
Higher Order Modules
Revisited

David MacQueen
University of Chicago

1Wednesday, April 18, 12

ISWIM 1966
Peter Landin

LCF ML - 1973-78
Robin Milner
 Lockwood Morris
 Malcolm Newey
 Chris Wadsworth
 Mike Gordon

Cardelli ML - ~1981
Luca Cardelli

Edinburgh ML - early 80s
Alan Mycroft, Kevin Mitchell

Algebraic datatypes - 1969
Landin, Rod Burstall

NPL - 1977
Rod Burstall

Hope - 1980
Burstall, MacQueen, Sannella

Standard ML 1983-1990
Milner, Burstall, MacQueen, Cardelli, Larry Paulson,

Mads Tofte, Bob Harper, MItchell, Mycroft, Scott
Guy Cousineau

Definition of Standard ML 1990
Milner, Mads Tofte, Harper

Definition of SML, Revised 1995-1997
Milner, Mads Tofte, Harper, MacQueen

SML Basis Library 1997-2004
Emden Gansner, John Reppy

Modules for Hope - 1981
MacQueen

2Wednesday, April 18, 12

Some Standard ML Implementations

• SML/NJ (1986)
 (MacQueen, Appel, Reppy, Shao, ...)

• PolyML (1985)
 (Dave Matthews)

• MLKit (1989)
 (Mads Tofte, ...)

• Moscow ML (early 1990s)
 (Romanenko, Sestoft, ...)

• MLton (1997)
(Weeks, Fluet, ...)

• Alice ML (2002)
 (Rossberg, ...)

3Wednesday, April 18, 12

Some Features of SML Modules

• Independence of interfaces and implementations
- a signature can be implemented by many modules
- a module can implement (match) many signatures

• Functors formed by abstraction with respect to structure names
- coherence sharing constraints for multiple parameters
- expressed by sharing equations (deprecated) or by
 definitional specifications (SML 97)

• Transparent and opaque signature ascriptions (SML 97)
- opaque ascription used for type abstraction

• Propagation of types can be (partially) expressed in functor
 signatures by sharing or definitional specifications

• Functor application is generative, not applicative

4Wednesday, April 18, 12

Example: coherence sharing

 signature SA = sig type t; val f : int -> t end
 signature SB = sig type s; val g : s -> bool end

 (* SML 90 *)

 functor F(structure A: SA; structure B: SB sharing A.t = B.s) =
 struct
 val x = g(f 3)
 end

 (* SML 97 *)

 functor F(structure A: SA; structure B: SB where type s = A.t) =
 struct
 val x = g(f 3)
 end

5Wednesday, April 18, 12

Variations on Modules

There are several variations on ML module system design and
several approaches to formalizing these designs (notably
Harper, et al -- the CMU school, and Leroy -- the Caml school).

Here I will talk about my story of modules, and in particular
strong higher order modules as implemented in SML/NJ since 1993.

This story derives from experience with several generations of
module system implementations in SML/NJ, and, by now, decades
of practical use of the language.

6Wednesday, April 18, 12

History of Module System Implementations in SML/NJ

• 1st generation, 1987 (incomplete bootstrap version)

• 2nd generation, 1989-90 (1st order functors with sharing specs)

• 3rd generation, Feb 1993
- full higher order functors
- definitional specs

 (==> Harpers translucent signatures (1994) and
 Leroy’s manifest types (1994))

• 4th generation, 1995-97
- revision for compatibility with SML 97 Defn

- drop static structure identities and sharing
- add type (and structure) where clauses
- entity calculus implementation of higher order functors

• 5th generation, 2010 ... (in progress, based on new semantics)

7Wednesday, April 18, 12

First-Order Functors in the Definition

"names": internal unique identifiers for atomic tycons
 (primitives, datatypes, abstract types) also used as bound
 tycon variables

E ∈ Env = (SE, TE, VE)
 SE ∈ StrEnv = StrId → Env
 TE ∈ TyEnv = TycId → Tycon
 VE ∈ ValEnv = ValId → Type

structure: E
signature: Σ = (T,E) ∈ Sig = NameSet * Env (where T ⊆ names(E))
functor: funsig
funsig: Φ ∈ FunSig = NameSet * (Env * Sig)

 Φ = (T)(E1, (T')E2) – T and T' are sets of bound names (T, T' disjoint)

 Φ = Π(T :E1).Γ(T').E2

8Wednesday, April 18, 12

Functor signature instantiation

Tycon = Name (primitive)
 | λα.TyExp (defined)

Realization: φ : Name -> Tycon (extends to Env → Env)

Sig Instantiation:
 Σ ≥ E2 where Σ = (T)E1
 if ∃φ. φ(E1) = E2 and dom(φ) = T

Funsig Instantiation: Φ = (T1)(E1, (T2)E2).

 Φ ≥ (E1', (T2')E2')
 if ∃φ. dom(φ) = T1 and φ(E1,(T2)E2) = (E1',(T2')E2')

 [T2 α-converted to T2' as needed to avoid free variable (name) capture]

9Wednesday, April 18, 12

Functor Application (Rule (54))

 B ⊦ strexp => E -- elaborate arg strexp to E
 B(funid) ≥ (E1, (T2)E2) -- instantiate functor
 E ≽ E1 -- so that argument is matched
 (names(E) ⋃ names(B)) ⋂ T2 = ∅ -- α-convert to insure fresh names

 B ⊦ funid(strexp) => E2

Suppose: B(funid) = (Tp)(Ep,(Tr)Er) [Tp ⋂ Tr = ∅ assumed]

The realization φ giving B(funid) > (E1, (T2)E2) is determined by
matching E, the argument structure, with the parameter signature
(Tp)Ep. This insures E ≽ E1.

Rule (54) works for 1st order functors, but:
1) there is no way to extend it to handle higher order functors
2) it relies on implicit alpha conversion to model tycon generation

10Wednesday, April 18, 12

Why Higher Order Functors?

1. Landin's Principle of Correspondence

2. A variant of 1: Whatever entities can be defined should be
definable within a module.

 - for structures, this yields hierarchical modules

 - for functors, this would yield higher-order functors

3. We use functors to factor multi-module programs. Sometimes the
part of the program that we want to abstract out contains functors.
[This actually happens!]

11Wednesday, April 18, 12

A New Static Semantics for Modules

 Derived from SML/NJ implementation (4th gen)

Ideas:

1. Factoring "form" and "content" (e.g. signature/realization)

2. Static "entities" for tycons, structures, and functors
 (generalization and refinement of realizations φ)

3. An entity calculus (CBV λ-calculus with generation effects)
 to express functor static actions (how input tycons are mapped
 to output tycons, and how fresh tycons are generated)

4. Two-level elaboration of module definitions
 • direct to entities, for type checking value level
 • indirect, to entity expressions, to capture functor actions

12Wednesday, April 18, 12

Semantic signatures

• entity variables ρ: internal, non-shadowable variables [Harper 94]
 (these replace "names")

• signature representation: sig -- a mapping of identifiers to static
specifications

 x (ρ, arity) (primary tycons)
 (TycExp) (defined tycons: λα.TypExp, relativized)
* (ρ, sig) (structure component)
* (ρ, funsig) (functor component)
* (Type) (value component, relativized)

13Wednesday, April 18, 12

SIG =
sig
 type t
 type ‘a s = ‘a * t
 structure A : sig
 datatype v = ...
 val x : v s

 end
 val y : t -> A.v
end

SIG = [t (ρt, 0)
 s λα.α * ρt

* A (ρA, [v (ρv, 0)
* x (ρv * ρt)])
 y ρt → ρA.ρv]

SIG = ((m,n), E)

E = [t m,
 s λα.α * m
 A [v n,
* x n * m]
 y m → n]

Example Signature

14Wednesday, April 18, 12

structure S : SIG =
struct
 type t = int
 type ‘a s = ‘a * t
 structure A = struct
 datatype v = C of t
 val x = (C 3, 2)
 end
 val y = fn z => A.C(4)
end

Entity Environment for S:

 [ρt = int,
 ρA = [ρv = tcnew]
]

Entity Expression for S:

 [[ρt = int,
 ρA = [[ρv = new(0)]]
]]

where [[entdecls]] is the
basic form of entity exp
for structures.

Example Structure matching S

15Wednesday, April 18, 12

Functor Example (old)

functor F(X: sig type t end) =
struct
 type u = X.t list
 datatype v = C of u
end

FunSig(F) = (m)(E1, (n)E2))

 where E1 = [t m]

 E2 = [u list m,
* v n,
* * C list m → n]

16Wednesday, April 18, 12

Functor Application (old)
FunSig(F) = ΦF = (m)(E1, (n)E2))

 where E1 = [t m]

 E2 = [u list m,
* v n,
* * C list m → n]

Earg = [t int, s bool]

Earg ≽ E1' via φ : m int, where E1' = [t int]

ΦF ≥ (E1', (k)E2') via φ where

 E2 = [u list int,
* v k,
* * C list int → k]

and k is a fresh name (i.e. atomic tycon).

F(struct type t = int
 type s = bool end)

17Wednesday, April 18, 12

Functor Example (new)

functor F(X: sig type t end) =
struct
 type u = X.t list
 datatype v = C of u
end

functor signature: fsigF = Πρ: Σp. Σr

Σp = [t (ρt, 0)]

Σr = [u list(ρX.ρt),
 v (ρv, 0),
 C list (ρX.ρt) → ρv]

entity expression: expF = λρX. [[ρv = new(0)]]

functor entity: entF = (expF, EEc)
 (where EEc is "current" entity env)

static functor: F = < fsigF, entF >

18Wednesday, April 18, 12

Functor Application Rule (New Semantics)

 EE(ep) = (λρ.body, EE1)
 arg, EE Rarg

 body, (EE1, ρ Rarg) R

 ep(arg), EE R

F(struct type t = int end)

EE(F) = (λρX. [[ρv = new(0)]], EE1)

 [[ρt = int]], EE Rarg = ([ρt int], EE)

[[ρv = new(0)]], EE2 ([ρt tc], EE2), where EE2 = EE1, ρX Rarg

Example:

(simplified by omitting signature
 matching and coercion on argument)

19Wednesday, April 18, 12

Higher Order Functor Example

SIG = sig type t end (Σ = [t (ρt, 0)]

functor Apply(F: SIG => SIG, A: SIG) = F(A)

FunSig for Apply:

 Πρ: Σp.Σ where

 Σp = [F (ρF, ΠρX:Σ.Σ), A (ρA, Σ)]

Entity expression for Apply:

 λρ. ρ.ρF(ρ.ρA)

Static functor for Apply:

 < λρ. ρ.ρF(ρ.ρA), EEc> where EEc is current entity environment

20Wednesday, April 18, 12

Observations and Conclusions

• The entity calculus is a very natural model for first-order functors,
but once you have it, higher-order modules come for free.

• The entity calculus model is easily translated to implementation
– indeed, it was derived from a pre-existing implementation!

• “Strong” or “true” higher-order functors are naturally supported,
but the inherent conflict with “pure” separate compilation is made
even clearer. A complete static signature for a functor would have
to encorporate the entity function encoding the functor static action.

But lack of “pure” separate compilation has not been a practical
problem for SML programmers. Adequate separate compilation
is easy to achieve.

21Wednesday, April 18, 12

