An Algebraic View of Bigraphs

Gordon Plotkin

Laboratory for the Foundations of Computer Science, School of Informatics, University of Edinburgh

Symposium for Robin Milner, Edinburgh, 2012.

Motivation and programme

- We ask: what are bigraphs?
- To answer this, we aim at a standard algebraic account of bigraphs; we use a suitable linear kind of algebra.
- This gives a universal characterisation of bigraphs in terms of their algebraic structure.
- A possible external benefit could be that, as the account is standard, one can easily explore variations.
- A possible internal benefit is the provision of a (less) standard term language for bigraphs.
- Another possible internal benefit is a framework for discussing dynamics.

Robin's view

- I discussed some of these ideas with Robin when I was beginning to think about the problem.
- I wanted to avoid the partiality that Robin wished to deal with directly.
- He was not fond of that move, saying he had taken great care with his formalism. (I think the balance of structure and notational convenience was primary.)
- So he may well not have liked this work.
- He may also not have cared: I got the impression I would have needed to argue well to convince him that abstract universal characterisations of the category of bigraphs held any interest.
- I am sad that he is no longer with us, and that that such conversations can no longer be.

Example (bare) bigraph, place graph, and link graph (from Milner lectures)

The bi-structure of bigraphs
a bare bigraph G

How to build bigraphs? Give them interfaces ...

Example compositions (from Milner lectures)

a contextual bigraph $H:\left\langle 3,\left\{x, x^{\prime}\right\}\right\rangle \rightarrow\langle 2, \emptyset\rangle$

its place graph

its link graph
a ground bigraph $F: \epsilon \rightarrow\left\langle 3,\left\{x, x^{\prime}\right\}\right\rangle$

its place graph

its link graph

An interface takes the form $\langle m, X\rangle$. The origin is $\epsilon \xlongequal{\text { def }}\langle 0, \emptyset\rangle$.

Example bigraph with controls (from Milner lectures)

Control Signature A:2-an agent, B:1-a building, C:2 - a computer, R:0 - a room.

Outline

(1) Introduction

(2) Statics

- Place Graphs
- Link Graphs
- Bigraphs
(3) Future work

Definition of place graphs

- Signature A set \mathcal{K} of controls, ranged over by K.
- Concrete Place Graph A tuple

$$
F=\langle V, \text { ctrl, prntt }\rangle: m \rightarrow n
$$

where:

- V is the set of nodes
- ctrl: $V \rightarrow \mathcal{K}$ is the control map.
- prnt: $m \dot{\cup} V \rightarrow V \cup n$ is the parent map, assumed acyclic. (We identify m with $\{0, \ldots, m-1\}$.)
- Abstract Place Graph An isomorphism class

$$
[F]
$$

of concrete place graphs.

Composition of abstract place graphs

$$
I \xrightarrow{[\langle V, c \operatorname{ctrl}, \mathrm{prnt}\rangle]} m \xrightarrow{\left[\left\langle V^{\prime}, \operatorname{ctrl}^{\prime}, \operatorname{prnt}^{\prime}\right\rangle\right]} n=I \xrightarrow{\left[\left\langle V \cup V^{\prime}, \operatorname{ctrl} \cup \operatorname{ctrl}^{\prime}, \mathrm{prnt}^{\prime \prime}\right\rangle\right]} m
$$

where:

$$
\operatorname{prnt}^{\prime \prime}(x)= \begin{cases}\operatorname{prnt}(x) & (x \in l \cup V, \operatorname{prnt}(x) \notin m) \\ \operatorname{prnt}^{\prime}(\operatorname{prnt}(x)) & (x \in l \cup V, \operatorname{prnt}(x) \in m) \\ \operatorname{prnt}^{\prime}(x) & \left(x \in V^{\prime}\right)\end{cases}
$$

This gives a category Place $_{\mathcal{K}}$.

Tensor of abstract place graphs

$(I \xrightarrow{[\langle V, \text { ctrl,prnt }\rangle]} m) \otimes\left(I^{\prime} \xrightarrow{\left[\left\langle V^{\prime}, \text { ctrl }^{\prime}, \text { prnt }^{\prime}\right\rangle\right]} m^{\prime}\right)=I+I^{\prime} \xrightarrow{\left[\left\langle V \cup V^{\prime}, \operatorname{ctrl} \cup \mathrm{ctrl}^{\prime}, \mathrm{prnt}^{\prime \prime}\right\rangle\right]} m+m^{\prime}$
where:

$$
\operatorname{prnt}^{\prime \prime}(x)= \begin{cases}\operatorname{prnt}(x) & (x \in I \cup V) \\ \operatorname{prnt}(x-I)+I & \left(x \in\left\{I, \ldots,\left(I+I^{\prime}\right)-1\right\} \dot{\cup} V^{\prime}\right)\end{cases}
$$

- This makes Place $_{\mathcal{K}}$ symmetric monoidal closed, with $l \otimes m=I+m$.
- But the tensor product is not a categorical product, and 0 is not the terminal object (eg, there are no place graphs $[F]: 1 \rightarrow 0)$.

Some structure in place graphs

We have:

- A commutative monoid

$$
1: 0 \rightarrow 1 \quad \text { join }: 2 \rightarrow 1
$$

on 1 ,

- with unary functions

$K: 1 \rightarrow 1$

Example diagram: Associativity of join

A (cartesian) equational theory

- Signature

$$
\begin{aligned}
& \text { - }+: 2 \text { and } 0: 0 \\
& \text { - } K: 1 \quad(K \in \mathcal{K})
\end{aligned}
$$

- Axioms Ax: + and 0 form a commutative monoid, ie:

$$
\begin{array}{ccc}
(x+y)+x & = & x+(y+z) \\
x+y & = & y+x \\
x+0 & = & x
\end{array}
$$

- Proof equivalence classes

$$
[t]=_{\text {def }}\{u \mid \mathrm{Ax} \vdash u=t\}
$$

and write $\left[\left\langle t_{0}, \ldots, t_{n-1}\right\rangle\right]$ for $\left\langle\left[t_{0}\right], \ldots,\left[t_{n-1}\right]\right\rangle$.

A corresponding category $\mathrm{CMon}_{\mathcal{K}}^{c}$

- Objects The natural numbers \mathbb{N}
- Morphisms

$$
\left[\left\langle t_{0}, \ldots, t_{n-1}\right\rangle\right]: m \longrightarrow n
$$

where $\mathrm{FV}\left(t_{i}\right) \subseteq\left\{z_{0}, \ldots, z_{m-1}\right\}$, for $i=0, m-1$.
(We assume a fixed infinite sequence z_{0}, z_{1}, \ldots of distinct variables.)

- Composition
$I \xrightarrow{\left[\left\langle u_{0}, \ldots, u_{m-1}\right\rangle\right]} m \xrightarrow{\left[\left\langle t_{0}, \ldots, t_{n-1}\right\rangle\right]} n=I \xrightarrow{\left[\left\langle t_{0}, \ldots, t_{n-1}\right\rangle\left[u_{0} / z_{0}, \ldots, u_{m-1} / z_{m-1}\right]\right]} m$
- Identity

$$
m \xrightarrow{\left[\left\langle z_{0}, \ldots, z_{m-1}\right\rangle\right]} m
$$

Lawvere Theories

These are structures:

$$
\mathbb{N}^{\mathrm{op} \xrightarrow{\prime} \mathbf{L}, ~}
$$

where

- \mathbb{N} is the category of all natural numbers and maps between them,
- L is a small category with finite products, and
- l is a strict finite product preserving identity-on-objects functor
Example Lawvere Theory: $\mathbb{N}^{\text {op }} \xrightarrow{l} \mathbf{C M o n}_{\mathcal{K}}^{c}$ where

$$
I(f: n \rightarrow m)=\left[\left\langle z_{f(0)}, \ldots, z_{f(m-1)}\right\rangle\right]
$$

When I is obvious, we may omit it.

Maps of Lawvere theories

A map from $\mathbb{N}^{\text {op }} \xrightarrow{l} \mathbf{L}$ to $\mathbb{N}^{\text {op }} \xrightarrow{l^{\prime}} \mathbf{L}^{\prime}$, is just a functor

$$
\mathcal{F}: \mathbf{L} \rightarrow \mathbf{L}^{\prime}
$$

such that the following diagram commutes:

It is necessarily the identity on objects and strictly finite product preserving.
Remark

Law \simeq EqTh

Characterisation of $\mathbf{C M o n}_{\mathcal{K}}^{c}$

Define:
(1) a commutative monoid $\langle+, 0\rangle$ on 1 , where:

$$
+=_{\text {def }}\left\langle\left[z_{0}+z_{1}\right]\right\rangle: 2 \rightarrow 1 \quad 0=_{\text {def }}\langle[0]\rangle: 0 \rightarrow 1
$$

(2) unary morphisms $K: 1 \rightarrow 1$ over P (for $K \in \mathcal{K}$) where:

$$
K==_{\text {def }}\left\langle\left[K\left(z_{0}\right)\right]\right\rangle: 1 \rightarrow 1
$$

Theorem

$\mathrm{CMon}_{\mathcal{K}}^{c}$ is the free Lawvere theory L with
(1) a specified commutative monoid $\left\langle+{ }_{\mathrm{L}}, 0_{\mathrm{L}}\right\rangle$ on 1 , and
(2) specified unary morphisms $K_{\mathrm{L}}: \mathrm{P}_{\mathrm{L}} \longrightarrow \mathrm{P}_{\mathrm{L}}$ on 1 .

Linear equational logic

- Signature Σ : operation symbols op: n as usual.
- Linear Tems t : as usual, but restricted so that no variable appears twice.
- Linear Equations $t=u$ as usual, but with the same variables occurring on both sides
- Example As above with $+: 2,0: 0$, and $K: 1$ (for $K \in \mathcal{K}$), and the commutative monoid axioms.

$$
\begin{array}{ccc}
(x+y)+x & = & x+(y+z) \\
x+y & = & y+x \\
x+0 & = & x
\end{array}
$$

Linear equational logic: Inference Rules

Equality is an equivalence relation

$$
t=t \quad \frac{t=u \quad u=v}{t=v} \quad \frac{t=u}{u=t}
$$

Congruence

$$
\frac{t_{i}=u_{i} \quad(i=0, n-1)}{f\left(t_{0}, \ldots, t_{n-1}\right)=f\left(u_{0}, \ldots, u_{n-1}\right)}
$$

provided the terms in the conclusion are linear.
Substitution

$$
\frac{t=u}{t\left[v_{0} / y_{0}, \ldots, v_{n-1} / y_{n-1}\right]=u\left[v_{0} / y_{0}, \ldots, v_{n-1} / y_{n-1}\right]}
$$

provided the terms in the conclusion are linear.

A corresponding category $\mathrm{CMon}_{\mathcal{K}}^{\prime}$

- Objects The natural numbers \mathbb{N}
- Morphisms

$$
\left[\left\langle t_{0}, \ldots, t_{n-1}\right\rangle\right]: m \longrightarrow n
$$

where

- $\left\{z_{0}, \ldots, z_{m-1}\right\}=\bigcup_{i=0}^{n-1} \mathrm{FV}\left(t_{i}\right)$, and
- The FV $\left(t_{i}\right)$ are mutually disjoint
- Composition

$$
I \xrightarrow{\left[\left\langle u_{0}, \ldots, u_{m-1}\right\rangle\right]} m \xrightarrow{\left[\left\langle t_{0}, \ldots, t_{n-1}\right\rangle\right]} n=I \xrightarrow{\left[\left\langle t_{0}, \ldots, t_{n-1}\right\rangle\left[u_{0} / z_{0}, \ldots, u_{m-1} / z_{m-1}\right]\right]} m
$$

- Identity

$$
m \xrightarrow{\left[\left\langle z_{0}, \ldots, z_{m-1}\right\rangle\right]} m
$$

Symmetric Monoidal Lawvere Theories (aka PROPs)

These are structures:

$$
\mathbb{B}^{\mathrm{op}} \xrightarrow{\prime} \mathbf{L}
$$

where

- \mathbb{B} is the category of all natural numbers and bijections over them,
- L is a small symmetric monoidal category, and
- I is a strict symmetric monoidal identity-on-objects functor Example symmetric monoidal Lawvere theory: $\mathbb{B}^{\text {op }} \xrightarrow{l}$ CMon $_{\mathcal{K}}^{\prime}$ where

$$
I(f: n \cong n)=\left[\left\langle z_{f(0)}, \ldots, z_{f(n-1)}\right\rangle\right]
$$

Much as before, morphisms of symmetric monoidal theories are functors making the evident triangle commute. Remark Presumably (a slight surprise):

LinEqTh \simeq Operad

Characterisation of $\mathbf{C M o n}_{\mathcal{K}}^{\prime}$

Define:
(1) a commutative monoid $\langle+, 0\rangle$ on 1 , where:

$$
+=\left\langle\left[z_{0}+z_{1}\right]\right\rangle \quad 0=\langle[0]\rangle
$$

(2) unary morphisms $K: 1 \rightarrow 1$ over P (for $K \in \mathcal{K}$) where:

$$
K=\left\langle\left[K\left(z_{0}\right)\right]\right\rangle
$$

Theorem

$\mathrm{CMon}_{\mathcal{K}}^{\prime}$ is the free symmetric monoidal Lawvere theory L with
(1) a specified commutative monoid $\left\langle+\mathrm{L}, 0_{\mathrm{L}}\right\rangle$ on 1 , and
(2) specified unary morphisms $K_{\mathrm{L}}: 1 \longrightarrow 1$ on 1 .

The same thing in normal form

Multilevel Multiset Terms

- Every finite multiset $\left\{a_{0}, \ldots, a_{n-1}\right\}(n \geq 0)$ of atomic multilevel multiset terms is a multilevel multiset term, provided that no variable appears in more than one a_{i}.
Atomic Multilevel Multiset Terms
- Every variable x is an atomic multilevel multiset term.
- If t is a multilevel multiset term and $K \in \mathcal{K}$ then $K(t)$ is an atomic multilevel multiset term.

The corresponding category

- Objects The natural numbers \mathbb{N}
- Morphisms

$$
\left\langle t_{0}, \ldots, t_{n-1}\right\rangle: m \longrightarrow n
$$

where $\left\{z_{0}, \ldots, z_{m-1}\right\}=\cup_{i=0}^{n-1} \mathrm{FV}\left(t_{i}\right)$.

- Composition

$$
I \xrightarrow{\left\langle u_{0}, \ldots, u_{m-1}\right\rangle} m \xrightarrow{\left\langle t_{0}, \ldots, t_{n-1}\right\rangle} n=\xrightarrow{\left\langle t_{0}, \ldots, t_{n-1}\right\rangle\left[u_{0} / z_{0}, \ldots, u_{m-1} / z_{m-1}\right]} m
$$

- Identity

$$
m \xrightarrow{\left\langle z_{0}, \ldots, z_{m-1}\right\rangle} m
$$

Normal forms of place graphs

- Every abstract place graph $[F]: m \rightarrow 1$ can be written essentially uniquely as a permutation of a join of atomic place graphs:

$$
\operatorname{join}_{a} \circ\left(\left(K_{1} \circ\left[F_{0}\right]\right) \otimes \ldots \otimes\left(K_{a-1} \circ\left[F_{a-1}\right]\right) \otimes j o i n_{b}\right) \circ \alpha
$$

where $\left[F_{i}\right]: m_{i} \rightarrow 1$, with $m=\sum_{i=0}^{a-1} m_{i}$.

- Every abstract place graph $[F]: m \rightarrow n$ can be written uniquely as a permutation of a tensor of unary place graphs:

$$
\left(\left[F_{0}\right] \otimes \ldots \otimes\left[F_{n-1}\right]\right) \circ \alpha
$$

where $\left[F_{i}\right]: m_{i} \rightarrow 1$, with $m=\sum_{i=0}^{a-1} m_{i}$.

From unary place graphs to normal forms of terms

We inductively define a map \mathcal{G}_{1} sending unary place graphs $[F]: m \rightarrow 1$ to multiset multilevel terms $\mathcal{G}_{1}([F])$ with free variables $\left\{z_{0}, \ldots, z_{m-1}\right\}$, by:

$$
\begin{aligned}
& \mathcal{G}_{1}\left(j o i n_{a} \circ\left(\left(K_{1} \circ\left[F_{0}\right]\right) \otimes \ldots \otimes\left(K_{a-1} \circ\left[F_{l-1}\right]\right) \otimes j o i n_{b}\right) \circ \alpha\right)= \\
& \quad \sum_{i=0}^{a-1} K_{i}\left(\mathcal{G}_{1}\left(\left[F_{i}\right]\right)\left[z_{\alpha^{-1}(0)} / z_{0}, \ldots, z_{\alpha^{-1}\left(m_{i}-1\right)} / z_{m_{i}-1}\right]\right. \\
& \quad+\sum_{j=0}^{b-1} z_{\alpha^{-1}(j)}
\end{aligned}
$$

From place graphs to tuples of normal forms of terms

We can then define a map \mathcal{G} sending place graphs $[F]: m \rightarrow n$ to n tuples of terms with free variables $\left\{z_{0}, \ldots, z_{m-1}\right\}$, occurring disjointly:

$$
\begin{aligned}
& \mathcal{G}\left(\left(\left[F_{0}\right] \otimes \ldots \otimes\left[F_{n-1}\right]\right) \circ \alpha\right) \\
& =\left\langle\mathcal{G}\left(\left[F_{0}\right]\right)\left[z_{\alpha^{-1}}\left(\mathbf{m}_{0}\right) / z_{\mathbf{m}_{0}}\right], \ldots, \mathcal{G}\left(\left[F_{n-1}\right]\right)\left[z_{\alpha^{-1}}\left(\mathbf{m}_{n-1}\right) / z_{\mathbf{m}_{n-1}}\right]\right\rangle
\end{aligned}
$$

Proposition

We have a faithful (ie, locally 1-1) morphism of sm Lawvere theories:

$$
\mathcal{G}: \text { Place }_{\mathcal{K}} \longrightarrow \text { CMon }_{\mathcal{K}}^{\prime}
$$

Identification of place graphs

Theorem

Place $_{\mathcal{K}}$ is the free symmetric monoidal Lawvere theory \mathbf{L} with
(1) a specified commutative monoid $\left\langle+\mathrm{L}, 0_{\mathrm{L}}\right\rangle$ on 1 , and
(2) specified unary morphisms $K_{\mathrm{L}}: 1 \longrightarrow 1$ on 1 , for $K \in \mathcal{K}$.

Proof.

By the freeness of $\mathbf{C M o n}_{\mathcal{K}}^{\prime}$ there is a suitable morphism $\mathcal{F}:$ CMon $_{\mathcal{K}}^{\prime} \longrightarrow$ Place $_{\mathcal{K}}$. Composing with \mathcal{G} and using the proposition we see that $\mathcal{G \mathcal { F }}: \mathbf{C M o n}_{\mathcal{K}}^{\prime} \longrightarrow \mathbf{C M o n}_{\mathcal{K}}^{\prime}$ is also a suitable morphism.
So, by the freeness of $\mathbf{C M o n}_{\mathcal{K}}^{\prime}$, we have: $\mathcal{G \mathcal { F }}=\mathrm{id}$. So $\mathcal{G} \mathcal{F} \mathcal{G}=\mathcal{G}$. So, $\mathcal{F} \mathcal{G}=$ id as \mathcal{G} is faithful. So \mathcal{F} and \mathcal{G} are mutually inverse.

Summary

- Up to isomorphism, the category Place $_{\mathcal{K}}$ of place graphs with signature \mathcal{K} is given by a standard term model construction.
- This identifies it as the linear equational theory of a commutative monoid with unary function symbols K, for $K \in \mathcal{K}$.

Outline

(1) Introduction

(2) Statics

- Place Graphs
- Link Graphs
- Bigraphs
(3) Future work

Definition of link graphs

- Signature A set \mathcal{K} of controls K with natural number arities, written K : k.
- Concrete Link Graph A tuple

$$
F=\langle V, E, \operatorname{ctrl}, \operatorname{link}\rangle: X \rightarrow Y
$$

where:

- V, E are, respectively, the sets of nodes and edges.
- $X, Y \varsigma_{\text {fin }} \mathcal{X}$, the set of names, are the inner and outer faces.
- ctrl: $V \rightarrow \mathcal{K}$ is the control map.
- link: $X \dot{\cup} P \rightarrow E \cup Y$ is the link map, assumed to cover E, where the set P of ports is:

$$
P==_{\operatorname{def}}\{\langle v, i\rangle \mid \operatorname{ctrl}(v): k, i<k\}
$$

- Abstract Link Graph An isomorphism class [F] of concrete link graphs.

Some elementary link graphs

(closure)

$y / X: X \rightarrow\{y\}$
Elementary
Substitution

Elementary
Closure

$K_{x_{1}, \ldots, x_{n}}: \epsilon \rightarrow X$
Atom

Composition of abstract link graphs

$$
X \xrightarrow{[\langle V, E, \text { ctrl, link }\rangle]} Y \xrightarrow{\left[\left\langle V^{\prime}, E^{\prime}, \operatorname{ctrl}^{\prime}, \operatorname{link}^{\prime}\right\rangle^{\prime}\right]} Z=X \xrightarrow{\left[\left\langle V \dot{ } V^{\prime}, E \cup E^{\prime}, \operatorname{ctrl} \cup \operatorname{ctrl}^{\prime}, \operatorname{link}^{\prime \prime}\right\rangle^{-}\right]} Z
$$

where

$$
\operatorname{link}^{\prime \prime}(x)= \begin{cases}\operatorname{link}(x) & (x \in X \dot{\cup} P, \operatorname{link}(x) \notin Y) \\ \operatorname{link}^{\prime}(\operatorname{link}(x)) & (x \in X \dot{\cup} P, \operatorname{link}(x) \in Y) \\ \operatorname{link}^{\prime}(x) & \left(x \in P^{\prime}\right)\end{cases}
$$

and where $\langle\ldots\rangle^{-}$is $\langle\ldots\rangle^{-}$, less any uncovered edges. This gives a category.

Tensor of abstract link graphs

$$
\begin{aligned}
& \left.(X \xrightarrow{[\langle V, E, \text { ctrl }, \text { link }\rangle]} Y) \otimes\left(X^{\prime} \xrightarrow{\left[\left\langle V^{\prime}, E^{\prime}, \text { ctrl }{ }^{\prime}, \text { link }\right\rangle^{\prime}\right\rangle}\right\rangle^{\prime} Y^{\prime}\right) \\
& \left.\left.=X \cup X^{\prime} \xrightarrow{\left[\left\langleV \cup V^{\prime}, E \cup E^{\prime}, \text { ctrl } \cup \operatorname{ctrl}^{\prime},\right.\right. \text { link }} \dot{\prime} \cup \operatorname{link}^{\prime}\right\rangle\right] \text { } Y \dot{\cup} Y^{\prime}
\end{aligned}
$$

... but this only gives a partial symmetric monoidal category.

A sm category of link graphs

Using the above partial smc, we define a total smc Link $\mathcal{K}_{\mathcal{K}}$:

- Objects the natural numbers \mathbb{N}
- Morphisms

$$
I \xrightarrow{[F]} m
$$

for $F:\left\{n_{0}, \ldots, n_{l-1}\right\} \rightarrow\left\{n_{0}, \ldots, n_{m-1}\right\}$

- Composition (as above)
- Tensor

$$
\begin{aligned}
& (I \xrightarrow{[F]} m) \otimes\left(I^{\prime} \xrightarrow{\left[F^{\prime}\right]} m^{\prime}\right)=I+I^{\prime} \xrightarrow{[F] \otimes\left(\sigma_{0, m, m^{\prime}} \circ\left[F^{\prime}\right] \circ \sigma_{l, 0, I^{\prime}}\right)} m+m^{\prime} \\
& \text { where } \sigma_{k, l, m}=\left[n_{l} / n_{k}, \ldots, n_{l+m-1} / n_{k+m-1}\right]
\end{aligned}
$$

Some structure in the category Link $\mathcal{K}_{\mathcal{K}}$ of link graphs

We have:

- A commutative monoid $\left\langle n_{0} /\left\{n_{0}, n_{1}\right\}, n_{0} / \epsilon\right\rangle$ on 1
- whose zero $n_{0} / \epsilon: 0 \rightarrow 1$ has a left inverse $/ n_{0}: 1 \rightarrow 0$, ie:

$$
\epsilon \xrightarrow{n_{0} / \epsilon} 1 \xrightarrow{\mid n_{0}} 0=0 \xrightarrow{\mathrm{id}} 0
$$

- and morphisms

$$
K_{n_{0}, \ldots, n_{k-1}}: 0 \rightarrow k
$$

for $K: k \in \mathcal{K}$.

Symmetric monoidal equational logic: Example term

$$
\begin{aligned}
& \left\{A\left(x_{0}, x_{1} ; y_{0}, y_{1}\right), B\left(x_{2} ; y_{2}, z_{1}\right),\right. \\
& \left.D\left(y_{0} ;\right), C\left(y_{1}, y_{2} ; z_{0}\right)\right\}
\end{aligned}
$$

A dag
Corresponding term

Symmetric monoidal equational logic (CCS style)

- Signature Σ of operation symbols op with arities and co-arities: op: $m \rightarrow n$
- Atomic terms These are either
- Wires

$$
a=y / x
$$

when:

$$
\operatorname{IV}(a)=_{\text {def }}\{x\} \quad \operatorname{OV}(a)==_{\operatorname{def}}\{y\}
$$

or

- Boxes

$$
a=o p\left(x_{0}, \ldots, x_{m-1} ; y_{0}, \ldots, y_{n-1}\right)
$$

for op: $m \rightarrow n$, where no two of $x_{0}, \ldots, x_{m-1}, y_{0}, \ldots, y_{n-1}$ are the same, when:

$$
\operatorname{IV}(a)=\operatorname{def}\left\{x_{0}, \ldots, x_{m-1}\right\} \quad \operatorname{OV}(a)==_{\text {def }}\left\{y_{0}, \ldots, y_{n-1}\right\}
$$

Terms

- Terms are acyclic multisets of atomic terms:

$$
t=\operatorname{def}\left\{a_{0}, \ldots, a_{n-1}\right\}: \operatorname{IV}(t) \longrightarrow \mathrm{OV}(t)
$$

where no two atomic terms a_{i} have a common input or output variable, and when:

$$
\operatorname{IV}(t)==_{\text {def }} \bigcup \operatorname{IV}\left(a_{i}\right) \backslash \bigcup \mathrm{OV}\left(a_{i}\right) \quad \mathrm{OV}(t)=_{\operatorname{def}} \bigcup \mathrm{OV}\left(a_{i}\right) \backslash \bigcup \operatorname{IV}\left(a_{i}\right)
$$

The term t is said to be acyclic if this graph is:

$$
\left\{\langle x, y\rangle \mid \exists i . x \in \operatorname{IV}\left(a_{i}\right) \wedge y \in \operatorname{OV}\left(a_{i}\right)\right\}
$$

More on terms

- Free variables

$$
\mathrm{FV}(t)=_{\operatorname{def}} \mathrm{IV}(t) \cup \mathrm{OV}(t)
$$

- Bound Variables

$$
\mathrm{BV}(t)==_{\text {def }} \mathrm{IV}(t) \cap \mathrm{OV}(t)
$$

We identify terms up to α-equivalence; acyclicity is invariant under α-equivalence.

- Substitution

$$
t[y / x] \quad(x \in \mathrm{FV}(t), y \notin \mathrm{FV}(t))
$$

Equational reasoning

Equations

$$
t=u
$$

provided $\operatorname{IV}(t)=\operatorname{IV}(u)$ and $\mathrm{OV}(t)=\mathrm{OV}(u)$.
Rules Those of an equivalence relation, plus:

- Congruence

$$
\frac{t=u}{t, a=u, a}
$$

provided $\operatorname{IV}(t) \cap \operatorname{IV}(a)=\operatorname{OV}(t) \cap \operatorname{OV}(a)=\varnothing$.

- Rewiring

$$
\begin{array}{cc}
t, y / x=t[y / x] & (x \in \mathrm{OV}(t)) \\
t, y / x=t[x / y] & (y \in \mathrm{IV}(t))
\end{array}
$$

Corresponding category L

- Objects The natural numbers \mathbb{N}
- Morphisms These are equivalence classes of terms:

$$
[t]: m \rightarrow n
$$

where $\operatorname{IV}(t)=\left\{z_{0}, \ldots, z_{m-1}\right\}$ and $\operatorname{OV}(t)=\left\{z_{0}^{\prime}, \ldots, z_{n-1}^{\prime}\right\}$.
(We assume mutually disjoint fixed infinite sequences z_{0}, z_{1}, \ldots and $z_{0}^{\prime}, z_{1}^{\prime}, \ldots$ and etc, of distinct variables.)

- Composition

$$
I \xrightarrow{[t]} m \xrightarrow{[u]} n=I \xrightarrow{\left[t\left[z_{0}^{\prime \prime} / z_{0}^{\prime}, \ldots, z_{m-1}^{\prime \prime} / z_{m-1}^{\prime}\right], u\left[z_{0}^{\prime \prime} / z_{0}, \ldots, z_{m-1}^{\prime \prime} / z_{m-1}\right]\right]} n
$$

Corresponding symmetric monoidal Lawvere theory

- Tensor of morphisms

$$
\begin{aligned}
& (m \xrightarrow{[t]} n) \otimes\left(m^{\prime} \xrightarrow{[u]} n^{\prime}\right)= \\
& \quad\left(m+m^{\prime}\right) \xrightarrow{\left[t, u\left[z_{m} / z_{0}, \ldots, z_{m+m^{\prime}-1} / z_{m^{\prime}-1}\right]\left[z_{n}^{\prime} / z_{0}^{\prime}, \ldots, z_{n+n^{\prime}-1}^{\prime} / z_{n^{\prime}-1}^{\prime}\right]\right]}\left(n+n^{\prime}\right)
\end{aligned}
$$

- The functor $I: \mathbb{B}^{o p} \rightarrow \mathbf{L}$ is given by:

$$
I(f: n \cong n)=\left[z_{f(0)}^{\prime} / z_{0}, \ldots, z_{f(n-1)}^{\prime} / z_{n-1}\right]
$$

Equational theory for link graphs

- Signature

$$
\begin{aligned}
& -\|: 2 \rightarrow 1, \text { NIL: } 0 \rightarrow 1, \mathrm{NIL}^{-1}: 1 \rightarrow 0 \\
& \bullet K: 0 \rightarrow k(K: k) .
\end{aligned}
$$

- Axioms

$$
\begin{gathered}
\|(x, y ; u),\|(u, z ; v)=\|(y, z ; u),\|(x, u ; v) \\
\operatorname{NIL}(; u),\|(u, x ; y)=y / x=\operatorname{NIL}(; u),\|(x, u ; y) \\
\operatorname{NIL}(; x), \operatorname{NIL}^{-1}(x ;)=
\end{gathered}
$$

Note We are omitting the multiset brackets.

Abbreviatory conventions

- Two conventions For unary op: $n \rightarrow 1$ (eg, $\|$, , NIL),

$$
\begin{gathered}
\mathrm{op}^{\prime}(\ldots, \mathrm{op}(\ldots), \ldots ; \ldots) \equiv_{\operatorname{def}} \operatorname{op}(\ldots ; x), \mathrm{op}^{\prime}(\ldots, x, \ldots ; \ldots) \\
\mathrm{op}(\ldots)^{x} \equiv_{\operatorname{def}} \operatorname{op}(\ldots ; x)
\end{gathered}
$$

- Examples

$$
\begin{gathered}
\left\|(\|(x, y), z)^{v}=\right\|(x, \|(y, z))^{v} \\
\left\|(\operatorname{NIL}(), x)^{y}=y / x=\right\|(x, \operatorname{NIL}())^{y} \\
\operatorname{NIL}^{-1}(\operatorname{NIL}() ;)=
\end{gathered}
$$

Normal forms: Atomic terms

- Atoms

$$
K\left(y_{0}, \ldots, y_{k-1}\right): \epsilon \rightarrow\left\{y_{0}, \ldots, y_{k-1}\right\} \quad(K: k \in \mathcal{K})
$$

- Elementary substitutions

$$
y / x_{0}, \ldots, x_{n-1}:\left\{x_{0}, \ldots, x_{n-1}\right\} \rightarrow\{y\}
$$

where the x_{i} and y are all distinct

Normal forms: terms

These are multisets of atomic terms

$$
t=\left\{a_{0}, \ldots, a_{n-1}\right\} / X
$$

"closed-off" by a finite set of variables, such that:

- no two atomic terms have a common input variable,
- no input variable of an elementary substitution is an output variable of any a_{i}.
- for every output variable of an a_{i}, there is exactly one elementary substitution with that as its output variable, and
- $X \subseteq \cup O V\left(a_{i}\right)$.

We set:

$$
\operatorname{IV}(t)=_{\text {def }} \bigcup \operatorname{IV}\left(a_{i}\right) \quad \operatorname{OV}(t)=_{\text {def }} \bigcup \operatorname{OV}\left(a_{i}\right) \backslash X
$$

From link graphs to normal forms

From

$$
(V, E, \operatorname{ctrl}, \text { link }: X \cup P \rightarrow E \cup Y): X \rightarrow Y
$$

where $X=\left\{n_{i_{0}}, \ldots, n_{i_{|X|-1}}\right\}$ and $Y=\left\{n_{o_{0}}, \ldots, n_{O_{|Y|-1}}\right\}$ and n_{0}, \ldots enumerates the set of names, obtain the term:

$$
\begin{aligned}
& (\{K(\operatorname{link}(v, 0), \ldots, \operatorname{link}(v, k-1)) \mid v \in V, K=\operatorname{ctrl}(v), K: k\} \\
& \quad+\left\{n / \operatorname{link}^{-1}(n) \cap X \mid n \in Y\right\} \\
& \left.\quad+\left\{e / \operatorname{link}^{-1}(e) \cap X \mid e \in E\right\}\right) \backslash E: X \rightarrow Y
\end{aligned}
$$

From link graphs to normal forms

From

$$
(V, E, \text { ctrl, link }: X \cup P \rightarrow E \cup Y): X \rightarrow Y
$$

where $X=\left\{n_{i_{0}}, \ldots, n_{i_{|X|-1}}\right\}$ and $Y=\left\{n_{0_{0}}, \ldots, n_{O_{|Y|-1}}\right\}$ and n_{0}, \ldots enumerates the names. obtain the term:
$(\{K(\operatorname{var}(\operatorname{link}(v, 0)), \ldots, \operatorname{var}(\operatorname{link}(v, k-1))) \mid v \in V, K=\operatorname{ctrl}(v), K: K\}$
$+\left\{\operatorname{var}(n) / \operatorname{var}\left(\operatorname{link}^{-1}(n) \cap X\right) \mid n \in Y\right\}$
$\left.+\left\{\operatorname{var}(e) / \operatorname{var}\left(\operatorname{link}^{-1}(e) \cap X\right) \mid e \in E\right\}\right) \mid \operatorname{var}(E): \operatorname{var}(X) \rightarrow \operatorname{var}(Y)$
where:

$$
\operatorname{var}(x)=\left\{\begin{array}{ll}
z_{i} & x=n_{i} \\
z_{i}^{\prime \prime} & x=e_{i}
\end{array} \quad \operatorname{var}(x)= \begin{cases}z_{i}^{\prime} & x=n_{i} \\
z_{i}^{\prime \prime} & x=e_{i}\end{cases}\right.
$$

Identification of link graphs

Theorem

$\operatorname{Link}_{\mathcal{K}}$ is the free symmetric monoidal Lawvere theory \mathbf{L} with
(1) a specified commutative monoid $\left\langle\|_{\mathbf{L}}, \mathrm{NIL}_{\mathbf{L}}\right\rangle$ on 1 ,
(2) a specified left inverse $\mathrm{NIL}_{\mathrm{L}}^{-1}$ of 0_{L}, and
(3) specified k-ary morphisms $K_{L}: 0 \longrightarrow k$ on 1 , for $K \in \mathcal{K}$.

Summary

- Up to isomorphism the category Link $\mathcal{K}_{\mathcal{K}}$ of link graphs with signature \mathcal{K} is given by a standard term model construction.
- This identifies it as the commutative monoidal equational theory of a commutative monoid, whose zero has a left inverse, and with k-ary constants for each k-ary control.

Outline

(9) Introduction

(2) Statics

- Place Graphs
- Link Graphs
- Bigraphs
(3) Future work

Definition of bigraphs

- Signature A set \mathcal{K} of controls K with arities $K: k$.
- Concrete Bigraph A tuple

$$
F=\langle V, E, \text { ctrl, prnt, link }\rangle:\langle m, X\rangle \rightarrow\langle n, Y\rangle
$$

where:
-

$$
F_{p}=\operatorname{def}\langle V, \text { ctrl }, \text { prnt }\rangle: m \rightarrow n
$$

is a concrete place graph, and
-

$$
F_{I}=\text { def }\langle V, E, \operatorname{ctrl}, \operatorname{link}\rangle: X \rightarrow Y
$$

is a concrete link graph.

- Abstract Bigraph An isomorphism class [F] of concrete bigraphs. And we set $[F]_{p}=_{\text {det }}\left[F_{p}\right]$ and $[F]_{I}=_{\text {def }}\left[F_{l}\right]$.

Example Bigraphs

$$
K_{X}:\langle 1, \epsilon\rangle \rightarrow\langle 1, X\rangle
$$

plus:

- Every place graph $F: m \rightarrow n$ can be regarded as a bigraph $F:\langle m, \epsilon\rangle \rightarrow\langle n, \epsilon\rangle$.
Examples: $1: 0 \rightarrow 1$, join: $2 \rightarrow 1$.
- Every link graph $F: X \rightarrow Y$ can be regarded as a bigraph $F:\langle 0, X\rangle \rightarrow\langle 0, Y\rangle$.
Examples: Elementary substitutions $y / X: X \rightarrow\{y\}$ and closures $/ x: x \rightarrow \epsilon$.

A partial symmetric monoidal category of bigraphs

- Objects Pairs $\langle m, X\rangle$
- Morphisms Abstract bigraphs

$$
[F]:\langle m, X\rangle \rightarrow\langle n, Y\rangle
$$

where $F:\langle m, X\rangle \rightarrow\langle n, Y\rangle$.

- Composition is uniquely specified by:

$$
([G] \circ[F])_{p}=\left[G_{p}\right] \circ\left[F_{p}\right] \quad([G] \circ[F])_{l}=\left[G_{l}\right] \circ\left[F_{l}\right]
$$

- Tensor Product

$$
\langle m, X\rangle \otimes\langle n, Y\rangle=\langle m+n, X \dot{\cup} Y\rangle
$$

and the (partial) tensor of morphisms is inherited from the place and link tensors, analogously to the case of composition.

A total symmetric monoidal category of bigraphs

The smc Bigraph $\mathcal{K}_{\mathcal{K}}$ is given as follows:

- Objects Pairs $\langle m, n\rangle \in \mathbb{N}^{2}$
- Morphisms Abstract bigraphs

$$
[F]:\langle m, n\rangle \rightarrow\left\langle m^{\prime}, n^{\prime}\right\rangle
$$

where $\left[F_{p}\right]: m \rightarrow n$ in Place $_{\mathcal{K}}$ and $\left[F_{l}\right]: m^{\prime} \rightarrow n^{\prime}$ in $\operatorname{Link}_{\mathcal{K}}$.

- Composition Inherited as before.
- Tensor Product On objects:

$$
\langle m, n\rangle \otimes\left\langle m^{\prime}, n^{\prime}\right\rangle=_{\text {def }}\left\langle m+m^{\prime}, n+n^{\prime}\right\rangle
$$

and on morphisms defined as before, so it is total.

Some structure in Bigraph $\mathcal{K}_{\mathcal{K}}$

- Distinguished place and link objects P and L where:

$$
\mathrm{P}=\mathrm{def}\langle 1,0\rangle \quad \mathrm{L}=\text { def }\langle 0,1\rangle
$$

- A commutative monoid $\langle 1$, join \rangle on P .
- A commutative monoid $\left\langle n_{0} /\left\{n_{0}, n_{1}\right\}, n_{0} / \epsilon\right\rangle$ on L whose zero has a left inverse $/ n_{0}$.
- For each control $K: k$ a morphism:

$$
K_{n_{0}, \ldots, n_{k-1}}: \mathrm{P} \rightarrow \mathrm{P} \otimes \overbrace{\mathrm{~L} \otimes \ldots \otimes \mathrm{~L}}^{k \text { times }}
$$

Multisorted Symmetric Monoidal Lawvere Theories (aka coloured PROPs)

Assume a set S of sorts.
These are structures:

$$
\left(\mathbb{B}^{S}\right)^{\mathrm{op}} \xrightarrow{\prime} \mathbf{L}
$$

where

- L is a small symmetric monoidal category, and
- I is a strict symmetric monoidal identity-on-objects functor Example With $S_{b}=$ def $\{p, 1\}$, bigraphs form an S_{b}-sorted symmetric monoidal Lawvere theory

$$
\left(\mathbb{B}^{S_{b}}\right)^{\mathrm{op}} \xrightarrow{l} \text { Bigraphs }_{\mathcal{K}}
$$

for an evident I (and suitably identifying $\mathbb{B}^{S_{b}}$ and \mathbb{B}^{2}).

Multisorted symmetric monoidal equational logic

- Signature Σ of sorted operation symbols op:s $\rightarrow \mathbf{s}^{\prime}$, for $\mathbf{s}, \mathbf{s}^{\prime} \in \mathrm{S}_{b}^{*}$.
- Sorted variables $x^{s}(s \in S)$.
- Atomic terms are:
- Wires

$$
y^{s} / x^{s}:\left\{x^{s}\right\} \rightarrow\left\{y^{s}\right\}
$$

- Boxes

$$
\begin{aligned}
& \operatorname{op}\left(x_{0}^{s_{0}}, \ldots, x_{m-1}^{s_{m-1}} ; y_{0}^{s_{0}^{\prime}}, \ldots, y_{n-1}^{s_{n-1}^{\prime}}\right):\left\{x_{0}^{s_{0}}, \ldots, x_{m-1}^{s_{m-1}}\right\} \rightarrow\left\{y_{0}^{s_{0}^{\prime}}, \ldots, y_{n-1}^{s_{n-1}^{\prime}}\right\} \\
& \text { for op: } s_{0} \ldots s_{m-1} \rightarrow s_{0}^{\prime} \ldots s_{n-1}^{\prime}
\end{aligned}
$$

- Terms are suitable multisets of atomic terms:

$$
t=\left\{a_{0}, \ldots, a_{n-1}\right\}: \operatorname{IV}(t) \longrightarrow \mathrm{OV}(t)
$$

Input and output variables, and variable constraints as before.

Unary open place normal forms

- Variables Place variables: p, q, \ldots Link variables x, y, \ldots
- Atomic terms
- Molecules

$$
\frac{t: \epsilon \rightarrow Y}{K\left(t ; y_{0}, \ldots, y_{k-1}\right): \epsilon \rightarrow Y \cup\left\{y_{0}, \ldots, y_{k-1}\right\}} \quad(K: k \in \mathcal{K})
$$

- Place Variables

$$
p: \epsilon \rightarrow \epsilon
$$

- Terms Multisets of atomic terms

$$
\frac{a_{i}: \epsilon \rightarrow Y_{i} \quad(i=0, n-1)}{\left\{a_{0}, \ldots, a_{n-1}\right\}: \epsilon \rightarrow \cup Y_{i}}
$$

with no place variable occurring twice.
Correspond to bigraphs of type $m \rightarrow\langle 1, Y\rangle$ with no edges.

Unary normal forms

These have the form:

$$
\frac{t: \epsilon \rightarrow Y \quad w_{i}: X_{i} \rightarrow Y_{i} \quad(i<n)}{\left\langle t,\left\{w_{0}, \ldots, w_{n-1}\right\}\right\rangle / X: \cup X_{i} \rightarrow\left(Y \cup \cup Y_{i}\right) \backslash X}
$$

where the "wires" w_{i} are either:

- substitutions $y / x_{0}, \ldots, x_{n-1}:\left\{x_{0}, \ldots, x_{n-1}\right\} \rightarrow\{y\}$, or
- closures $/ x:\{x\} \rightarrow \epsilon$ and such that:
- no two of the w_{i} have a common input link variable,
- no input link variable of $a n a_{i}$ is an output link variable of t or any a_{i},
- for every $y \in \operatorname{OLV}\left(w_{i}\right) \cup \operatorname{OLV}(t)$, there is exactly one elementary substitution of type $X \rightarrow y$, and
- $X \subseteq \operatorname{OLV}(t) \cup \cup \operatorname{OLV}\left(a_{i}\right)$.

Correspond to bigraphs of type $\langle m, X\rangle \rightarrow\langle 1, Y\rangle$.

Characterisation of Bigraphs $\mathcal{K}_{\mathcal{K}}$

Theorem

Bigraphs $_{\mathcal{K}}$ is the free S_{b}-sorted sm Lawvere theory $\left(\mathbb{B}^{\mathrm{S}}\right)^{\mathrm{op}} \xrightarrow{\prime} \mathbf{L}$ with:
(1) a specified commutative monoid on $\mathrm{P}_{\mathrm{L}}={ }_{\text {def }} I(1,0)$,
(2) a specified commutative monoid on $\mathrm{L}_{\mathrm{L}}={ }_{\operatorname{def}} I(0,1)$ with a left-inverse of its zero, and
(3) a specified morphism

$$
K_{\mathrm{L}}: \mathrm{P} \rightarrow \mathrm{P} \otimes \overbrace{\mathrm{~L} \otimes \ldots \otimes \mathrm{~L}}^{k_{\text {times }}}
$$

for each $K: k \in \mathcal{K}$.

Summary

- Up to isomorphism the category Bigraph $_{\mathcal{K}}$ of bigraphs with signature \mathcal{K} is given by a standard term model construction.
- This identifies it as the multi-sorted commutative monoidal equational theory with:
- two sorts P and L,
- a commutative monoid on P,
- a commutative monoid on L whose zero has a left inverse, and
- morphisms

$$
K: \mathrm{P} \rightarrow \mathrm{P} \otimes \overbrace{\mathrm{~L} \otimes \ldots \otimes \mathrm{~L}}^{k \text { times }}
$$

for $K: k \in \mathcal{K}$.

- Finish present work.
- Statics Relate to sorting and other kinds of bigraphs, eg. binding bigraphs (cf Garner, Hirschowitz, and Pardon).
- Dynamics Relate to term-rewriting. In sm equational logic, CCS style, a rule is just an oriented equation $t \Rightarrow t^{\prime}$, as usual, and its application takes on a simple form:

$$
\frac{t \Rightarrow t^{\prime}}{t, u \Rightarrow t^{\prime}, u}
$$

(cf Krivine, Milner, Troina).

- Externally For bio applications, consider replacing link graphs by κ-graphs, after Danos, Laneve.

