
Objects and Modules –
Two sides of the same coin?

 Martin Odersky
 Typesafe and EPFL

 Milner Symposium,
16 April 2012

1

2

Components
Modules/Objects

Reflection Compilers

Modules vs Objects

•  Modules and Objects have the same purpose: containers to put
things into.

•  Differences in traditional OO languages:

 Objects: Modules:
-  dynamic values - static values
-  contain terms only - contain terms and types
-  (mutable) - immutable

3

In Scala:
- dynamic values
-  contain terms and types
-  encouraged to be immutable

	

Component Basics

•  A component is a program part, to be combined with other parts in
larger applications.

•  Requirement: Components should be reusable.
•  To be reusable in new contexts, a component needs interfaces

describing its provided as well as its required services.
•  Most current components are not very reusable.
•  Most current languages can specify only provided services, not

required services.

•  Note: Component ≠ API!

4

No Statics!

•  A component should refer to other components not by hard links,
but only through its required interfaces.

•  Another way of expressing this is:

 All references of a component to others should be via its
 members or parameters.

•  In particular, there should be no global static data or methods that
are directly accessed by other components.

•  This principle is not new.
•  But it is surprisingly difficult to achieve, in particular when we extend

it to type references.

5

Functors

One established language abstraction for components are SML functors.
Here,

Component ≅	 	 Functor or Structure

Interface ≅	 	 Signature

Required Component ≅	 	 Functor Parameter

Composition ≅	 	 Functor Application

Sub-components are identified via sharing constraints or where clauses.
Restrictions (of the original version):

–  No recursive references between components.
–  No ad-hoc reuse with overriding
–  Structures are not first class.

6

A

B

B1 B2

C

C1

C11 C12

C2

7

Functors work well for this: But the reality is often like this:

Component Abstraction

•  Two principal forms of abstraction in programming languages:

–  parameterization (functional)

–  abstract members (object-oriented)

•  ML uses parameterization for composition and abstract members for
encapsulation.

•  Scala uses abstract members for both composition and
encapsulation.
 (In fact, Scala works with the functional/OO duality in that
parameterization can be expressed by abstract members).

8

Mixin Composition

•  Scala can express functors, but more often a different composition
structure is used (e.g. scalac, Foursquare, lift):

Component ≅	 	 Trait

Interface ≅	 	 Fully Abstract Trait

Required Component ≅	 	 Abstract Member

Composition ≅	 	 Mix in

•  Advantages:
–  Components instantiate to objects, which are first-class values.
–  Recursive references between components are supported.
–  Inheritance with overriding is supported.
–  Sub-components are identified by name; no explicit “wiring” is needed.

9

Abstract types

•  Here is a type of “cells” using object-oriented abstraction.
trait	 AbsCell	 {	 	

type	 T	
val	 init:	 T	 	
private	 var	 value	 :	 T	 =	 init	 	
def	 get:	 T	 =	 value	 	
def	 set(x:	 T)	 =	 {	 value	 =	 x	 }	

}	 	

•  The AbsCell	 trait has an abstract type member T and an abstract
value member init.

•  Instances of the trait can be created by implementing these abstract
members with concrete definitions.

val	 cell	 =	 new	 AbsCell	 {	 type	 T	 =	 Int;	 val	 init	 =	 1	 }	
cell.set(cell.get	 *	 2)	

•  The type of cell	 is AbsCell	 {	 type	 T	 =	 Int	 }.

10

Path-Dependent Types

•  It is also possible to access AbsCell without knowing the binding of
its type member.

•  For instance:

def	 reset(c	 :	 AbsCell):	 unit	 =	 c.set(c.init);	 	

•  Why does this work?
–  c.init has type c.T.
–  The method c.set has type (c.T)Unit.
–  So the formal parameter type and the argument type coincide.

•  c.T is an instance of a path-dependent type.

11

Example: Symbol Tables

•  Compilers need to model symbols and types.
•  Each aspect depends on the other.
•  Both aspects require substantial pieces of code.
•  Encapsulation is essential (for instance, for hash-consing types).
•  The first attempt of writing a Scala compiler in Scala defined two

global objects, one for each aspect:

12

First Attempt: Global Data

object	 Symbols	 {	 	 	 object	 Types	 {	
	 	 trait	 Symbol	 {	 	 	 	 	 trait	 Type	 {	
	 	 	 	 def	 tpe	 :	 Types.Type	 	 	 	 	 	 def	 sym	 :	 Symbols.Symbol	
	 	 } 	 	 	 	 	 	 }	 	
	 	 ... // static data for symbols	 	 	 	 	 ... // static data for types
}	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 }

	

 Problems:
–  Symbols and Types contain hard references to each other.
–  Hence, impossible to adapt one while keeping the other.
–  Symbols and Types contain static data.
–  Hence the compiler is not reentrant, multiple copies of it cannot run in the

same OS process.
(This is a problem for the Scala Eclipse plug-in, for instance).

13

Second Attempt: Nesting

•  Static data can be avoided by nesting the Symbols and Types
objects in a common enclosing trait:

trait	 SymbolTable	 {	
	 	 object	 Symbols	 {	

	 	 trait	 Symbol	 {	 def	 tpe	 :	 Types.Type;	 ...	 }	
	 	 }	
	 	 object	 Types	 {	

	 	 trait	 Type	 {	 def	 sym	 :	 Symbols.Symbol;	 ...	 }	
	 	 }	
}	

•  This solves the re-entrancy problem.
•  But it does not solve the component reuse problem

–  Symbols and Types still contain hard references to each other.
–  Worse, they can no longer be written and compiled separately.

14

Third attempt: Abstract members

Question: How can one express the required services of a component?
Answer: By abstracting over them!
Two forms of abstraction: parameterization and abstract members.
Only abstract members can express recursive dependencies, so we will

use them.

Symbols and Types are now traits that each abstract over the identity

of the “other type”.
How can they be combined?

15

trait	 Symbols	 { 	 	 	 	 	 	 	 trait	 Types	 {	 	
	 	 type	 Type 	 	 	 	 	 	 	 	 	 type	 Symbol	
	 	 trait	 Symbol	 {	 def	 tpe:	 Type	 }	 	 	 	 	 	 	 trait	 Type	 {	 def	 sym:	 Symbol	 }	
} 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 }	 	

Modular Mixin Composition

	
	
trait	 SymbolTable	 extends	 Symbols	 with	 Types	 	

•  Instances of the SymbolTable trait contain all members of Symbols as
well as all members of Types.

•  Concrete definitions in either base trait override abstract definitions
in the other.

16

Fourth Attempt: Mixins + Self-types
(the cake pattern)

•  The last solution modeled required types by abstract types.
•  In practice this can become cumbersome, because we have to

supply (possibly large) interfaces for the required operations on
these types.

•  A more concise approach makes use of self-types:

trait	 Symbols	 {	 this:	 Types	 with	 Symbols	 =>	
	 	 trait	 Symbol	 {	 def	 tpe:	 Type	 }	
}	
trait	 Types	 {	 this:	 Symbols	 with	 Types	 =>	
	 	 trait	 Type	 {	 def	 symbol	 }	
}	

•  Here, every component has a self-type that contains all required
components (in reality there are not 2 but ~20 slices to the cake).

17

Self Types

 In a trait declaration
trait	 C	 {	 this:	 T	 =>	 ...	 }	 	

	 T is called a self-type of trait C.

 If a self-type is given, it is taken as the type of this inside the trait.
 Without an explicit type annotation, the self-type is taken to be the type of
the trait itself.
 Safety Requirement:

–  The self-type of a trait must be a subtype of the self-types of all its base traites.
–  When instantiating a trait in a new expression, it is checked that the self-type of

the trait is a supertype of the type of the object being created.

18

Part 2: Compilers for Reflection
(its all about cakes)

Compilers and Reflection do largely the
same thing ...

•  Both deal with types, symbols, names, trees, annotations, ...

•  Both answer similar questions, e.g:

–  what are the members of a type?
–  what are the types of the members of a basis type?
–  are two types compatible with each other?
–  is a method applicable to some arguments?

•  In a rich type system, answering these questions requires some
deep algorithms.

20

... But there are also differences

Compilers Reflection

read source and class-files relies on underlying VM info
generate code invokes pre-generated code
produce error messages throw exceptions
are typically single-threaded needs to be thread-safe
types depends on phases types are constant

21

Reflection in Scala 2.10

Previously: Needed to use Java reflection,
no runtime info available on Scala’s types.

Now you can do:

22

Reflection is Mirror Based

•  A mirror: An object that can return reflective information about
runtime values.

•  In Scala, a mirror contains everything needed to describe reflective
information as nested traites:
Symbols, Types, Names, Annotations, Trees...

•  What’s more, we enforce that the types of members of different

mirrors are incompatible.

	 	 	 reflect.api.Universe	 #	 Symbol	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 reflect.mirror.Symbol	 	 	 ≠	 	 	 remote.mirror.Symbol	
	

•  reflect.internal

•  nsc.global

•  mirror.getClass

•  getMembers

•  why mirror based? remote machines, other runtimes, compiler

23

Reflection Implementation

•  Full reflection of a statically typed language covers a large ground.
•  For Scala:

~ 40 tree classes
~ 5 symbol classes
~ 10 Type classes
~ 2 Name classes
including all essential methods that decompose these classes, explore

relationships between them, etc.
•  This is roughly equivalent to a language spec
•  ... and also to a compiler.

24

(Bare-Bones) Reflection in Java

25

Want to know whether type A conforms to B?

Write your own Java compiler!

Why not add some
meaningful operations?

Need to write essential
parts of a compiler
(hard).

Need to ensure that
both compilers agree
(almost impossible).

	

Towards Better Reflection

Can we unify the core parts of the compiler and reflection?

 Compiler Reflection

Different requirements: Error diagnostics, file access, classpath

handling - but we are close!

 26

Compiler Architecture

 Idea: Make compiler cake and reflection cake inherit from a common
super-cake, which captures the common information.

27

reflect.internal.Universe	

nsc.Global	 (scalac) reflect.runtime.Mirror	

Problem: This exposes too much detail!

Complete Reflection Architecture

Cleaned-up facade:

Full implementation:

28

reflect.internal.Universe	

nsc.Global	 (scalac) reflect.runtime.Mirror	

reflect.api.Universe	 /	
reflect.mirror	

How to Make a Facade

29

The Facade

The Implementation

Interfaces are not enough!

Summary Part 1

Scala is a pretty regular language when
it comes to composition:

1.  Everything can be nested:
–  classes, methods, objects, types

2.  Everything can be abstract:
–  methods, values, types

3.  The type of this can be declared
freely, can thus express
dependencies

This lets us express cake hierarchies as
a new pattern for software design in
the large.

30

Part 3:
Reflection for

Compilers

31

Macros

•  What happens when a compiler makes use of reflection?

•  It can call user-defined methods during the compilation (e.g. during
type-checking)

•  These methods can consume trees and types and produce a tree.

•  This leads to a simple macro system.

32

Defining Macros

Here is a prototypical macro definition:

 def	 m(x:	 T):	 R	 =	 macro	 impl.mi	
	

The macro signature is a normal method signature.

Its body consists of macro, followed by a reference to the macro
implementation. E.g.:

	

 object	 impl	 {	
	 	 def	 mi(x:	 Expr[T]):	 Expr[R]	 =	 ...	 	
}	

33

Expr[T]	 represents an AST trees that
describes an expression of type T	

Expanding Macros

Say the compiler encounters during type checking an application of a
macro method

 m(expr)	

	

It will expand that application by invoking the corresponding macro
implementation impl.mi with two arguments:

 - A context which contains info about the call-site of the macro
- the AST of expr.

The AST returned by the macro implementation replaces the macro

application and is type-checked in turn.	

34

A Simple Example

•  The following code snippet declares a macro definition assert	 that
references a macro implementation Asserts.assertImpl.

	 	 	 def	 assert(cond:	 Boolean,	 msg:	 Any)	 =	 	
	 macro	 Asserts.assertImpl	

•  A call assert(x	 <	 10,	 “limit	 exceeded”)	 would then lead at
compile time to an invocation

	 	 	 assertImpl(ctx)(<[x	 <	 10]>,	 <[“limit	 exceeded”]>)	 	

35

Expressing Syntax Trees

•  In reality, syntax trees written here 	

 <[x	 <	 10]> 	
	 <[“limit	 exceeded”]>	 	

	
would be expressed like this: 	

	
	 	 Apply(

	 	 	 	 	 	 Select(Ident(newTermName(“x”)),	 newTermName(“$less”),	
	 	 	 	 	 	 List(Literal(Constant(10))))	
	 	
	 	 Literal(Constant(“limit	 exceeded”))	

	

36

Implementation of Assert

	 Here’s a possible implementation of assertImpl:	 	

	 	 import	 scala.reflect.makro.Context	
	
	 	 object	 Asserts	 {	
	 	 	 	 def	 raise(msg:	 Any)	 =	 throw	 new	 AssertionError(msg)	
	 	 	 	 def	 assertImpl(c:	 Context)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (cond:	 c.Expr[Boolean],	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 msg:	 c.Expr[Any])	 :	 c.Expr[Unit]	 =	 	 	 	 	 	 	 	
	 	 	 	 	 	 if	 (assertionsEnabled)	 	
	 	 	 	 	 	 	 	 <[if	 (!cond)	 raise(msg)]>	
	 	 	 	 	 	 else	
	 	 	 <[()]>	

	 	 }	

37

Generic Macros

Macros can also have type parameters. Example:

class	 Queryable[T]	 {	
	 	 def	 map[U](p:	 T	 =>	 U):	 Queryable[U]	 =	 macro	 QImpl.map[T,	 U]	
}	
	
object	 QImpl	 {	
	 	 def	 map[T:	 c.TypeTag,	 U:	 c.TypeTag]	
	 	 	 	 	 	 	 	 	 (c:	 Context)	
	 	 	 	 	 	 	 	 	 (p:	 c.Expr[T	 =>	 U]):	 c.Expr[Queryable[U]]	 =	 …	
}	

38

Generic Macro Expansion

Consider a value q	 of type Queryable[String]	 and a macro call

 q.map[Int](s	 =>	 s.length)	
	

The call is expanded to:

 QImpl.map(ctx)(<[s	 =>	 s.length]>)	
	 	 	 	 	 	 	 	 (implicitly[TypeTag[String]],	 implicitly[TypeTag[Int]])	
	

39

implictly	 realizes implicit values:	
	
def	 implicitly[T](implicit	 x:	 T)	 =	 x	 	

Contexts

•  A macro context contains a mirror that anchors the trees, types, etc
which are passed in and out of the macro.

	 trait	 Context	 {	
	 	 	 	 	 /**	 The	 mirror	 that	 represents	 the	 compile-‐time	 universe	 */	
	 	 	 	 	 val	 mirror:	 api.Universe	

•  It also defines some important data about the context of the macro
call, in particular the receiver tree of the macro invocation and its
type.

	 	 	 type	 PrefixType	
	 	 	 val	 prefix:	 Expr[PrefixType]	 	

40

Tagged Trees and Types

•  Two other types in a context wrap compiler trees and types with
reflect types:

 	 	 	 case	 class	 Expr[T](tree:	 Tree)	 {	 def	 eval:	 T	 }	
	 	 	 	 	 case	 class	 TypeTag[T](tpe:	 Type)	

•  An Expr[T]	 wraps a reflect.mirror.Tree	 of type T	

•  A TypeTag[T]	 wraps a reflect.mirror.Type	 that represents T.

•  Implicit TypeTags can be synthesized by the compiler – this is
Scala’s mechanism to get reified types.

41

Hygiene Problems

Consider again a fragment of the body of assertImpl:	
	

<[if	 (!cond)	 raise(msg)]>	

	

To actually produce the AST for that expression one might try:
	

	 	 	 import	 c.mirror._	
	 c.Expr(
	 	 	 If(Select(cond,	 newTermName(“unary_$bang”)),	 	

	 	 	 	 	 	 	 Apply(Ident(newTermName(“raise”)),	 List(msg)),	
	 	 	 	 	 	 	 Literal(Constant(()))))	
	

This is ugly, but also wrong. Why?

42

raise	 gets bound at macro-expansion time.
Will either not be found or be resolved to

something else.

The Reify Macro

•  Reify is a key macro. It’s definition as a member of context is:

	 	 def	 reify[T](expr:	 T):	 Expr[T]	 =	 macro	 ...	
	

That is, reify
–  takes a tree representing an expression of type T as argument,
–  returns a tree representing an expression of type Expr[T], which

contains a tree that represents the original expression tree.

Reify is like time-travel: It builds the given tree one stage later

So reify expresses a core idea of LINQ:
 Make ASTs available at runtime

 43

Splicing

Reify and eval are inverses of each other.

 reify:	 T	 =>	 Expr[T]	 	 	 	 	 	 	 	 	 	 	
 	 eval:	 Expr[T]	 =>	 T	

	 	

	 val	 expr	 =	 reify(tree);	 expr.eval	 tree
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 reify(expr.eval) expr	

So we have gained a splicing operation in the macro system.

44

Hygiene through Reify

Here’s an implementation of the assert macro with reify:

 import	 scala.reflect.makro.Context	
	 object	 Asserts	 {	
	 	 	 def	 raise(msg:	 Any)	 =	 throw	 new	 AssertionError(msg)	
	 	 	 def	 assertImpl(c:	 Context)(cond:	 c.Expr[Boolean],	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 msg:	 c.Expr[Any])	 :	 c.Expr[Unit]	 =	 	 	 	 	 	 	 	

	 	 	 	 	 	 if	 (assertionsEnabled)	 	
	 	 c.reify(if	 (!cond.eval)	 raise(msg.eval))	
	 	 	 	 else	
	 	 c.reify(())	

	 	 	 }	

45

Types prevent “silly
mistakes” that come from
confusing staging times

raise is now type-checked
at macro-expansion type,

hence hygienic.

Summary Part 3

A classical bootstrap operation
Start with a minimalistic macro system

cumbersome to express syntax trees
no hygiene

Express reification as a macro in that system
Use compile-time staging to regain

source-level expression of syntax trees
hygiene

The relationship of hygienic macros and
staging has been known since Macro ML
(Ganz et al, ICFP 01).

The ability to express staging through a reify
macro seems to be new.

46

