Jobbers, sentient buildings and lions

A short walk into Robin Milner's tower

Jean Krivine
PPS lab. CNRS \& Univ. Paris Diderot

Concurrency

* PhD «Reversible process algebra» at INRIA (sup. JJL, 2006)
* Transactional systems, distributed transactions, self assembly
* Formal methods in systems biology (Danos, Fontana)
* Bigraph theory, stochastic semantics (Milner)

Meeting a great scientist

Someone to employ, please?

Someone to employ, please?

An example

Here is a example, describing a simple interaction discipline that models sentient buildings - buildings whose infrastructure of sensors and computers assists the performance of human occupants.

Someone to employ, please?

Someone to employ, please?

Someone to employ, please?

An example

Here is a example, describing a simple interaction discipline that models sentient buildings - buildings whose infrastructure of sensors and computers assists the performance of human occupants.

Robin Milner

Robin Milner

Comprehension axiom

Robin always understands what you say

Robin Milner

Comprehension axiom

Robin always understands what you say

Explains the gradient of interest:

Robin Milner

Comprehension axiom

Robin always understands what you say

Explains the gradient of interest:

Robin Milner

Comprehension axiom
 Robin always understands what you say

Robin Milner

Comprehension axiom
 Robin always understands what you say

«《l don't understand»

... why we are still talking about this

Robin Milner

Comprehension axiom

Robin always understands what you say

««l don't understand»

... why we are still talking about this

__«That's fascinating»

Explains the gradient of interest:

Robin Milner

Comprehension axiom

Robin always understands what you say

««l don't understand»

... why we are still talking about this

__«That's fascinating»

Explains the gradient of interest:
\qquad «This is interesting»

■ Eyebrow scratching

Contribution

* Stochastic semantics for bigraphs (w Angelo Troina, Turin Univ.)
* BRS generators and application to systems biology
* (Beginning of an) abstract machine

Small contribution, but learned a lot...

A tower against the jungle

Someone to employ, please?

Finally, bigraphs represent the abstract as well as the concrete. For example, there is a BRS representing the π-caclulus and another representing Mobile Ambients. By combining the abstract with the concrete we can, for example, describe both the physical and the informatic activity in a building.

Tower of informatic models

Consider also a model of humans interacting with a computer; the model of the human components may involve human attributes such as belief or sensation, as distinct from the way the computer is described. These two examples show the need not only to combine informatic models, but to combine them with others that are not informatic.

Figure 4: A simplified model tower for aircraft construction

In Milner's Tower

Communication Concurrency

Mobility

Space and motion

In Milner's Tower

Communication Concurrency

Space and motion

In Milner's Tower

Communication Concurrency
 combine
 describes

Mobility

Distributed computation

Space and motion

In Milner's Tower

Space and motion

In Milner's Tower

In Milner's Tower

Mobility Distributed computation

Space and motion
Distributed systems

In Milner's Tower

Mobility
 Distributed computation

Space and motion
 Distributed systems

In Milner's Tower

Mobility
 Distributed computation

Space and motion Distributed systems
(Discrete) Complex systems

In Milner's Tower

(Discrete) Complex systems

In Milner's Tower

Populating the tower

Populating the tower

$$
K_{\vec{x}}(\square):\langle\emptyset, 1\rangle \rightarrow\left\langle\left\{x_{1}, \ldots, x_{n}\right\}, 1\right\rangle
$$

Populating the tower

$$
K_{\vec{x}}(\square):\langle\emptyset, 1\rangle \rightarrow\left\langle\left\{x_{1}, \ldots, x_{n}\right\}, 1\right\rangle
$$

$$
\backslash \vec{y}:\left\langle\left\{y_{1}, \ldots, y_{n}\right\}, 0\right\rangle \rightarrow\langle\emptyset, 1\rangle
$$

$$
x \backslash \vec{y}:\left\langle\left\{y_{1}, \ldots, y_{n}\right\}, 0\right\rangle \rightarrow\langle\{x\}, 1\rangle
$$

Populating the tower

$$
K_{\vec{x}}(\square):\langle\emptyset, 1\rangle \rightarrow\left\langle\left\{x_{1}, \ldots, x_{n}\right\}, 1\right\rangle
$$

$$
\backslash \vec{y}:\left\langle\left\{y_{1}, \ldots, y_{n}\right\}, 0\right\rangle \rightarrow\langle\emptyset, 1\rangle
$$

$$
x \backslash \vec{y}:\left\langle\left\{y_{1}, \ldots, y_{n}\right\}, 0\right\rangle \rightarrow\langle\{x\}, 1\rangle
$$

$$
\operatorname{merge}_{n}:\langle\emptyset, n\rangle \rightarrow\langle\emptyset, 1\rangle
$$

Populating the tower

$\mathrm{K}_{x}(\square) \mid \mathrm{L}_{x}$

Populating the tower

$\mathrm{K}_{x}(\square) \| \mathrm{L}_{x}$

Populating the tower

Syntax

Bigraphs are lego pieces...

that can be assembled to form a reactive system...

Instance

and applied on a particular initial bigraph.

> Modeling the tea coffee machine... and the drinker

A simple tower: Hunting deers

Kids behaviors
Game of lions \& deers

A simple tower: Hunting deers

Kids behaviors
Game of lions \& deers

describes

Kids playing lions and deers

A simple tower: Hunting deers

bigraphical reactive systems

Kids behaviors
Game of lions \& deers
combine
describes
Kids playing lions and deers

A simple tower: Hunting deers

bigraphical reactive systems

Kids behaviors
Game of lions \& deers

A simple tower: Hunting deers

$$
\left(\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|=1\right)
$$

A child/lion enters the game at spot [xy] (similarly for a deer)

A virtual lion moves to another spot (similarly for a deer)

A child/lion becomes alert to a deer in its locale
$/ c\left(\right.$ child $_{c} \|\left(\right.$ lion $_{a c} \mid$ deer $\left.\left._{b}\right)\right) \rightarrow \quad / c\left(\right.$ childalert $_{c} \|\left(\right.$ lionalert $_{a c} \mid$ deerseen $\left.\left._{b c}\right)\right)$

Expertise issue

Semanticians
ABSTRACT INTERPRETATION

Figure 4: A simplified model tower for aircraft construction

Expertise issue

commun language??

Figure 4: A simplified model tower for aircraft construction

Where should we be?

Semantician

Expert of M

Where should we be?

Semantician

Expert of M

eyebrow scratching...

OK let me show you...

Laws

Can we provide a language that biologists can use describing these facts?

Laws

Can we provide a language that biologists can use describing these facts?

Laws

Can we provide a language that biologists can use describing these facts?

Laws

Can we provide a language that biologists can use describing these facts?

Laws

Can we provide a language that biologists can use describing these facts?

Laws

Can we provide a language that biologists can use describing these facts?

Laws

Can we provide a language that biologists can use describing these facts?

Generators for PPI

Fig. 1: Generators for \mathcal{C}_{0}.

Generators for membrane

Generators for membrane

Model entities

$$
\left\langle P: 0, R: 2, R^{\prime}: 2, \text { coat }: 1, \text { brane }: 0, S: 1, G: 1\right\rangle
$$

Systems biologist names the biological entities
which become particular instances of the entities of the generators

Refinements

Refinements of the PPI generators

Refinements

Budding

Refinements of the membrane generators

Space and motion

Space and motion

Diffusion is a consequence of the «diffuse» generator

Space and motion

Conclusion

Conclusion

Higher, Deeper, broader

continuom

recursion

Stronger foundations

combination
 morphisms

Conclusion

Higher, Deeper, broader

continuom

recursion

Stronger foundations

combination

morphisms

The bigraph model is not canonical - variants and alternatives can be imagined - but it has at least enough power and flexibility to serve as a case study for a theory to underpin future systems engineering.

There is a lot of work to do, and we are hiring!

Thanks!

