geq 0}\sim_n)
ight] q$$
 iff $\mathcal{L}(p)=\mathcal{L}(q)$ requires image-finiteness

▶
$$p$$
 $(\bigcap_{n \ge 0} \sim_n)$ q iff $p \models A$ and $q \not\models A$, for some $A \in \mathcal{L}$.

A is an explanation of why p, q are different

Enter ... David Park 1935 - 1990

Enter ... David Park 1935 - 1990

Fixpoint induction:

1970 machine intelligence

If $F(H) \leq H$ then $\min X.F(X) \leq H$

requires monotonicity

Enter ... David Park 1935 - 1990

Fixpoint induction:

1970 machine intelligence

If $F(H) \leq H$ then $\min X.F(X) \leq H$

requires monotonicity

Fair merge:

1979

fairmerge = $\max X.\min Y.(\operatorname{Fm}(\min Z.\operatorname{Fm}(Z,X),Y))$

where
$$\operatorname{Fm}(X, Y) = \{(\epsilon, x, x) | x \in \Sigma^{\infty}\} \cup \{(x, \epsilon, x) | x \in \Sigma^{\infty}\}$$

= $\{(ax, y, az) | a \in \Sigma, (x, y, z) \in X\}$
= $\{(x, ay, az) | a \in \Sigma, (x, y, z) \in Y\}$

Using Maximal Fixpoints

Icalp 1980: Hennessy & Milner

Extensive use in meta-theory of processes:

- ► Theorem 2.1 If each R_i is image-finite then ~ is the maximal solution to S = E(S)
- ► ALNC, page 157: Now let ≈' be the maximal solution to the equation S = E'(S)

Using Maximal Fixpoints

Icalp 1980: Hennessy & Milner

Extensive use in meta-theory of processes:

- ► Theorem 2.1 If each R_i is image-finite then ~ is the maximal solution to S = E(S)
- ► ALNC, page 157: Now let ≈' be the maximal solution to the equation S = E'(S)

David Park:

Use maximal fixpoints in object-theory of processes

Replace
$$\boxed{(\cap_{n\geq 0}\sim_n)}$$
 with a maximal fixpoint $\sim_{\it bis}$

Co-induction à la David Park

Transfer property: For $R \subseteq P \times P$, define $\mathcal{B}(R) \subseteq P \times P$ by $p \mathcal{B}(R) q$ whenever

(i) $p \xrightarrow{\mu} p'$ implies $q \xrightarrow{\mu} q'$ such that p R q(ii) $q \xrightarrow{\mu} q'$ implies $p \xrightarrow{\mu} p'$ such that p R q

Bisimulations:

- $R \subseteq P \times P$ is a bisimulation if $\mathcal{B}(R) \subseteq R$
- $p \sim_{bis} q$ if p R q for some bisimulation R

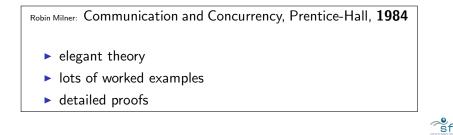
Elegant proof for establishing $p \sim_{bis} q$

Co-induction à la David Park

Robin Milner: A Calculus of Communicating Systems, LNCS 1980

Co-induction à la David Park

Robin Milner: A Calculus of Communicating Systems, LNCS 1980



Jim Morris and his style of equivalences

$Jim \ Morris \ \ \ \ and \ his \ style \ of \ equivalences$

James H Morris, PhD Thesis: Lambda Calculus Models of Programming Languages, 1968.

Proposed Theorem: In Lambda, if FA ⊑ A then YF ⊑ A

Jim Morris and his style of equivalences

James H Morris, PhD Thesis: Lambda Calculus Models of Programming Languages, 1968.

• Question: What is \sqsubseteq ?

Jim Morris and his style of equivalences

James H Morris, PhD Thesis: Lambda Calculus Models of Programming Languages, 1968.

• Question: What is \sqsubseteq ?

Morris Preorder:

 $A \sqsubseteq_{morris} B$ if for every context C[]C[A] has a normal form implies C[B] has a normal form

Morris - style of equivalences

Ingredients:

- A reduction semantics: $P \rightarrow Q$
- Results: $P \Downarrow v$
- Language syntax for contexts C[]

Contextual equivalence:

 $P \simeq_{c \times t} Q$ if for every context, for every barb,

$$C[P] \rightarrow^* P' \Downarrow v \quad \text{iff} \quad C[Q] \rightarrow^* Q' \Downarrow v$$

Morris - style of equivalences

Ingredients:

- A reduction semantics: $P \rightarrow Q$
- Results: $P \Downarrow v$
- Language syntax for contexts C[]

Contextual equivalence:

 $P \simeq_{c \times t} Q$ if for every context, for every barb,

$$C[P] \rightarrow^* P' \Downarrow v \text{ iff } C[Q] \rightarrow^* Q' \Downarrow v$$

Where are the quantifiers?

barbs

Justifying Bisimulation Equivalence

Barbed congruence:

Milner, Sangiorgi 1992

For image-finite CCS processes,

 $P \approx_{bism} Q$ iff $P \cong_{barb} Q$

Justifying Bisimulation Equivalence

Barbed congruence:

Milner, Sangiorgi 1992

For image-finite CCS processes,

$$P \approx_{bism} Q$$
 iff $P \cong_{barb} Q$

Reduction barbed congruence: For arbitrary CCS processes,

Honda, Yoshida 1993

 $P \approx_{bism} Q$ iff $P \cong_{rbc} Q$

Justifying Bisimulation Equivalence

Barbed congruence:

Milner, Sangiorgi 1992

For image-finite CCS processes,

$$P \approx_{bism} Q$$
 iff $P \cong_{barb} Q$

Reduction barbed congruence: For arbitrary CCS processes,

 $P \approx_{bism} Q$ iff $P \cong_{rbc} Q$

Both contextual equivalences are reduction closed:

- $P \rightarrow^* P'$ implies $Q \rightarrow^* Q'$ s.t. $P' \cong Q'$
- $Q \rightarrow^* Q'$ implies $P \rightarrow^* Q'$ s.t. $P' \cong Q'$

Honda, Yoshida 1993

Bisimulations in the Modern World

Pick your favourite process language

Bisimulations in the Modern World

Pick your favourite process language

- Bisimulations do not provide a behavioural theory of processes per se
- Bisimulations provide a proof methodology for demonstrating processes to be equivalent
- HML provide a methodology for explaining why processes are not equivalent

Bisimulations in the Modern World

Pick your favourite process language

- Bisimulations do not provide a behavioural theory of processes per se
- Bisimulations provide a proof methodology for demonstrating processes to be equivalent
- HML provide a methodology for explaining why processes are not equivalent
- ► Bisimulations are very often sound w.r.t. the natural contextual equivalence ≈_{cxt}
- ▶ Bisimulations are sometimes complete w.r.t. the natural contextual equivalence ≈_{cxt}
- Formulating complete bisimulations very often sheds light process behaviour

Examples a very small sample

- ► Asynchronous Picalculus: Honda, Tokoro 1991, Amadio Castellani Sangiorgi 1998
- Mobile Ambients: Merro, Zappa Nardelli 1985
- Existential and recursive types in lambda-calculus: Sumii, Pierce 2007
- Higher-order processes: environmental bisimulations Sangiorgi, Kobayahsi, Sumii 2007
- Aspects in a functional language: open bisimulations Jagadeesan, Pitcher, Riely 2007
- ► Concurrent Probabilistic processes: Deng, Hennessy 2011

Examples a very small sample

- ► Asynchronous Picalculus: Honda, Tokoro 1991, Amadio Castellani Sangiorgi 1998
- Mobile Ambients: Merro, Zappa Nardelli 1985
- Existential and recursive types in lambda-calculus: Sumii, Pierce 2007
- Higher-order processes: environmental bisimulations Sangiorgi, Kobayahsi, Sumii 2007
- Aspects in a functional language: open bisimulations Jagadeesan, Pitcher, Riely 2007
- Concurrent Probabilistic processes: Deng, Hennessy 2011
- Bigraphs: Robin and co-workers
 - Bigraphs: all encompassing descriptive language
 - Recovery of LTS from reduction semantics
 - ensuring soundness of bisimulations