
Revisiting: Algebraic laws for nondeterminism
and concurrency

Matthew Hennessy

Milner-Symposium, Edinburgh April 2012

1/29



History of a paper

Algebraic laws for nondeterminism and concurrency, JACM 1985
Matthew Hennessy and Robin Milner

I Research in late 1979 33 years ago

I Results presented at ICALP 1980 32 years ago
(On Observing Nondeterminism and Concurrency)

I Rejected for publication 1982

I Rejected for publication 1983

I Published in JACM 1985

2/29



Edinburgh 1979 33 years ago

I No Labelled Transition Systems

I No CCS No CSP No ACP No . . .

I No street lightening

I What happened to the sun ?

I Lots of mushrooms

I No Bisimulations

I When does the summer arrive?

I Walks on Arthurs seat

I Lots of parking near George Square

I . . . . . .

I . . . . . .

3/29



Edinburgh 1979: Lots of denotational semantics

D ∼= [D → D] functions Scott, 1969

P ∼= V → (V × P) transformers Milner 1971

R ∼= P(S⊥ + (P(S⊥)⊗ R⊥))S resumptions Plotkin 1976

PL
∼= P(

∑
β∈L

(Uβ × (Vβ → PL)) ) processes Milne&Milner 1979

4/29



Edinburgh 1979: Lots of algebraic semantics

The Auld Alliance

I Jean-Marie Cadiou (1972): Recursive Definitions of Partial Functions and
their Computations

I Jean Vuillemin (1973): Proof Techniques for Recursive Programs

I Bruno Courcelle, Maurice Nivat (1978): The Algebraic Semantics of
Recursive Programme Schemes

I Irene Guessarian (1981): Algebraic Semantics

I Magmas: ordered sets with operators

I Ideal completions: adding limit points

I Initial algebra semantics

5/29



Edinburgh 1979: Lots of algebraic semantics

The Auld Alliance

I Jean-Marie Cadiou (1972): Recursive Definitions of Partial Functions and
their Computations

I Jean Vuillemin (1973): Proof Techniques for Recursive Programs

I Bruno Courcelle, Maurice Nivat (1978): The Algebraic Semantics of
Recursive Programme Schemes

I Irene Guessarian (1981): Algebraic Semantics

I Magmas: ordered sets with operators

I Ideal completions: adding limit points

I Initial algebra semantics

5/29



A behavioural equivalence

ICALP 1980:

6/29



Observatonal equivalence 1979

I Reduction semantics: P −→ Q well-known

I Observational semantics: P
µ−→ Q new to me

Observing processes:

I p ∼o q for all p, q zero observations

I p ∼n+1 q if for every µ (n + 1) observations

(i) p
µ−→ p′ implies q

µ−→ q′ such that p′ ∼n q′

(ii) q
µ−→ q′ implies p

µ−→ p′ such that p′ ∼n q′

Transfer properties

Observational equivalence:

p ∼ q if p (∩n≥0 ∼n) q

7/29



Observatonal equivalence 1979

I Reduction semantics: P −→ Q well-known

I Observational semantics: P
µ−→ Q new to me

Observing processes:

I p ∼o q for all p, q zero observations

I p ∼n+1 q if for every µ (n + 1) observations

(i) p
µ−→ p′ implies q

µ−→ q′ such that p′ ∼n q′

(ii) q
µ−→ q′ implies p

µ−→ p′ such that p′ ∼n q′

Transfer properties

Observational equivalence:

p ∼ q if p (∩n≥0 ∼n) q

7/29



Observatonal equivalence 1979

I Reduction semantics: P −→ Q well-known

I Observational semantics: P
µ−→ Q new to me

Observing processes:

I p ∼o q for all p, q zero observations

I p ∼n+1 q if for every µ (n + 1) observations

(i) p
µ−→ p′ implies q

µ−→ q′ such that p′ ∼n q′

(ii) q
µ−→ q′ implies p

µ−→ p′ such that p′ ∼n q′

Transfer properties

Observational equivalence:

p ∼ q if p (∩n≥0 ∼n) q

7/29



Observatonal equivalence 1979

I Reduction semantics: P −→ Q well-known

I Observational semantics: P
µ−→ Q new to me

Observing processes:

I p ∼o q for all p, q zero observations

I p ∼n+1 q if for every µ (n + 1) observations

(i) p
µ−→ p′ implies q

µ−→ q′ such that p′ ∼n q′

(ii) q
µ−→ q′ implies p

µ−→ p′ such that p′ ∼n q′

Transfer properties

Observational equivalence:

p ∼ q if p (∩n≥0 ∼n) q

7/29



Observing processes

P2

a
a

a
a

b
c b c

Q2
a a

a a

b
c

b
c

P2 ∼o Q2 P2 ∼1 Q2 P2 ∼2 Q2 P2 6∼3 Q2

Life could get much more complicated:

Pn ∼n Qn Pn 6∼(n+1) Qn

8/29



Observing processes

P2

a
a

a
a

b
c b c

Q2
a a

a a

b
c

b
c

P2 ∼o Q2 P2 ∼1 Q2 P2 ∼2 Q2 P2 6∼3 Q2

Life could get much more complicated:

Pn ∼n Qn Pn 6∼(n+1) Qn

8/29



Observing processes

P2

a
a

a
a

b
c b c

Q2
a a

a a

b
c

b
c

P2 ∼o Q2 P2 ∼1 Q2 P2 ∼2 Q2 P2 6∼3 Q2

Life could get much more complicated:

Pn ∼n Qn Pn 6∼(n+1) Qn

8/29



Observational equivalence: Where from?

A Denotational Model Milne&Milner 1979

PL
∼= P(

∑
β∈L

(Uβ × (Vβ → PL)) )

I L: set of ports

I Uβ: output values on port β

I Vβ: input values on port β

A simplification Uβ = Vβ = 1:

PL
∼= P(

∑
µ∈L

PL )

How would you compare two elements p, q from PL?

9/29



Observational equivalence: a theorem

ICALP 1980:

10/29



First research experiment

Process language: finite non-deterministic machines

p ∈WΣ1 ::= 0 | p + p | µ.p

Result:

I ∩n≥0(∼n) is a Σ1- congruence

I p ∩n≥0(∼n) q iff p =A q

Axioms (A): x + (y + z) = (x + y) + z x + y = y + x

x + x = x x + 0 = x

Denotational semantics:

p ∩n≥0(∼n) q iff JpK(WΣ1
\A) = JqK(WΣ1

\A)

(WΣ1\A) : Initial algebra over WΣ1 generated by axioms A

11/29



First research experiment

Process language: finite non-deterministic machines

p ∈WΣ1 ::= 0 | p + p | µ.p
Result:

I ∩n≥0(∼n) is a Σ1- congruence

I p ∩n≥0(∼n) q iff p =A q

Axioms (A): x + (y + z) = (x + y) + z x + y = y + x

x + x = x x + 0 = x

Denotational semantics:

p ∩n≥0(∼n) q iff JpK(WΣ1
\A) = JqK(WΣ1

\A)

(WΣ1\A) : Initial algebra over WΣ1 generated by axioms A

11/29



First research experiment

Process language: finite non-deterministic machines

p ∈WΣ1 ::= 0 | p + p | µ.p
Result:

I ∩n≥0(∼n) is a Σ1- congruence

I p ∩n≥0(∼n) q iff p =A q

Axioms (A): x + (y + z) = (x + y) + z x + y = y + x

x + x = x x + 0 = x

Denotational semantics:

p ∩n≥0(∼n) q iff JpK(WΣ1
\A) = JqK(WΣ1

\A)

(WΣ1\A) : Initial algebra over WΣ1 generated by axioms A

11/29



Robin had a lot of background

I 1973: Processes: A Mathematical model . . .

I 1978: Algebras for Communicating Systems

I 1978: Synthesis of Communicating Behaviour

I 1978: Flowgraphs and Flow Algebras

I 1979: An Algebraic Theory for Synchronisation

I 1979: Concurrent Processes and Their Syntax

Combinators and their Laws proposed:

I Flowgraphs and flow algebras for static structure

I Synchronisation trees for dynamics

12/29



Robin had a lot of background

I 1973: Processes: A Mathematical model . . .

I 1978: Algebras for Communicating Systems

I 1978: Synthesis of Communicating Behaviour

I 1978: Flowgraphs and Flow Algebras

I 1979: An Algebraic Theory for Synchronisation

I 1979: Concurrent Processes and Their Syntax

Combinators and their Laws proposed:

I Flowgraphs and flow algebras for static structure

I Synchronisation trees for dynamics

12/29



Robin had a lot of background

I 1973: Processes: A Mathematical model . . .

I 1978: Algebras for Communicating Systems

I 1978: Synthesis of Communicating Behaviour

I 1978: Flowgraphs and Flow Algebras

I 1979: An Algebraic Theory for Synchronisation

I 1979: Concurrent Processes and Their Syntax

Combinators and their Laws proposed:

I Flowgraphs and flow algebras for static structure

I Synchronisation trees for dynamics

12/29



Justifying equations

Flowgraphs:

Synchronisation trees:

Let p =
∑

i λi .pi , q =
∑

j µj .qj . Then

p|q =
∑
i

λi .(pi |q) +
∑
j

µj .(p|qj) +
∑
µj=λi

τ .(pi |qj)

13/29



Justifying equations

Flowgraphs:

Synchronisation trees:

Let p =
∑

i λi .pi , q =
∑

j µj .qj . Then

p|q =
∑
i

λi .(pi |q) +
∑
j

µj .(p|qj) +
∑
µj=λi

τ .(pi |qj)

13/29



Theorems for free

Σ2 = Σ1 plus

I Parallelism: |
I Restriction: \λ
I Renaming: [S ] S a function over names

Result:

I (∩n≥0 ∼n) is a Σ2- congruence

I p (∩n≥0 ∼n) q iff p =A2 q

A2 = A1 + existing axioms for |, \λ, [S ]

14/29



Theorems for free

Σ2 = Σ1 plus

I Parallelism: |
I Restriction: \λ
I Renaming: [S ] S a function over names

Result:

I (∩n≥0 ∼n) is a Σ2- congruence

I p (∩n≥0 ∼n) q iff p =A2 q

A2 = A1 + existing axioms for |, \λ, [S ]

14/29



Weak case: abstracting from internal activity τ

I Weak observational semantics:

P
µ

=⇒ Q meaning P
τ−→
∗ µ−→ τ−→

∗
Q

External observations:

I p ≈o q for all p, q zero observations

I p ≈n+1 q if for every µ ∈ Actτ (n + 1) observations

(i) p
µ

=⇒ p′ implies q
µ

=⇒ q′ such that p′ ≈n q′

(ii) q
µ

=⇒ q′ implies p
µ

=⇒ p′ such that p′ ≈n q′

Weak transfer properties
look: no hats

Weak observational equivalence:

p ≈ q if p (∩n≥0 ≈n) q

15/29



Weak case: abstracting from internal activity τ

I Weak observational semantics:

P
µ

=⇒ Q meaning P
τ−→
∗ µ−→ τ−→

∗
Q

External observations:

I p ≈o q for all p, q zero observations

I p ≈n+1 q if for every µ ∈ Actτ (n + 1) observations

(i) p
µ

=⇒ p′ implies q
µ

=⇒ q′ such that p′ ≈n q′

(ii) q
µ

=⇒ q′ implies p
µ

=⇒ p′ such that p′ ≈n q′

Weak transfer properties
look: no hats

Weak observational equivalence:

p ≈ q if p (∩n≥0 ≈n) q

15/29



Equational characterisation

I Problem: (∩n≥0 ≈n) is NOT preserved by operators + or |

I Result: In Σ1, p (∩n≥0 ≈n)c q iff p =WA1 q

Axioms WA1: add to A1 the τ -axioms:

x + τ.x = τ.x

(((
((((

(((
((((

(

µ.(x + τ.y) = µ.(x + y) + µ.y µ.τ.y = µ.y

µ.(x + τ.y) = µ.(x + τ.y) + µ.y

Where did these come from?

16/29



Equational characterisation

I Problem: (∩n≥0 ≈n) is NOT preserved by operators + or |

I Result: In Σ1, p (∩n≥0 ≈n)c q iff p =WA1 q

Axioms WA1: add to A1 the τ -axioms:

x + τ.x = τ.x

(((
((((

(((
((((

(

µ.(x + τ.y) = µ.(x + y) + µ.y µ.τ.y = µ.y

µ.(x + τ.y) = µ.(x + τ.y) + µ.y

Where did these come from?

16/29



Equational characterisation

I Problem: (∩n≥0 ≈n) is NOT preserved by operators + or |

I Result: In Σ1, p (∩n≥0 ≈n)c q iff p =WA1 q

Axioms WA1: add to A1 the τ -axioms:

x + τ.x = τ.x

(((
((((

(((
((((

(

µ.(x + τ.y) = µ.(x + y) + µ.y µ.τ.y = µ.y

µ.(x + τ.y) = µ.(x + τ.y) + µ.y

Where did these come from?

16/29



An exercise in Behaviour Algebra notes by Robin on modelling queues

17/29



An exercise in Behaviour Algebra notes by Robin on modelling queues

17/29



Hennessy Milner Logic where did this come from?

Observational equivalence p (∩n≥0 ∼n) q

I Inspired by identity in domain PL
∼= P(

∑
µ∈L PL )

I Requires independent justification

Why are these behaviourally different:
P2

a
a

a
a

b
c b c

Q2

a a

a a

b
c

b
c

Discover difference using interaction games:

I can do action x

I can not do action x

18/29



Hennessy Milner Logic where did this come from?

Observational equivalence p (∩n≥0 ∼n) q

I Inspired by identity in domain PL
∼= P(

∑
µ∈L PL )

I Requires independent justification

Why are these behaviourally different:
P2

a
a

a
a

b
c b c

Q2

a a

a a

b
c

b
c

Discover difference using interaction games:

I can do action x

I can not do action x

18/29



Hennessy Milner Logic where did this come from?

Observational equivalence p (∩n≥0 ∼n) q

I Inspired by identity in domain PL
∼= P(

∑
µ∈L PL )

I Requires independent justification

Why are these behaviourally different:
P2

a
a

a
a

b
c b c

Q2

a a

a a

b
c

b
c

Discover difference using interaction games:

I can do action x

I can not do action x

18/29



Discovering differences

P2

a
a

a
a

b
c b c

Q2

a a

a a

b
c

b
c

Q2 can perform a so that
every time a is subsequently performed

both b and c can be performed

Q2 |= 〈a〉[a](〈b〉tt ∧ 〈c〉tt)

P2 6|= . . .

19/29



Discovering differences

P2

a
a

a
a

b
c b c

Q2

a a

a a

b
c

b
c

Q2 can perform a so that
every time a is subsequently performed

both b and c can be performed

Q2 |= 〈a〉[a](〈b〉tt ∧ 〈c〉tt)

P2 6|= . . .

19/29



Hennessy Milner Logic

A,B ∈ L ::= tt | A ∧ B | ¬A | 〈µ〉A

I p |= 〈µ〉A if p
µ−→ p′ such that p′ ` A

I p |= A ∧ B if . . . . . .

Result:

I p (∩n≥0 ∼n) q iff L(p) = L(q) requires image-finiteness

I p
��
���

��
(∩n≥0 ∼n) q iff p |= A and q 6|= A, for some A ∈ L.

A is an explanation of why p, q are different

20/29



Enter . . .David Park 1935 - 1990

Fixpoint induction: 1970 machine intelligence

If F (H) ≤ H then minX .F (X ) ≤ H requires monotonicity

Fair merge: 1979

fairmerge = maxX .minY .(Fm(minZ .Fm(Z ,X ),Y )

where Fm(X ,Y ) = {(ε, x , x)|x ∈ Σ∞} ∪ {(x , ε, x)|x ∈ Σ∞}
= {(ax , y , az)|a ∈ Σ, (x , y , z) ∈ X}
= {(x , ay , az)|a ∈ Σ, (x , y , z) ∈ Y }

Σ∞: finite and infinite strings over Σ

21/29



Enter . . .David Park 1935 - 1990

Fixpoint induction: 1970 machine intelligence

If F (H) ≤ H then minX .F (X ) ≤ H requires monotonicity

Fair merge: 1979

fairmerge = maxX .minY .(Fm(minZ .Fm(Z ,X ),Y )

where Fm(X ,Y ) = {(ε, x , x)|x ∈ Σ∞} ∪ {(x , ε, x)|x ∈ Σ∞}
= {(ax , y , az)|a ∈ Σ, (x , y , z) ∈ X}
= {(x , ay , az)|a ∈ Σ, (x , y , z) ∈ Y }

Σ∞: finite and infinite strings over Σ

21/29



Enter . . .David Park 1935 - 1990

Fixpoint induction: 1970 machine intelligence

If F (H) ≤ H then minX .F (X ) ≤ H requires monotonicity

Fair merge: 1979

fairmerge = maxX .minY .(Fm(minZ .Fm(Z ,X ),Y )

where Fm(X ,Y ) = {(ε, x , x)|x ∈ Σ∞} ∪ {(x , ε, x)|x ∈ Σ∞}
= {(ax , y , az)|a ∈ Σ, (x , y , z) ∈ X}
= {(x , ay , az)|a ∈ Σ, (x , y , z) ∈ Y }

Σ∞: finite and infinite strings over Σ 21/29



Using Maximal Fixpoints

Icalp 1980: Hennessy & Milner

Extensive use in meta-theory of processes:

I Theorem 2.1 If each Ri is image-finite then ∼ is the maximal
solution to S = E (S)

I ALNC, page 157: Now let ≈′ be the maximal solution to the
equation S = E ′(S)

David Park:
Use maximal fixpoints in object-theory of processes

Replace (∩n≥0 ∼n) with a maximal fixpoint ∼bis

22/29



Using Maximal Fixpoints

Icalp 1980: Hennessy & Milner

Extensive use in meta-theory of processes:

I Theorem 2.1 If each Ri is image-finite then ∼ is the maximal
solution to S = E (S)

I ALNC, page 157: Now let ≈′ be the maximal solution to the
equation S = E ′(S)

David Park:
Use maximal fixpoints in object-theory of processes

Replace (∩n≥0 ∼n) with a maximal fixpoint ∼bis

22/29



Co-induction à la David Park

Transfer property:

For R ⊆ P × P, define B(R) ⊆ P × P by
p B(R) q whenever

(i) p
µ−→ p′ implies q

µ−→ q′ such that p R q

(ii) q
µ−→ q′ implies p

µ−→ p′ such that p R q

Bisimulations:

I R ⊆ P × P is a bisimulation if B(R) ⊆ R

I p ∼bis q if p R q for some bisimulation R

Elegant proof for establishing p ∼bis q

23/29



Co-induction à la David Park

Robin Milner: A Calculus of Communicating Systems, LNCS 1980

⇓

Robin Milner: Communication and Concurrency, Prentice-Hall, 1984

I elegant theory

I lots of worked examples

I detailed proofs

24/29



Co-induction à la David Park

Robin Milner: A Calculus of Communicating Systems, LNCS 1980

⇓

Robin Milner: Communication and Concurrency, Prentice-Hall, 1984

I elegant theory

I lots of worked examples

I detailed proofs

24/29



Jim Morris and his style of equivalences

James H Morris, PhD Thesis: Lambda Calculus Models of
Programming Languages, 1968.

I Proposed Theorem:
In Lambda, if FA v A then YF v A

I Question: What is v ?

Morris Preorder:

Avmorris B if for every context C [ ]

C [A] has a normal form implies C [B] has a normal form

25/29



Jim Morris and his style of equivalences

James H Morris, PhD Thesis: Lambda Calculus Models of
Programming Languages, 1968.

I Proposed Theorem:
In Lambda, if FA v A then YF v A

I Question: What is v ?

Morris Preorder:

Avmorris B if for every context C [ ]

C [A] has a normal form implies C [B] has a normal form

25/29



Jim Morris and his style of equivalences

James H Morris, PhD Thesis: Lambda Calculus Models of
Programming Languages, 1968.

I Proposed Theorem:
In Lambda, if FA v A then YF v A

I Question: What is v ?

Morris Preorder:

Avmorris B if for every context C [ ]

C [A] has a normal form implies C [B] has a normal form

25/29



Jim Morris and his style of equivalences

James H Morris, PhD Thesis: Lambda Calculus Models of
Programming Languages, 1968.

I Proposed Theorem:
In Lambda, if FA v A then YF v A

I Question: What is v ?

Morris Preorder:

Avmorris B if for every context C [ ]

C [A] has a normal form implies C [B] has a normal form

25/29



Morris - style of equivalences

Ingredients:

I A reduction semantics: P → Q

I Results: P ⇓ v barbs

I Language syntax for contexts C [ ]

Contextual equivalence:

P ucxt Q if for every context, for every barb,

C [P]→∗ P ′ ⇓ v iff C [Q]→∗ Q ′ ⇓ v

Where are the quantifiers?

26/29



Morris - style of equivalences

Ingredients:

I A reduction semantics: P → Q

I Results: P ⇓ v barbs

I Language syntax for contexts C [ ]

Contextual equivalence:

P ucxt Q if for every context, for every barb,

C [P]→∗ P ′ ⇓ v iff C [Q]→∗ Q ′ ⇓ v

Where are the quantifiers?

26/29



Justifying Bisimulation Equivalence

Barbed congruence: Milner, Sangiorgi 1992

For image-finite CCS processes,

P ≈bism Q iff P ubarb Q

Reduction barbed congruence: Honda, Yoshida 1993

For arbitrary CCS processes,

P ≈bism Q iff P urbc Q

Both contextual equivalences are reduction closed:

I P →∗ P ′ implies Q →∗ Q ′ s.t. P ′ u· Q ′

I Q →∗ Q ′ implies P →∗ Q ′ s.t. P ′ u· Q ′

27/29



Justifying Bisimulation Equivalence

Barbed congruence: Milner, Sangiorgi 1992

For image-finite CCS processes,

P ≈bism Q iff P ubarb Q

Reduction barbed congruence: Honda, Yoshida 1993

For arbitrary CCS processes,

P ≈bism Q iff P urbc Q

Both contextual equivalences are reduction closed:

I P →∗ P ′ implies Q →∗ Q ′ s.t. P ′ u· Q ′

I Q →∗ Q ′ implies P →∗ Q ′ s.t. P ′ u· Q ′

27/29



Justifying Bisimulation Equivalence

Barbed congruence: Milner, Sangiorgi 1992

For image-finite CCS processes,

P ≈bism Q iff P ubarb Q

Reduction barbed congruence: Honda, Yoshida 1993

For arbitrary CCS processes,

P ≈bism Q iff P urbc Q

Both contextual equivalences are reduction closed:

I P →∗ P ′ implies Q →∗ Q ′ s.t. P ′ u· Q ′

I Q →∗ Q ′ implies P →∗ Q ′ s.t. P ′ u· Q ′

27/29



Bisimulations in the Modern World

Pick your favourite process language

I Bisimulations do not provide a behavioural theory of processes
per se

I Bisimulations provide a proof methodology for demonstrating
processes to be equivalent

I HML provide a methodology for explaining why processes are
not equivalent

I Bisimulations are very often sound w.r.t. the natural
contextual equivalence ucxt

I Bisimulations are sometimes complete w.r.t. the natural
contextual equivalence ucxt

I Formulating complete bisimulations very often sheds light
process behaviour

28/29



Bisimulations in the Modern World

Pick your favourite process language

I Bisimulations do not provide a behavioural theory of processes
per se

I Bisimulations provide a proof methodology for demonstrating
processes to be equivalent

I HML provide a methodology for explaining why processes are
not equivalent

I Bisimulations are very often sound w.r.t. the natural
contextual equivalence ucxt

I Bisimulations are sometimes complete w.r.t. the natural
contextual equivalence ucxt

I Formulating complete bisimulations very often sheds light
process behaviour

28/29



Bisimulations in the Modern World

Pick your favourite process language

I Bisimulations do not provide a behavioural theory of processes
per se

I Bisimulations provide a proof methodology for demonstrating
processes to be equivalent

I HML provide a methodology for explaining why processes are
not equivalent

I Bisimulations are very often sound w.r.t. the natural
contextual equivalence ucxt

I Bisimulations are sometimes complete w.r.t. the natural
contextual equivalence ucxt

I Formulating complete bisimulations very often sheds light
process behaviour

28/29



Examples a very small sample

I Asynchronous Picalculus: Honda, Tokoro 1991, Amadio Castellani Sangiorgi 1998

I Mobile Ambients: Merro, Zappa Nardelli 1985

I Existential and recursive types in lambda-calculus: Sumii, Pierce 2007

I Higher-order processes: environmental bisimulations Sangiorgi, Kobayahsi, Sumii 2007

I Aspects in a functional language: open bisimulations Jagadeesan, Pitcher, Riely 2007

I Concurrent Probabilistic processes: Deng, Hennessy 2011

I Bigraphs: Robin and co-workers

I Bigraphs: all encompassing descriptive language
I Recovery of LTS from reduction semantics
I ensuring soundness of bisimulations

29/29



Examples a very small sample

I Asynchronous Picalculus: Honda, Tokoro 1991, Amadio Castellani Sangiorgi 1998

I Mobile Ambients: Merro, Zappa Nardelli 1985

I Existential and recursive types in lambda-calculus: Sumii, Pierce 2007

I Higher-order processes: environmental bisimulations Sangiorgi, Kobayahsi, Sumii 2007

I Aspects in a functional language: open bisimulations Jagadeesan, Pitcher, Riely 2007

I Concurrent Probabilistic processes: Deng, Hennessy 2011

I Bigraphs: Robin and co-workers

I Bigraphs: all encompassing descriptive language
I Recovery of LTS from reduction semantics
I ensuring soundness of bisimulations

29/29


