
Types à la Milner
Benjamin C. Pierce

University of Pennsylvania

April 2012

“Types are the leaven of computer
programming: they make it digestible.”

- R. Milner

Types à la Milner

Type inference
Abstract types

Types for interaction

(Types for differential privacy)

Milner and me
• Last ML postdoc at Edinburgh

• and first-generation at Cambridge

• Happy ML user

• Pi-calculus type systems (with Davide Sangiorgi, Dave
Turner)

• Pict programming language (with Dave Turner)

• Local type inference !

• POPLMark and Software Foundations

lambda-calculus

ML, Haskell, Scheme, ...

pi-calculus

Pict=

Edinburgh ML

LeLisp ML

CaML

Caml-Light

OCaml F#

Standard ML

SML 97

LCF

SML 90

Consider the list mapping function:

For example:
 map(square, [1,2,3]) = [1,4,9]

A good type for map is:

Type inference

A Metalanguage for interactive proof in LCF
M. Gordon, R. Milner, L. Morris, M. Newey, C. Wadsworth
(POPL 1982)

σmap = σf ! σm →ρ1

σnull = σm → bool

σhd = σm →ρ2

σtl = σm →ρ3

σf = ρ2 →ρ4

σmap = σf ! ρ3 →ρ5

σcons = ρ4 ! ρ5 →ρ6

σnil = ρ6

ρ1 = ρ6

σnull = α list →bool

σnil = α list
σhd = α list → α
σtl = α list → α list

σcons = (α ! α list) → α list

σmap = σf ! σm →ρ1

σnull = σm → bool

σhd = σm →ρ2

σtl = σm →ρ3

σf = ρ2 →ρ4

σmap = σf ! ρ3 →ρ5

σcons = ρ4 ! ρ5 →ρ6

σnil = ρ6

ρ1 = ρ6

σnull = τ1 list →bool

σnil = τ2 list
σhd = τ3 list → τ3

σtl = τ4 list → τ4 list
σcons = (τ5 ! τ5 list) → τ5

list

 Most general solution

σmap = (σm →ρ4) ! σm list →ρ4 list

Principal type

Edinburgh ML

LeLisp ML

CaML

Caml-Light

OCaml F#

Miranda

Haskell

Pict

Scala

Standard ML

SML 97

LCF

etc.

SML 90

Local Type Inference
• Problem: How to combine

• impredicative polymorphism

• subtyping

• type inference

• Idea: Abandon full type inference
• just infer “locally best types” where possible

• When type arguments are omitted:
• Compare actual and expected types of provided term arguments to

yield a set of subtyping constraints on missing type arguments

• Choose solution that satisfies these constraints while making the
result type of the whole application as small (informative) as possible

(P +Turner)

What to call it?

Hindley-Milner?

Damas-Milner?

Damas-Hindley-Milner?

37k google hits

13k hits

4k hits

Milner’s contribution
• Defined algorithm W

• Generate a set of equational constraints from a program and use
Robinson’s unification algorithm to solve them

• Generalize variables appropriately at let-bindings

• Proved soundness
• Gave a (standard) denotational model for core ML

• Showed that well-typed terms do not denote the special element
wrong in the model

• Showed that algorithm W finds some type for every well-typed
term (and no ill-typed term)

• Conjectured completeness

Milner, A Theory of Type
Polymorphism in Programming, 1978

Damas’s contribution"
• Proof of the completeness of Algorithm W

• For every well-typed term, the algorithm finds a
principal type, from which all other types for the term
can be derived as instances

Damas and Milner, Principal Type
Schemes for Functional Programs, 1982

Hindley’s contribution
• Algorithm for inferring principal type schemes

for terms in combinatory logic (S-K terms)
• Also relied on Robinson’s algorithm for solving

equality constraints

Hindley, The Principal Type-scheme of an
Object in Combinatory Logic, 1969

Curry’s contribution
• Independent proof of Hindley’s main result

• ... but not relying directly on Robinson’s algorithm

Curry, Modified basic functionality in
combinatory logic, 1969

... and don’t forget Morris ’68!
... or Newman ’43!

What to call it?
• Hindley-Milner (or Curry-Hindley-Milner-Morris-

Newman!)

• for unification-based type inference

• Milner
• for the extension to let-polymorphism

• Damas-Milner
• for the proof of completeness (principal types) for the

let-polymorphism extension

Types in LCF

Gordon, Milner, Morris, Newey, and
Wadsworth, A Metalanguage For

Interactive Proof in LCF, 1977

An abstract type of theorems
LCF is basically a programming language (ML) with
a predefined abstract type of theorems

abstype thm with
 ASSUME : formula ! thm
 GEN : thm ! thm
 TRANS : thm ! thm ! thm
 ...

ASSUME f
constructs a proof of

f ⊦ f

GEN x w
constructs a proof of

Γ ⊦ ∀x.f
from a proof of Γ ⊦ f

provided x is not free in Γ

TRANS w1 w2
constructs a proof of

Γ ⊦ t1=t3
from a proof w1 of Γ ⊦ t1=t2
and a proof w2 of Γ ⊦ t2=t3

An abstract type of theorems
LCF is basically a programming language (ML) with
a predefined abstract type of theorems

abstype thm with
 ASSUME : formula ! thm
 GEN : thm ! thm
 TRANS : thm ! thm ! thm
 ...

Code outside of the
abstype’s implementation
can only build theorems by

calling these functions!

Types for Interaction

lambda-calculus
[Church, 1940s]

pi-calculus
[Milner, Parrow, Walker, 1989]

core calculus of functional
computation

core calculus of concurrent
processes, communicating with
messages over channels

everything is a function
• all arguments and results of

functions are functions

everything is processes and channels
• the only thing processes do is

communicate over channels
• the data exchanged when

processes communicate is just a
tuple of channels

all computation is function
application

all computation is communication

common data and control
structures encodable

common data and control structures
encodable... including functions!

Pi-calculus
P,Q ::= 0 inert process

P | Q P and Q in parallel

!P arbitrarily many copies of P in parallel

x?(y1... yn). P read y1... yn from channel x and continue as P

x!(y1... yn). P send y1... yn along channel x and continue as P

νx. P private channel x in P

(x! (y1... yn). P) | (x? (z1... zn). Q) ⇒ P | ([y1... yn/z1... zn]Q)

Milner’s sort system
• Each channel is associated with a subject sort

• Each subject sort is associated with an object sort, which is
a tuple of subject sorts

• A process is well typed if, at every send and receive, the
object sort of the channel used for communication
matches the subject sorts of the channels being sent or
received

Milner, The Polyadic Pi-Calculus: A Tutorial, 1991

‘‘‘‘‘ ‘
≠

Structural types for pi
• associate each channel binder directly with a type

• make recursion explicit

T ::= ch(T1... Tn) channel carrying (T1... Tn)

μX. T recursive type
X type variable

μX. ch(ch(X), ch())

Polymorphic pi
• On each communication, pass a tuple of types and a

tuple of channels

• Analogous to full 2nd-order lambda-calculus

T ::= ch(X1... Xm ,T1... Tn) channel carrying types (X1... Xm)
and channels (T1... Tn)

μX. T recursive type
X type variable

e.g., ch(X, ch(X))
ch(X, Y, ch(X,ch(Y)), list X, list Y)
where list X = ch(ch(X), ch())

(P + Sangiorgi)

Pi + subtyping
• Separate read and write capabilities

• cf Reynolds’s treatment of refs in Forsythe

T ::= ch(T1... Tn) read and write capabilities
for channel carrying (T1... Tn)

in(T1... Tn) read capability only
out(T1... Tn) write capability only
...

(P + Sangiorgi)

Linear pi
• Track use-once capabilities

• cf. linear logic, linear lambda-calculi

T ::= ch(T1... Tn) ordinary channel

ch!(T1... Tn) use-once channel

...

(Kobayashi, P, Turner)

Behavioral consequences
• Each of these refinements has interesting

effects on behavioral equivalences

• E.g., in the pi-calculus with subtyping, we get
stronger versions of standard theorems
• e.g. a stronger replicator theorem than in the untyped

language

• Validates beta-reduction for the pi-calculus
encoding of CBV lambda-calculus
• (not valid for untyped pi)

Milner’s sort discipline

polymorphic pi pi+subtyping linear pi

(lots of stuff)

session types choreography types etc., etc., etc

Types for Privacy

Joint work with Jason Reed, Andreas Haeberlen,
Marco Gaboardi, Arjun Narayan, ...

Motivation: querying private data

! A vast trove of data is accumulating in databases
! This data could be useful for many things

! Example: Use hospital records for medical studies

! But how to release it without violating privacy?

Database with
hospital records Alice Bob

How many patients
with lung cancer are

heavy smokers?
I can't tell
you! :-(

Privacy is hard!

! Idea #1: Anonymize the data
! "Patient #147, DOB 11/08/1965, zip code 19104, smokes and has lung

cancer"
! What fraction of the U.S. population is uniquely identified by their ZIP

code and their full DOB?
! Another example: Netflix dataset de-anonymized in 2008

! Idea #2: Aggregate the data
! "385 patients both smoke and have lung cancer"
! Problem: Someone might know that 384 patients smoke + have

cancer, but isn't sure about Benjamin

! Need a more principled approach!

63.3%

Approach: Differential privacy

! Idea: Add a bit of noise to the answer
! "387 patients smoke + have cancer, plus or minus 3"

! Can bound how much information is leaked
! Even under worst-case assumptions!

Should I allow my
data to be
included?

No

Yes

"How many patients smoke + have cancer?"

Difference
X

384

385

True answer
+ random noise

Problem: How much noise?

! What if someone asks the following:
! "What is the number of people in the database who are called

Andreas, multiplied by 1,000,000"

! How do we know...
! whether it is okay to answer this (given our bound)?
! and, if so, how much noise we need to add?

! Analysis can be done manually...
! Example: McSherry/Mironov [KDD'09] on Netflix data

! ... but this does not scale!
! Each database owner would have to hire a 'privacy expert'
! Analysis is nontrivial - what if the expert makes a mistake?

The Fuzz system

! We are working on a "programming language for
privacy" called Fuzz
! Bob writes question in our language & submits it to Alice
! Alice runs the program through our Fuzz system
! Fuzz tells Alice whether it is okay to respond...
! ... as well as a safe answer (including just enough noise)

Alice Bob

How many patients
with lung cancer are

heavy smokers?

387

query(db:database) {
 num = 0;
 foreach x!db
 if (x.smokes &
 x.hasCancer)
 then num ++;
 return num;
}

Fuzz

OK to
answer

Answer 387
(incl noise)

How does Fuzz do this?

! Fuzz uses a type system to infer the relevant
property (sensitivity) of a given query
! If program typechecks, we have a proof that running it won't

compromise privacy
! Solid formal guarantee - no more accidental privacy leaks!

Current directions
• Type inference (!)

• Adding dependent types to express more
precise constraints on behavior
• E.g., the fact that the sensitivity of a private k-means

algorithm depends on how many rounds of iteration
you ask it to perform

Thank you!

