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Modules vs Objects 

•  Modules and Objects have the same purpose: containers to put 
things into.  

•  Differences in traditional OO languages: 

 Objects:     Modules: 
-  dynamic values     -   static values 
-  contain terms only     -   contain terms and types 
-  (mutable)      -   immutable 
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In Scala:  
-  dynamic values 
-  contain terms and types 
-  encouraged to be immutable 

	  



Component Basics 

•  A component is a program part, to be combined with other parts in 
larger applications. 

•  Requirement: Components should be reusable.  
•  To be reusable in new contexts, a component needs interfaces 

describing its provided as well as its required services. 
•  Most current components are not very reusable. 
•  Most current languages can specify only provided services, not 

required services. 

•  Note: Component ≠ API! 
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No Statics! 

•  A component should refer to other components not by hard links, 
but only through its required interfaces. 

•  Another way of expressing this is: 

   All references of a component to others should be via its 
  members or parameters. 

•  In particular, there should be no global static data or methods that 
are directly accessed by other components. 

•  This principle is not new.  
•  But it is surprisingly difficult to achieve, in particular when we extend 

it to type references. 
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Functors 

One established language abstraction for components are SML functors.  
Here, 

Component     ≅	 	 Functor or Structure  

Interface     ≅	 	 Signature 

Required Component    ≅	 	 Functor Parameter  

Composition     ≅	 	 Functor Application 

Sub-components are identified via sharing constraints or where clauses.  
Restrictions (of the original version): 

–  No recursive references between components. 
–  No ad-hoc reuse with overriding 
–  Structures are not first class. 
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Functors work well for this:     But the reality is often like this:     



Component Abstraction 

•  Two principal forms of abstraction in programming languages: 

–  parameterization  (functional) 

–  abstract members  (object-oriented)  

•  ML uses parameterization for composition and abstract members for 
encapsulation. 

•  Scala uses abstract members for both composition and 
encapsulation. 
 (In fact, Scala works with the functional/OO duality in that 
parameterization can be expressed by abstract members). 
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Mixin Composition 

•  Scala can express functors, but more often a different composition 
structure is used (e.g. scalac, Foursquare, lift): 

Component     ≅	 	 Trait  

Interface     ≅	 	 Fully Abstract Trait 

Required Component    ≅	 	 Abstract Member  

Composition     ≅	 	 Mix in 

•  Advantages: 
–  Components instantiate to objects, which are first-class values. 
–  Recursive references between components are supported. 
–  Inheritance with overriding is supported.  
–  Sub-components are identified by name; no explicit “wiring” is needed.  
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Abstract types 

•  Here is a type of “cells” using object-oriented abstraction. 
trait	  AbsCell	  {	  	  

type	  T	  
val	  init:	  T	  	  
private	  var	  value	  :	  T	  =	  init	  	  
def	  get:	  T	  =	  value	  	  
def	  set(x:	  T)	  =	  {	  value	  =	  x	  }	  

}	  	  

•  The AbsCell	  trait has an abstract type member T and an abstract 
value member init.  

•  Instances of the trait can be created by implementing these abstract 
members with concrete definitions. 

val	  cell	  =	  new	  AbsCell	  {	  type	  T	  =	  Int;	  val	  init	  =	  1	  }	  
cell.set(cell.get	  *	  2)	  

•  The type of cell	  is AbsCell	  {	  type	  T	  =	  Int	  }. 
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Path-Dependent Types 

•  It is also possible to access AbsCell without knowing the binding of 
its type member. 

•  For instance: 

def	  reset(c	  :	  AbsCell):	  unit	  =	  c.set(c.init);	  	  

•  Why does this work? 
–  c.init has type c.T.  
–  The method c.set has type (c.T)Unit.  
–  So the formal parameter type and the argument type coincide.  

•  c.T is an instance of a path-dependent type. 
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Example: Symbol Tables 

•  Compilers need to model symbols and types.  
•  Each aspect depends on the other. 
•  Both aspects require substantial pieces of code. 
•  Encapsulation is essential (for instance, for hash-consing types). 
•  The first attempt of writing a Scala compiler in Scala defined two 

global objects, one for each aspect: 
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First Attempt: Global Data 

object	  Symbols	  {	   	   	  object	  Types	  {	  
	  	  trait	  Symbol	  {	   	   	  	  	  trait	  Type	  {	  
	  	  	  	  def	  tpe	  :	  Types.Type	   	  	  	  	  	  def	  sym	  :	  Symbols.Symbol	  
	  	  } 	   	   	   	  	  	  }	  	  
	  	  ... // static data for symbols	  	   	  	  	  ... // static data for types 
}	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  } 

	  

 Problems: 
–  Symbols and Types contain hard references to each other.  
–  Hence, impossible to adapt one while keeping the other. 
–  Symbols and Types contain static data.  
–  Hence the compiler is not reentrant, multiple copies of it cannot run in the 

same OS process.  
(This is a problem for the Scala Eclipse plug-in, for instance). 
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Second Attempt: Nesting 

•  Static data can be avoided by nesting the Symbols and Types 
objects in a common enclosing trait: 

trait	  SymbolTable	  {	  
	  	  object	  Symbols	  {	  

	  	  trait	  Symbol	  {	  def	  tpe	  :	  Types.Type;	  ...	  }	  
	  	  }	  
	  	  object	  Types	  {	  

	  	  trait	  Type	  {	  def	  sym	  :	  Symbols.Symbol;	  ...	  }	  
	  	  }	  
}	  

•  This solves the re-entrancy problem.  
•  But it does not solve the component reuse problem 

–  Symbols and Types still contain hard references to each other. 
–  Worse, they can no longer be written and compiled separately. 

14 



Third attempt: Abstract members 

Question: How can one express the required services of a component? 
Answer: By abstracting over them! 
Two forms of abstraction: parameterization and abstract members. 
Only abstract members can express recursive dependencies, so we will 

use them. 
 
 
 
 
Symbols and Types are now traits that each abstract over the identity 

of the “other type”.  
How can they be combined?  
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trait	  Symbols	  { 	   	   	  	  	  	  	  trait	  Types	  {	  	  
	  	  type	  Type 	   	   	  	  	  	  	  	  	  type	  Symbol	  
	  	  trait	  Symbol	  {	  def	  tpe:	  Type	  }	  	  	  	  	  	  	  trait	  Type	  {	  def	  sym:	  Symbol	  }	  
} 	   	   	   	  	  	  	  	  	  	  	  	  	  	  	  	  }	  	  



Modular Mixin Composition 

	  
	  
trait	  SymbolTable	  extends	  Symbols	  with	  Types	  	  

•  Instances of the SymbolTable trait contain all members of Symbols as 
well as all members of Types.  

•  Concrete definitions in either base trait override abstract definitions 
in the other. 
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Fourth Attempt: Mixins + Self-types  
(the cake pattern) 

•  The last solution modeled required types by abstract types. 
•  In practice this can become cumbersome, because we have to 

supply (possibly large) interfaces for the required operations on 
these types. 

•  A more concise approach makes use of self-types: 

trait	  Symbols	  {	  this:	  Types	  with	  Symbols	  =>	  
	  	  trait	  Symbol	  {	  def	  tpe:	  Type	  }	  
}	  
trait	  Types	  {	  this:	  Symbols	  with	  Types	  =>	  
	  	  trait	  Type	  {	  def	  symbol	  }	  
}	  

•  Here, every component has a self-type that contains all required 
components (in reality there are not 2 but ~20 slices to the cake). 
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Self Types 

 In a trait declaration 
trait	  C	  {	  this:	  T	  =>	  ...	  }	  	  

	  T is called a self-type of trait C.  

 If a self-type is given, it is taken as the type of this inside the trait. 
 Without an explicit type annotation, the self-type is taken to be the type of 
the trait itself. 
 Safety Requirement:  

–  The self-type of a trait must be a subtype of the self-types of all its base traites. 
–  When instantiating a trait in a new expression, it is checked that the self-type of 

the trait is a supertype of the type of the object being created. 
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Part 2: Compilers for Reflection 
(its all about cakes) 



Compilers and Reflection do largely the 
same thing ... 

•  Both deal with types, symbols, names, trees, annotations, ... 

•  Both answer similar questions, e.g: 

–  what are the members of a type? 
–  what are the types of the members of a basis type? 
–  are two types compatible with each other? 
–  is a method applicable to some arguments? 

•  In a rich type system, answering these questions requires some 
deep algorithms. 
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... But there are also differences 

Compilers     Reflection 
 
read source and class-files   relies on underlying VM info 
generate code     invokes pre-generated code 
produce error messages   throw exceptions 
are typically single-threaded   needs to be thread-safe 
types depends on phases   types are constant 
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Reflection in Scala 2.10 

Previously: Needed to use Java reflection, 
no runtime info available on Scala’s types. 
 
Now you can do: 
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Reflection is Mirror Based 

•  A mirror: An object that can return reflective information about 
runtime values. 

•  In Scala, a mirror contains everything needed to describe reflective 
information as nested traites:  
Symbols, Types, Names, Annotations, Trees... 

 
•  What’s more, we enforce that the types of members of different 

mirrors are incompatible. 

	   	   	  reflect.api.Universe	  #	  Symbol	  
	   	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

	  reflect.mirror.Symbol	  	  	  ≠	  	  	  remote.mirror.Symbol	  
	  

 

•  reflect.internal 

•  nsc.global 

•  mirror.getClass 

•  getMembers 

•  why mirror based? remote machines, other runtimes, compiler 
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Reflection Implementation 

•  Full reflection of a statically typed language covers a large ground. 
•  For Scala: 

~ 40 tree classes 
~ 5 symbol classes 
~ 10 Type classes 
~ 2 Name classes 
including all essential methods that decompose these classes, explore 

relationships between them, etc. 
•  This is roughly equivalent to a language spec 
•  ... and also to a compiler. 
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(Bare-Bones) Reflection in Java 
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Want to know whether type A conforms to B? 

Write your own Java compiler! 

Why not add some 
meaningful operations? 

 

Need to write essential 
parts of a compiler 
(hard). 

 

Need to ensure that 
both compilers agree 
(almost impossible). 

 

	  



Towards Better Reflection 

Can we unify the core parts of the compiler and reflection? 
 
 
 
 
                   Compiler                                           Reflection 
 
 
 
 
Different requirements: Error diagnostics, file access, classpath 

handling - but we are close! 
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Compiler Architecture 

 Idea: Make compiler cake and reflection cake inherit from a common 
super-cake, which captures the common information. 
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reflect.internal.Universe	  

nsc.Global	  (scalac) reflect.runtime.Mirror	  

Problem: This exposes too much detail! 



Complete Reflection Architecture  
 

 
Cleaned-up facade: 

 
 
 
 
Full implementation: 
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reflect.internal.Universe	  

nsc.Global	  (scalac) reflect.runtime.Mirror	  

reflect.api.Universe	  /	  
reflect.mirror	  



How to Make a Facade 
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The Facade 

The Implementation 

Interfaces are not enough! 



Summary Part 1 

Scala is a pretty regular language when 
it comes to composition: 

1.  Everything can be nested: 
–  classes, methods, objects, types 

2.  Everything can be abstract: 
–  methods, values, types 

3.  The type of this can be declared 
freely, can thus express 
dependencies  

This lets us express cake hierarchies as 
a new pattern for software design in 
the large. 
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Part 3:  
Reflection for 

Compilers 
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Macros 

•  What happens when a compiler makes use of reflection? 

•  It can call user-defined methods during the compilation (e.g. during 
type-checking) 

•  These methods can consume trees and types and produce a tree. 

•  This leads to a simple macro system. 
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Defining Macros 

Here is a prototypical macro definition: 
 

 def	  m(x:	  T):	  R	  =	  macro	  impl.mi	  
	  

The macro signature is a normal method signature. 
 
Its body consists of macro, followed by a reference to the macro 
implementation. E.g.: 

	  

 object	  impl	  {	  
	  	  def	  mi(x:	  Expr[T]):	  Expr[R]	  =	  ...	  	  
}	  
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Expr[T]	  represents an AST trees that 
describes an expression of type T	  



Expanding Macros 

Say the compiler encounters during type checking an application of a 
macro method 

 
 m(expr)	  

	  

It will expand that application by invoking the corresponding macro 
implementation impl.mi with two arguments: 

 
 - A context which contains info about the call-site of the macro 
- the AST of expr. 

 
The AST returned by the macro implementation replaces the macro 

application and is type-checked in turn.	  
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A Simple Example 

•  The following code snippet declares a macro definition assert	  that 
references a macro implementation Asserts.assertImpl. 

	  	  	  def	  assert(cond:	  Boolean,	  msg:	  Any)	  =	  	  
	  macro	  Asserts.assertImpl	  

•  A call assert(x	  <	  10,	  “limit	  exceeded”)	  would then lead at 
compile time to an invocation  

	  	  	  assertImpl(ctx)(<[	  x	  <	  10	  ]>,	  <[	  “limit	  exceeded”	  ]>)	  	  
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Expressing Syntax Trees 

•  In reality, syntax trees written here 	  
 

 <[	  x	  <	  10	  ]> 	  
	  <[	  “limit	  exceeded”	  ]>	  	  

	  
would be expressed like this: 	  

	  
	   	  Apply(	  

	  	  	   	  	  	  Select(Ident(newTermName(“x”)),	  newTermName(“$less”),	  
	  	  	   	  	  	  List(Literal(Constant(10))))	  
	  	  
	   	  Literal(Constant(“limit	  exceeded”))	  

	  

36 



Implementation of Assert 

	  Here’s a possible implementation of assertImpl:	  	  
 
	  	  import	  scala.reflect.makro.Context	  
	  
	  	  object	  Asserts	  {	  
	  	  	  	  def	  raise(msg:	  Any)	  =	  throw	  new	  AssertionError(msg)	  
	  	  	  	  def	  assertImpl(c:	  Context)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (cond:	  c.Expr[Boolean],	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  msg:	  c.Expr[Any])	  :	  c.Expr[Unit]	  =	  	  	  	  	  	  	  	  
	  	  	  	  	  	  if	  (assertionsEnabled)	  	  
	  	  	  	  	  	  	  	  <[	  if	  (!cond)	  raise(msg)	  ]>	  
	  	  	  	  	  	  else	  
	   	  	  <[	  ()	  ]>	  

	  	  }	  
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Generic Macros 

Macros can also have type parameters. Example: 
 
class	  Queryable[T]	  {	  
	  	  def	  map[U](p:	  T	  =>	  U):	  Queryable[U]	  =	  macro	  QImpl.map[T,	  U]	  
}	  
	  
object	  QImpl	  {	  
	  	  def	  map[T:	  c.TypeTag,	  U:	  c.TypeTag]	  
	  	  	  	  	  	  	  	  	  (c:	  Context)	  
	  	  	  	  	  	  	  	  	  (p:	  c.Expr[T	  =>	  U]):	  c.Expr[Queryable[U]]	  =	  …	  
}	  
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Generic Macro Expansion 

Consider a value q	  of type Queryable[String]	  and a macro call 

 q.map[Int](s	  =>	  s.length)	  
	  

The call is expanded to: 
 

 QImpl.map(ctx)(<[	  s	  =>	  s.length	  ]>)	  
	  	  	  	  	  	  	  	  (implicitly[TypeTag[String]],	  implicitly[TypeTag[Int]])	  
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implictly	  realizes implicit values:	  
	  
def	  implicitly[T](implicit	  x:	  T)	  =	  x	  	  



Contexts 

•  A macro context contains a mirror that anchors the trees, types, etc 
which are passed in and out of the macro. 

	  trait	  Context	  {	  
	  	  	  	  	  /**	  The	  mirror	  that	  represents	  the	  compile-‐time	  universe	  */	  
	  	  	  	  	  val	  mirror:	  api.Universe	  

•  It also defines some important data about the context of the macro 
call, in particular the receiver tree of the macro invocation and its 
type. 

	  	  	  type	  PrefixType	  
	  	  	  val	  prefix:	  Expr[PrefixType]	  	  
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Tagged Trees and Types 

•  Two other types in a context wrap compiler trees and types with 
reflect types: 

  	  	  	  case	  class	  Expr[T](tree:	  Tree)	  {	  def	  eval:	  T	  }	  
	  	  	  	  	  case	  class	  TypeTag[T](tpe:	  Type)	  

•  An Expr[T]	  wraps a reflect.mirror.Tree	  of type T	  
 
•  A TypeTag[T]	  wraps a reflect.mirror.Type	  that represents T. 

•  Implicit TypeTags can be synthesized by the compiler – this is 
Scala’s mechanism to get reified types.  
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Hygiene Problems 

Consider again a fragment of the body of assertImpl:	  
	  

<[	  if	  (!cond)	  raise(msg)	  ]>	  

	  

To actually produce the AST for that expression one might try: 
	  

	  	  	  import	  c.mirror._	  
	  c.Expr(	  
	  	  	  If(Select(cond,	  newTermName(“unary_$bang”)),	  	  

	  	  	  	  	  	  	  Apply(Ident(newTermName(“raise”)),	  List(msg)),	  
	  	  	  	  	  	  	  Literal(Constant(()))))	  
	  

This is ugly, but also wrong. Why?  
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raise	  gets bound at macro-expansion time. 
Will either not be found or be resolved to 

something else. 



The Reify Macro 

•  Reify is a key macro. It’s definition as a member of context is: 

	   	  def	  reify[T](expr:	  T):	  Expr[T]	  =	  macro	  ...	  
	  

That is, reify  
–  takes a tree representing an expression of type T as argument, 
–  returns a tree representing an expression of type Expr[T], which 

contains a tree that represents the original expression tree. 

Reify is like time-travel: It builds the given tree one stage later 
  

So reify expresses a core idea of LINQ:  
 Make ASTs available at runtime 
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Splicing 

Reify and eval are inverses of each other.  
 

  reify:	  T	  =>	  Expr[T]	  	  	  	  	  	  	  	  	  	  	  
  	  eval:	  Expr[T]	  =>	  T	  

 
	  	  

	  val	  expr	  =	  reify(tree);	  expr.eval	        tree 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  reify(expr.eval)        expr	  

 
 
So we have gained a splicing operation in the macro system. 
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Hygiene through Reify 

Here’s an implementation of the assert macro with reify: 
 

 import	  scala.reflect.makro.Context	  
	  object	  Asserts	  {	  
	  	  	  def	  raise(msg:	  Any)	  =	  throw	  new	  AssertionError(msg)	  
	  	  	  def	  assertImpl(c:	  Context)(cond:	  c.Expr[Boolean],	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  msg:	  c.Expr[Any])	  :	  c.Expr[Unit]	  =	  	  	  	  	  	  	  	  

	  	  	  	  	  	  if	  (assertionsEnabled)	  	  
	   	  c.reify(if	  (!cond.eval)	  raise(msg.eval))	  
	  	  	  	  else	  
	   	  c.reify(())	  

	  	  	  }	  
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Types prevent “silly 
mistakes” that come from 
confusing staging times 

raise is now type-checked 
at macro-expansion type, 

hence hygienic. 



Summary Part 3 

A classical bootstrap operation 
Start with a minimalistic macro system 

cumbersome to express syntax trees 
no hygiene 

Express reification as a macro in that system 
Use compile-time staging to regain  

source-level expression of syntax trees 
hygiene 

The relationship of hygienic macros and 
staging has been known since Macro ML 
(Ganz et al, ICFP 01). 

The ability to express staging through a reify 
macro seems to be new. 
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