Revisiting: Algebraic laws for nondeterminism and concurrency

Matthew Hennessy

Milner-Symposium, Edinburgh April 2012

History of a paper

Algebraic laws for nondeterminism and concurrency, JACM 1985 Matthew Hennessy and Robin Milner

- Research in late 1979

33 years ago

- Results presented at ICALP 1980

32 years ago (On Observing Nondeterminism and Concurrency)

- Rejected for publication 1982
- Rejected for publication 1983
- Published in JACM 1985

Edinburgh $1979 \quad 33$ years ago

- No Labelled Transition Systems
- No CCS No CSP No ACP No...
- No street lightening
- What happened to the sun ?
- Lots of mushrooms
- No Bisimulations
- When does the summer arrive?
- Walks on Arthurs seat
- Lots of parking near George Square
-

Edinburgh 1979: Lots of denotational semantics

$$
\begin{aligned}
& D \cong[D \rightarrow D] \\
& P \cong V \rightarrow(V \times P) \\
& R \cong \mathcal{P}\left(S_{\perp}+\left(\mathcal{P}\left(S_{\perp}\right) \otimes R_{\perp}\right)\right)^{S} \\
& P_{L} \cong \mathcal{P}\left(\sum_{\beta \in L}\left(U_{\beta} \times\left(V_{\beta} \rightarrow P_{L}\right)\right)\right)
\end{aligned}
$$

functions Scott, 1969
transformers
resumptions
processes

Plotkin 1976

Milne\&Milner 197!

Edinburgh 1979: Lots of algebraic semantics

The Auld Alliance

- Jean-Marie Cadiou (1972): Recursive Definitions of Partial Functions and their Computations
- Jean Vuillemin (1973): Proof Techniques for Recursive Programs
- Bruno Courcelle, Maurice Nivat (1978): The Algebraic Semantics of Recursive Programme Schemes
- Irene Guessarian (1981): Algebraic Semantics

Edinburgh 1979: Lots of algebraic semantics

The Auld Alliance

- Jean-Marie Cadiou (1972): Recursive Definitions of Partial Functions and their Computations
- Jean Vuillemin (1973): Proof Techniques for Recursive Programs
- Bruno Courcelle, Maurice Nivat (1978): The Algebraic Semantics of Recursive Programme Schemes
- Irene Guessarian (1981): Algebraic Semantics
- Magmas: ordered sets with operators
- Ideal completions: adding limit points
- Initial algebra semantics

A behavioural equivalence

ICALP 1980:
over P. Since in general there may be various means of commnication we have a set of relations $\left\{R_{i} \subseteq P \times P, i \in I\right\}$. Using these atanic experiments, we define a senuence of equivalence relations \sim_{n} over p as follows:

$$
\begin{array}{ll}
\text { Iet } p \sim_{o} q & \text { if } p, q \in R \\
p \sim_{n+1} q & \text { if } \\
& \text { i) } V i \in I,\left\langle p, p^{\prime}\right\rangle \in R_{i} \text { implies } \quad \exists q^{\prime} \cdot\left\langle q, q^{\prime}\right\rangle \in R_{i}, p^{\prime} \sim_{n} q^{\prime} \\
\text { and } & \text { ii) } \forall i \in I,\left\langle q, q^{\prime}\right\rangle \in R_{i} \text { imlies } \quad \exists p^{\prime} \cdot\left\langle p, p^{\prime}\right\rangle \in R_{i}, p^{\prime} \sim_{n} q^{\prime}
\end{array}
$$

Then p is observationally equivalent to q, written $p \sim q$, if $p \sim{ }_{n} q$ for every n.

Observatonal equivalence

- Reduction semantics: $P \longrightarrow Q$ well-known

Observatonal equivalence

- Reduction semantics: $P \longrightarrow Q$
well-known
- Observational semantics: $P \xrightarrow{\mu} Q$

Observatonal equivalence

- Reduction semantics: $P \longrightarrow Q$
- Observational semantics: $P \xrightarrow{\mu} Q$
well-known
new to me
zero observations
$(n+1)$ observations
(i) $p \xrightarrow{\mu} p^{\prime}$ implies $q \xrightarrow{\mu} q^{\prime}$ such that $p^{\prime} \sim_{n} q^{\prime}$
(ii) $q \xrightarrow{\mu} q^{\prime}$ implies $p \xrightarrow{\mu} p^{\prime}$ such that $p^{\prime} \sim_{n} q^{\prime}$

Observatonal equivalence

- Reduction semantics: $P \longrightarrow Q$
- Observational semantics: $P \xrightarrow{\mu} Q$
well-known
new to me
zero observations
($n+1$) observations

Transfer properties

Observational equivalence:

$$
p \sim q \text { if } \quad p \quad\left(\cap_{n \geq 0} \sim_{n}\right) q
$$

Observing processes

Observing processes

$P_{2} \sim_{0} Q_{2} \quad P_{2} \sim_{1} Q_{2}$
$P_{2} \sim_{2} Q_{2}$
$P_{2} \not \psi_{3} Q_{2}$

Observing processes

$P_{2} \sim_{0} Q_{2} \quad P_{2} \sim_{1} Q_{2}$
$P_{2} \sim_{2} Q_{2}$
$P_{2} \psi_{3} Q_{2}$

Life could get much more complicated:

$$
P_{n} \sim_{n} Q_{n} \quad P_{n} \not \psi_{(n+1)} Q_{n}
$$

Observational equivalence: Where from?

A Denotational Model

$$
P_{L} \cong \mathcal{P}\left(\sum_{\beta \in L}\left(U_{\beta} \times\left(V_{\beta} \rightarrow P_{L}\right)\right)\right)
$$

- L: set of ports
- U_{β} : output values on port β
- V_{β} : input values on port β

A simplification $U_{\beta}=V_{\beta}=1$:

$$
P_{L} \cong \mathcal{P}\left(\sum_{\mu \in L} P_{L}\right)
$$

How would you compare two elements p, q from P_{L} ?

Observational equivalence：a theorem

ICALP 1980：

```
Then }p\mathrm{ is observationally equivalent to q, written }p~q, if p p~nq for every n.
Before discussing ~ we give same of its properties. For any S\subseteqP\timesP let E(S)
be defined by
<P,Q Q E (S) if Vi\inI
    i) \langlep,\mp@subsup{p}{}{\prime}\rangle\in\mp@subsup{R}{i}{}}=>|{\mp@subsup{q}{}{\prime}.\langleq,\mp@subsup{q}{}{\prime}\rangle\in\mp@subsup{R}{i}{},\langle\mp@subsup{p}{}{\prime},\mp@subsup{q}{}{\prime}\rangle\in
    ii) <q,q}\mp@subsup{q}{}{\prime}\rangle\in\mp@subsup{R}{i}{}=>\ \ 'p.< <p,\mp@subsup{p}{}{\prime}\rangle\in\mp@subsup{R}{i}{\prime};\langle\mp@subsup{p}{}{\prime},\mp@subsup{q}{}{\prime}\rangle\in
We say that a relation R is image-finite if for each p, {p'|p, p
Theorem 2.1
    If each }\mp@subsup{R}{i}{}\mathrm{ is image-finite then ~ is the maximal solution to }S=E(S)\mathrm{ . 且
```


First research experiment

Process language:

$$
p \in W_{\Sigma_{1}}::=\mathbf{0}|p+p| \mu . p
$$

First research experiment

Process language:

Result:

$$
p \in W_{\Sigma_{1}}::=\mathbf{0}|p+p| \mu . p
$$

- $\cap_{n \geq 0}\left(\sim_{n}\right)$ is a $\Sigma_{1^{-}}$congruence
- $p \cap_{n \geq 0}\left(\sim_{n}\right) \quad q \quad$ iff $p=A_{A} q$

$$
\text { Axioms (A): } \quad x+(y+z)=(x+y)+z
$$

$$
x+x=x
$$

$$
\begin{array}{r}
x+y=y+x \\
x+\mathbf{0}=x
\end{array}
$$

First research experiment

Process language:

Result:

$$
p \in W_{\Sigma_{1}}::=\mathbf{0}|p+p| \mu \cdot p
$$

- $\cap_{n \geq 0}\left(\sim_{n}\right)$ is a Σ_{1} - congruence

$$
\begin{aligned}
& \text { - } p \cap_{n \geq 0}\left(\sim_{n}\right) \quad q \quad \text { iff } p={ }_{A} q \\
& \text { Axioms (A): } \begin{array}{llr}
x+(y+z)=(x+y)+z & x+y=y+x \\
& x+x=x & x+\mathbf{0}=x
\end{array}
\end{aligned}
$$

Denotational semantics:

$$
p \quad \cap_{n \geq 0}\left(\sim_{n}\right) \quad q \quad \text { iff } \llbracket p \rrbracket_{\left(w_{\Sigma_{1}} \backslash A\right)}=\llbracket q \rrbracket_{\left(w_{\Sigma_{1}} \backslash A\right)}
$$

$\left(W_{\Sigma_{1}} \backslash A\right)$: Initial algebra over $W_{\Sigma_{1}}$ generated by axioms A

Robin had a lot of background

- 1973: Processes: A Mathematical model ...
- 1978: Algebras for Communicating Systems
- 1978: Synthesis of Communicating Behaviour
- 1978: Flowgraphs and Flow Algebras
- 1979: An Algebraic Theory for Synchronisation
- 1979: Concurrent Processes and Their Syntax

Robin had a lot of background

- 1973: Processes: A Mathematical model ...
- 1978: Algebras for Communicating Systems
- 1978: Synthesis of Communicating Behaviour
- 1978: Flowgraphs and Flow Algebras
- 1979: An Algebraic Theory for Synchronisation
- 1979: Concurrent Processes and Their Syntax

Combinators and their Laws proposed:

Robin had a lot of background

- 1973: Processes: A Mathematical model ...
- 1978: Algebras for Communicating Systems
- 1978: Synthesis of Communicating Behaviour
- 1978: Flowgraphs and Flow Algebras
- 1979: An Algebraic Theory for Synchronisation
- 1979: Concurrent Processes and Their Syntax

Combinators and their Laws proposed:

- Flowgraphs and flow algebras for static structure
- Synchronisation trees for dynamics

Justifying equations

Flowgraphs:

then a diagram of $\left(\left(p_{1} \mid p_{2}\right) \mid p_{3}\right) \backslash p \mid \gamma=\left(p_{1} \mid p_{2}\right) \| p_{3}$ is

Justifying equations

Flowgraphs:

$$
\text { then a diagram of }\left(\left(p_{1} \mid p_{2}\right) \mid p_{3}\right) \backslash \beta \backslash \gamma=\left(p_{1} \mid p_{2}\right) \| p_{3} \text { is }
$$

Synchronisation trees:
Let $p=\sum_{i} \lambda_{i} \cdot p_{i}, \quad q=\sum_{j} \mu_{j} \cdot q_{j}$. Then

$$
p \mid q=\sum_{i} \lambda_{i} \cdot\left(p_{i} \mid q\right)+\sum_{j} \mu_{j} \cdot\left(p \mid q_{j}\right)+\sum_{\mu_{j}=\lambda_{i}} \tau .\left(p_{i} \mid q_{j}\right)
$$

Theorems for free

$\Sigma_{2}=\Sigma_{1}$ plus

- Parallelism: |
- Restriction: $\backslash \lambda$
- Renaming: $[S] \quad s$ a function over names

Result:

- $\left(\cap_{n \geq 0} \sim_{n}\right)$ is a $\Sigma_{2^{-}}$congruence
- $p \quad\left(\cap_{n \geq 0} \sim_{n}\right) \quad q \quad$ iff $p={ }_{A 2} q$

Theorems for free

$\Sigma_{2}=\Sigma_{1}$ plus

- Parallelism: |
- Restriction: $\backslash \lambda$
- Renaming: $[S] \quad s$ a function over names

Result:

- $\left(\cap_{n \geq 0} \sim_{n}\right)$ is a $\Sigma_{2^{-}}$congruence
- $p \quad\left(\cap_{n \geq 0} \sim_{n}\right) \quad q \quad$ iff $p={ }_{A 2} q$
$\mathrm{A} 2=\mathrm{A} 1+$ existing axioms for $\mid, \backslash \lambda, \quad[S]$

Weak case: abstracting from internal activity

- Weak observational semantics:

$$
P \stackrel{\mu}{\Longrightarrow} Q \text { meaning } P \xrightarrow{\tau}{ }^{*} \xrightarrow{\tau}{ }^{*} Q
$$

External observations:

- $p \approx_{o} q$ for all p, q
zero observations
($n+1$) observations
(i) $p \stackrel{\mu}{\Longrightarrow} p^{\prime}$ implies $q \xlongequal{\mu} q^{\prime}$ such that $p^{\prime} \approx_{n} q^{\prime}$
(ii) $q \xlongequal{\mu} q^{\prime}$ implies $p \stackrel{\mu}{\Longrightarrow} p^{\prime}$ such that $p^{\prime} \approx_{n} q^{\prime}$

Weak case: abstracting from internal activity

- Weak observational semantics:

$$
P \stackrel{\mu}{\Longrightarrow} Q \text { meaning } P \xrightarrow{\tau}{ }^{*} \xrightarrow{\tau}{ }^{*} Q
$$

External observations:

- $p \approx_{o} q$ for all p, q
zero observations
($n+1$) observations
(i) $p \stackrel{\mu}{\Longrightarrow} p^{\prime}$ implies $q \xlongequal{\mu} q^{\prime}$ such that $p^{\prime} \approx_{n} q^{\prime}$
(ii) $q \xlongequal{\mu} q^{\prime}$ implies $p \stackrel{\mu}{\Longrightarrow} p^{\prime}$ such that $p^{\prime} \approx_{n} q^{\prime}$

Weak observational equivalence:

$$
p \approx q \text { if } p\left(\cap_{n \geq 0} \approx_{n}\right) q
$$

Equational characterisation

- Problem: $\left(\cap_{n \geq 0} \approx_{n}\right)$ is NOT preserved by operators + or

Equational characterisation

- Problem: $\left(\cap_{n \geq 0} \approx_{n}\right)$ is NOT preserved by operators + or
- Result: $\ln \Sigma_{1}, p\left(\cap_{n \geq 0} \approx_{n}\right)_{c} q$ iff $p=$ wA1 q

Axioms WA1: add to A1 the τ-axioms:

$$
\begin{array}{ll}
x+\tau \cdot x=\tau \cdot x & \\
\mu \cdot(x+\tau \cdot y)=\mu \cdot(x+y)+\mu \cdot y & \mu \cdot \tau \cdot y=\mu \cdot y \\
& \mu \cdot(x+\tau \cdot y)=\mu \cdot(x+\tau \cdot y)+\mu \cdot y
\end{array}
$$

Equational characterisation

- Problem: $\left(\cap_{n \geq 0} \approx_{n}\right)$ is NOT preserved by operators + or
- Result: $\ln \Sigma_{1}, p\left(\cap_{n \geq 0} \approx_{n}\right)_{c} q$ iff $p=$ wa1 q

Axioms WA1: add to A1 the τ-axioms:

$$
\begin{array}{ll}
x+\tau \cdot x=\tau \cdot x & \\
\mu \cdot(x+\tau \cdot y)=\mu \cdot(x+y)+\mu \cdot y & \mu \cdot \tau \cdot y=\mu \cdot y \\
& \mu \cdot(x+\tau \cdot y)=\mu \cdot(x+\tau \cdot y)+\mu \cdot y
\end{array}
$$

Where did these come from?

An exercise in Behaviour Algebra notes by Robin on modedirig queue
Gel the required result (17) from (18), we shall need our fist extra behaviour law

$$
(\tau 1)
$$

An exercise in Behaviour Algebra notes by fobin on modelling queues
Gel the 1-ficured result (17) from (18), we shall need our fist extia behaniour law
\int For any guand $\mu, \mu, \tau, X=\mu . X$
i. biin cai.e firet a T anard winitlue atemited in a aunomed
(B) $J^{\cdots+}+A$. Here we shall nead two extra belianour laws

$$
x+\tau \cdot x=\tau \cdot x
$$

lind

$$
x+x=x \quad \text { (idempoténce). }
$$

They have logether the important conollany

$$
x+\tau \cdot(x+y)=\tau \cdot(x+y) \quad\left(\tau 2^{\prime}\right)
$$

(B1). If $t \neq 0$, we get from (21)

$$
q(s) \supseteq \text { quene }_{i+1}(\hat{s})+\sum_{j \in J} \tau \text {. quene }{ }_{i+1}\left(\hat{s}_{j}\right)
$$

Hennessy Milner Logic where did this come foom?

Observational equivalence $p\left(\cap_{n \geq 0} \sim_{n}\right) q$

- Inspired by identity in domain $P_{L} \cong \mathcal{P}\left(\sum_{\mu \in L} P_{L}\right)$

Hennessy Milner Logic where did this come foom?

Observational equivalence $p \quad\left(\cap_{n \geq 0} \sim_{n}\right) q$

- Inspired by identity in domain $P_{L} \cong \mathcal{P}\left(\sum_{\mu \in L} P_{L}\right)$
- Requires independent justification

Hennessy Milner Logic where did this come foom?

Observational equivalence $p\left(\cap_{n \geq 0} \sim_{n}\right) q$

- Inspired by identity in domain $P_{L} \cong \mathcal{P}\left(\sum_{\mu \in L} P_{L}\right)$
- Requires independent justification

Why are these behaviourally different:

Discover difference using interaction games:

- can do action x
- can not do action x

Discovering differences

Q_{2} can perform a so that
every time a is subsequently performed both b and c can be performed

Discovering differences

Q_{2} can perform a so that
every time a is subsequently performed both b and c can be performed

$$
\begin{aligned}
& Q_{2} \models\langle a\rangle[a](\langle b\rangle \mathrm{tt} \wedge\langle c\rangle \mathrm{tt}) \\
& P_{2} \not \models \ldots
\end{aligned}
$$

Hennessy Milner Logic

$$
A, B \in \mathcal{L}::=\mathrm{tt}|A \wedge B| \neg A \mid\langle\mu\rangle A
$$

- $p \models\langle\mu\rangle A$ if $p \xrightarrow{\mu} p^{\prime}$ such that $p^{\prime} \vdash A$
- $p \models A \wedge B$ if \ldots...

Result:

- $p\left(\cap_{n \geq 0} \sim_{n}\right) q$ iff $\mathcal{L}(p)=\mathcal{L}(q)$
- p ($\left.\cap_{n \geq 0} \sim_{n}\right) q$ iff $p \models A$ and $q \not \vDash A$, for some $A \in \mathcal{L}$.
A is an explanation of why p, q are different

Enter . . . David Park 1935 - 1990

Sfl

Enter . . . David Park 1935 - 1990

Fixpoint induction:
1970 machine intelligence
If $F(H) \leq H$ then $\boldsymbol{\operatorname { m i n }} X . F(X) \leq H$
requires monotonicity

Enter . . . David Park ${ }_{\text {1935-1990 }}$

Fixpoint induction:
If $F(H) \leq H$ then $\boldsymbol{\operatorname { m i n }} X . F(X) \leq H$

Fair merge:
fairmerge $=\boldsymbol{\operatorname { m a x }} X \cdot \boldsymbol{\operatorname { m i n }} Y .(\operatorname{Fm}(\boldsymbol{\operatorname { m i n }} Z . \operatorname{Fm}(Z, X), Y)$
where $\operatorname{Fm}(X, Y)=\left\{(\epsilon, x, x) \mid x \in \Sigma^{\infty}\right\} \cup\left\{(x, \epsilon, x) \mid x \in \Sigma^{\infty}\right\}$
$=\{(a x, y, a z) \mid a \in \Sigma,(x, y, z) \in X\}$
$=\{(x, a y, a z) \mid a \in \Sigma,(x, y, z) \in Y\}$

Using Maximal Fixpoints

Icalp 1980: Hennessy \& Milner
Extensive use in meta-theory of processes:

- Theorem 2.1 If each R_{i} is image-finite then \sim is the maximal solution to $S=E(S)$
- ALNC, page 157: Now let \approx^{\prime} be the maximal solution to the equation $S=E^{\prime}(S)$

Using Maximal Fixpoints

Icalp 1980: Hennessy \& Milner
Extensive use in meta-theory of processes:

- Theorem 2.1 If each R_{i} is image-finite then \sim is the maximal solution to $S=E(S)$
- ALNC, page 157: Now let \approx^{\prime} be the maximal solution to the equation $S=E^{\prime}(S)$

David Park:
Use maximal fixpoints in object-theory of processes

Replace $\left(\cap_{n \geq 0} \sim_{n}\right)$ with a maximal fixpoint $\sim_{b i s}$

Co-induction àı David Park

Transfer property:
For $R \subseteq P \times P$, define $\mathcal{B}(R) \subseteq P \times P$ by
$p \mathcal{B}(R) q$ whenever
(i) $p \xrightarrow{\mu} p^{\prime}$ implies $q \xrightarrow{\mu} q^{\prime}$ such that $p R q$
(ii) $q \xrightarrow{\mu} q^{\prime}$ implies $p \xrightarrow{\mu} p^{\prime}$ such that $p R q$

Bisimulations:

- $R \subseteq P \times P$ is a bisimulation if $\mathcal{B}(R) \subseteq R$
- $p \sim_{\text {bis }} q$ if $p R q$ for some bisimulation R

Elegant proof for establishing $p \sim_{\text {bis }} q$

Co-induction à a David Paxk

Robin Milner: A Calculus of Communicating Systems, LNCS 1980

Co-induction àı David Pakk

Robin Milner: A Calculus of Communicating Systems, LNCS 1980

Robin Milner: Communication and Concurrency, Prentice-Hall, 1984

- elegant theory
- lots of worked examples
- detailed proofs

Jim Morris and his style of equivalences

Jim Morris and his style of equivaleneces

James H Morris, PhD Thesis: Lambda Calculus Models of Programming Languages, 1968.

- Proposed Theorem:

In Lambda, if $F A \sqsubseteq A$ then $\mathbf{Y} F \sqsubseteq A$

Jim Morris and his style of equivaleneces

James H Morris, PhD Thesis: Lambda Calculus Models of Programming Languages, 1968.

- Proposed Theorem:

In Lambda, if $F A \sqsubseteq A$ then $\mathbf{Y} F \sqsubseteq A$

- Question: What is \sqsubseteq ?

Jim Morris and his style of equivalenees

James H Morris, PhD Thesis: Lambda Calculus Models of Programming Languages, 1968.

- Proposed Theorem:

In Lambda, if $F A \sqsubseteq A$ then $\mathbf{Y} F \sqsubseteq A$

- Question: What is \sqsubseteq ?

Morris Preorder:
$A \sqsubseteq_{\text {morris }} B$ if for every context $C[]$
$C[A]$ has a normal form implies $C[B]$ has a normal form

Morris - style of equivalences

Ingredients:

- A reduction semantics: $P \rightarrow Q$
- Results: $P \Downarrow v$
- Language syntax for contexts C[]

Contextual equivalence:
$P \approx_{c x t} Q$ if for every context, for every barb,

$$
C[P] \rightarrow^{*} P^{\prime} \Downarrow v \quad \text { iff } \quad C[Q] \rightarrow^{*} Q^{\prime} \Downarrow v
$$

Morris - style of equivalences

Ingredients:

- A reduction semantics: $P \rightarrow Q$
- Results: $P \Downarrow v$
- Language syntax for contexts C[]

Contextual equivalence:
$P \approx_{c x t} Q$ if for every context, for every barb,

$$
C[P] \rightarrow^{*} P^{\prime} \Downarrow v \quad \text { iff } \quad C[Q] \rightarrow^{*} Q^{\prime} \Downarrow v
$$

Where are the quantifiers?

Justifying Bisimulation Equivalence

Barbed congruence:
For image-finite CCS processes,

$$
P \approx_{\text {bism }} Q \text { iff } P \approx_{\text {barb }} Q
$$

Justifying Bisimulation Equivalence

Barbed congruence:
For image-finite CCS processes,

$$
P \approx_{\text {bism }} Q \text { iff } P \approx_{\text {barb }} Q
$$

Reduction barbed congruence:
For arbitrary CCS processes,

$$
P \approx_{b i s m} Q \text { iff } P \approx_{r b c} Q
$$

Justifying Bisimulation Equivalence

Barbed congruence:
For image-finite CCS processes,

$$
P \approx_{b i s m} Q \text { iff } P \approx_{\text {barb }} Q
$$

Reduction barbed congruence:
For arbitrary CCS processes,

$$
P \approx_{b i s m} Q \text { iff } P \approx_{r b c} Q
$$

Both contextual equivalences are reduction closed:

- $P \rightarrow^{*} P^{\prime}$ implies $Q \rightarrow^{*} Q^{\prime}$ s.t. $P^{\prime} \cong$. Q^{\prime}
- $Q \rightarrow^{*} Q^{\prime}$ implies $P \rightarrow^{*} Q^{\prime}$ s.t. $P^{\prime} \approx Q^{\prime}$

Bisimulations in the Modern World

Pick your favourite process language

Bisimulations in the Modern World

Pick your favourite process language

- Bisimulations do not provide a behavioural theory of processes per se
- Bisimulations provide a proof methodology for demonstrating processes to be equivalent
- HML provide a methodology for explaining why processes are not equivalent

Bisimulations in the Modern World

Pick your favourite process language

- Bisimulations do not provide a behavioural theory of processes per se
- Bisimulations provide a proof methodology for demonstrating processes to be equivalent
- HML provide a methodology for explaining why processes are not equivalent
- Bisimulations are very often sound w.r.t. the natural contextual equivalence $\approx_{c x t}$
- Bisimulations are sometimes complete w.r.t. the natural contextual equivalence $\approx_{c x t}$
- Formulating complete bisimulations very often sheds light process behaviour

Examples a very small sample

- Asynchronous Picalculus: Honda, Tokoro 1991, Amadio Castellani Sangiorgi 1998
- Mobile Ambients: Merro, Zappa Nardelli 1985
- Existential and recursive types in lambda-calculus: Sumii, Pierce 2007
- Higher-order processes: environmental bisimulations Sangiorgi, Kobayahsi, Sumii 2007
- Aspects in a functional language: open bisimulations Jagadeesan, Pitcher, Riely 2007
- Concurrent Probabilistic processes: Deng, Hennessy 2011

Examples a very smal sample

- Asynchronous Picalculus: Honda, Tokoro 1991, Amadio Castellani Sangiorgi 1998
- Mobile Ambients: Merro, Zappa Nardelli 1985
- Existential and recursive types in lambda-calculus: Sumii, Pierce 2007
- Higher-order processes: environmental bisimulations Sangiorgi, Kobayahsi, Sumii 2007
- Aspects in a functional language: open bisimulations Jagadesan, Pitcher, Riely 2007
- Concurrent Probabilistic processes: Deng, Hennessy 2011
- Bigraphs: Robin and co-workers
- Bigraphs: all encompassing descriptive language
- Recovery of LTS from reduction semantics
- ensuring soundness of bisimulations

