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The ’91 Turing Award to
Arthur John Robin Gorell Milner
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From http://amturing.acm.org/

“For three distinct and complete achievements:

1. LCF

2. ML

3. CCS.

In addition, he formulated and strongly advanced full
abstraction”
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No bisimulation and coinduction
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Another fundamental contribution for Milner:
Bisimulation and Coinduction
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Bisimulation, bisimilarity, coinduction

Bisimulation:

A relationR s.t. P
α

R Q

α

P ′ R Q′

Bisimilarity (∼) :

∪ {R : R is a bisimulation } (coind. definition)

Hence:

P R Q R is a bisimulation
P ∼ Q

(coind. proof principle)
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Major contributions to concurrency theory...

– To define equality on processes (fundamental !!)

– To prove equalities
∗ even if bisimilarity is not the chosen equivalence

· trying bisimilarity first
· coinductive characterisations of the chosen equivalence

– To justify algebraic laws

– To minimise the state space

– To abstract from certain details
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In fact, major contributions to computer
science...

– Functional languages and OO languages

– Program analysis

– Verification tools:

– Type theory

– Databases

– Compiler correctness
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And beyond computer science....

– Set Theory and Mathematics

– Modal Logics

– Artificial Intelligence

– Cognitive Science

– Philosophy

– Physics
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The discovery of bisimulation and coinduction
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Robin Milner David Park
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Milner, early 1970s
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A formal notion of simulation between programs. Memo 14,
Comp. and Logic Research Group, University of Swansea, 1970
Program simulation: an extended formal notion. Memo 17,
Comp. and Logic Research Group, University of Swansea, 1971
An algebraic definition of simulation between programs 2nd
International Joint Conferences on Artificial Intelligence, London, 1971
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– Programs: partial, sequential, imperative

– Program correctness

– When 2 programs realise the same algorithm?

– Milner’s proposal: simulation

– not quite today’s simulation
the proof technique, locality

– tree-like computation and concurrency mentioned for future
work

– ... but Milner never looked into that
(bisimulation might have been discovered)
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Milner, later in the 1970s

A novel theory of processes (CCS) where behavioural
equivalence is fundamental and based on locality

P
a

∼n+1 Q

a

P ′ ∼n Q′

∼0 ! P × P

∼ω !
⋂

n ∼n

A Calculus of Communicating Systems LNCS 92, Springer,
1980

Lemma ∼ω is not invariant under transitions
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Park, 80/81: sabbatical in Edinburgh

– Staying at Milner’s (!)

– A fixed-point reading of Milner’s theory:
The definition of ∼ω is based on a functional F that is
∗ monotone
∗ non-cocontinuous

– Applying fixed-point theory:
Bisimilarity (∼) ! gfp(F )
A bisimulation : a post-fixed point of F
Corollary : any bisimulation ⊆ ∼

∼ !
⋂
λ ordinalF

λ(P × P)
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if you buy a big enough house you can benefit
from other people’s ideas

— Milner
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Milner’s insights

– an equivalence based on locality

– the proof technique

And he made popular both bisimulation and coinduction

– CCS

– Milner and Tofte. Co-induction in relational semantics. TCS,
1991, and Tech. Rep. LFCS, Edinburgh, 1988.
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Origins of the names

Milner and Park, after the breakfast in which bisimulation
came up:

We went for a walk in the hills in the after-
noon, wondering what to call the equivalence.
He wanted "mimicry", which I thought a bad
idea (it’s a hard word to pronounce!). I sug-
gested "bisimulation"; his first reaction was "too
many syllables"; I replied that it was easy to
pronounce. I won.

— Milner
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Coinduction

– Barwise and Etchemendy, “The Liar: an Essay in Truth and
Circularity”, 1987

– Milner and Tofte, “Co-induction in relational semantics”.
Tech. Rep. LFCS, Edinburgh, 1988.
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Why bisimulation and coinduction
discovered so late?
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Weak homomorphism in automata theory

– well-known in the 1960s
[cf: Ginzburg’s book]

– Milner’s simulation, algebraically
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Algorithm for minimisation of automata

[ Huffman 1954 and Moore 1956]
[also: the Myhill-Nerode theorem 1957-58]

Find the non-equivalent states, as an inductive setN :

1. If s final and t is not, then s N t

2. if ∃ a s.t. σ(s, a) N σ(s, a) then s N t

The complement set: the equivalent states
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What is this complement set?

The largest relationR s.t.

1. s final and s R t imply t final, and the converse

2. ∀ a, if s R t then σ(s, a) R σ(s, a)

[cf: bisimilarity ]

NB: any relation with 1-2 above relates equivalent states

[cf: bisimulation ]
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The appearance of bisimulation in Set Theory

Foundations of set theory (cf: non-well-founded sets)

– Forti, Honsell ’80-83, Hinnion ’80-81
Bisimulations: f-conservative relations, contractions
Coinduction?
∗ yes
∗ a little hidden (more attention to bisimulation equivalences than
bisimulations)

– Aczel ’85-89
nwf sets popular, motivated by Milner’s work on CCS
the basis of the coalgebraic approach to semantics
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Much earlier than that....

– Dimitry Mirimanoff [1917] (“ensembles extraordinaires”)
Isomorphism between two nwf sets E and E′:
A perfect correspondence can be established between the
elements of E and E′, in such a way that:
1. all atoms e ∈ E corresponds to an atom e ∈ E′ and
conversely;

2. all sets F ∈ E corresponds to a set F ′ ∈ E′ so that the
perfect correspondence can also be established on F

and F ′ (ie, all atoms in F corresponds to an atom in F ′,
and so forth)
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For Mirimanoff: isomorphism is not equality
(cf: Zermelo’s extensionality axiom)
Hence isomorphism remains different from bisimilarity

Example:
A = {B} and B = {A} isomorphic, not equal
{A,B} not isomorphic to {A} or {B}

Had one investigated the impact of isomorphism on
extensionality, bisimulation and bisimilarity would have
been discovered

We have to wait 65 years : why?
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So: why bisimulation has been discovered so
late?

– Dangers of circularity and paradoxes (like Burali-Forti’s and
Russel’s)

– Russel’s stratified approach

– Common sense

– Lack of concrete motivations
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So: why bisimulation has been discovered so
late?

– Dangers of circularity and paradoxes (like Burali-Forti’s and
Russel’s)

– Russel’s stratified approach

– Common sense

– Lack of concrete motivations

– none of these entirely convincing (cf: automata theory)
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So: why bisimulation has been discovered so
late?

– Dangers of circularity and paradoxes (like Burali-Forti’s and
Russel’s)

– Russel’s stratified approach

– Common sense

– Lack of concrete motivations

– none of these entirely convincing (cf: automata theory)

– .... because Robin had not thought
about it earlier
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For the future
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– metatheory

– probabilistic coinduction

– higher-order languages

– ...
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Enhancements of the
bisimulation/coinduction proof method
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Ambients: syntax

Processes
P ::= n〈P 〉 ambient

| inn.P in action

| outn.P out action

| openn.P open action

| P | P parallel

| νn P restriction

| . . .
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The in movement

n

inm.P |

m

Q −→

m

n

P | Q

The out movement

m

n

outn.P1 | P2 | Q
−→

n

P1 | P2
|

m

Q
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Enhancements of the method: an example

The perfect-firewall equation in Ambients

P : a process with n not free in it

νn n〈P 〉 ∼ 0

Proof: Let’s find a bisimulation...
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Is this a bisimulation?

R ! { (νn n〈P 〉 , 0) }
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Is this a bisimulation?

R ! { (νn n〈P 〉 , 0) }

No! Suppose P
enter k〈Q〉

−−−−−−−−−→ P

(the loop: simplifies the example, not necessary)

νn n〈P 〉

enter k〈Q〉

R 0

enter k〈Q〉

k〈Q | νn n〈P 〉 〉 R! k〈Q〉 | 0

Try again...
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Is this a bisimulation?

R ! { (νn n〈P 〉 , 0) }

∪k,Q { (k〈Q | νn n〈P 〉 〉 , k〈Q〉 | 0) }
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Is this a bisimulation?

R ! { (νn n〈P 〉 , 0) }

∪k,Q { (k〈Q | νn n〈P 〉 〉 , k〈Q〉 | 0) }

No! Suppose Q = h〈out k.R〉 | Q′

k〈Q | νn n〈P 〉 〉 R k〈Q〉 | 0

k〈Q′ | νn n〈P 〉 〉 | h〈R〉 R! k〈Q′〉 | h〈R〉 | 0

Try again...
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Is this a bisimulation?

R ! { (νn n〈P 〉 , 0) }

∪k,Q { (k〈Q | νn n〈P 〉 〉 , k〈Q〉 | 0) }

Also: Suppose Q = inh.Q′

k〈Q | νn n〈P 〉 〉

enter h〈R〉

R k〈Q〉 | 0

enter h〈R〉

h〈R | k〈Q′ | νn n〈P 〉 〉 〉 R! h〈R | k〈Q′ 〉 〉 | 0

Try again...
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The bisimulation:

R ! ∪C is a static contexts
{(S, T ) : S ∼ C[νn n〈P 〉 ]

T ∼ C[0] }

C ::= k〈C〉 | P | C | νa C | [ ]

We started with the singleton relation

{(νn n〈P 〉 , 0)}

The added pairs: redundant? (derivable, laws of ∼)

Can we work with relations smaller than bisimulations?

Advantage: fewer and simpler bisimulation diagrams
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Redundant pairs

What we would like to do:

R ! R∗ − {some redundant pairs}

P

α
R Q

α

P ′ R∗ Q′

impliesR ⊆ ∼
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Redundant pairs
What we would like to do:

R ! R∗ − {some redundant pairs}

P
α

R Q

α

P ′ R∗ Q′

impliesR ⊆ ∼

A wrong definition of redundant:

S ! a set of inference rules valid for ∼

(P,Q) is redundant in (P,Q) ∪ R if

S
R ⊆ ∼

P ∼ Q
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False!

Counterexample
S !

a.P ∼ a.Q

P ∼ Q

R ! {(a. b, a. c)}

R∗ ! R ∪ {(b, c)}

a. b
a

R a. c
a

b R∗ c

but a. b -∼ a. c
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In some cases it works

– Rules for transitivity of ∼ (up-to ∼) [Milner]

P
α

R Q

α

P ′ ∼ P ′′ R Q′′ ∼ Q′

impliesR ⊆∼

Warning: in some cases it does not work,
even though ∼ is transitive
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In some cases it works

– Rules for transitivity of ∼ (up-to ∼)

– rules for substitutivity of ∼ (up-to context)
[Sangiorgi]

P

α

R Q

α

C! [P ′] R C! [Q′]

impliesR ⊆∼

Warning: in some cases it does not work,
even though the contexts preserve ∼
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In some cases it works

– Rules for transitivity of ∼ (up-to ∼)

– rules for substitutivity of ∼ (up-to context)

– rules for invariance of ∼ under injective substitutions
(up-to injective substitutions)

P
α

R Q

α

P ′σ R Q′σ

σ: an injective function σ

impliesR ⊆∼
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Composition of techniques

diagram : P

α

R Q

α

P ′ ∼ C![P ′′σ! ] R C![Q′′ σ! ] ∼ Q′

More sophistication⇒

– more powerful technique

– harder soundness proof for the technique

page 48



Proof of the firewall, composition of up-to
techniques

We can prove νn n〈P 〉 ∼ 0 using the singleton relation

νn n〈P 〉

enter k〈Q〉

R 0
enter k〈Q〉

k〈Q | νn n〈P 〉 〉 k〈Q〉 | 0
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Proof of the firewall, composition of up-to
techniques

We can prove νn n〈P 〉 ∼ 0 using the singleton relation

νn n〈P 〉

enter k〈Q〉

R 0
enter k〈Q〉

k〈Q | νn n〈P 〉 〉 k〈Q〉 | 0

∼ ∼

k〈Q | νn n〈P 〉 〉 k〈Q | 0〉
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Proof of the firewall, composition of up-to
techniques

We can prove νn n〈P 〉 ∼ 0 using the singleton relation

νn n〈P 〉

enter k〈Q〉

R 0
enter k〈Q〉

k〈Q | νn n〈P 〉 〉 k〈Q〉 | 0

∼ ∼

k〈Q |νn n〈P 〉 〉! R k〈Q | 0〉!
[Merro, Zappa Nardelli, JACM]

“up-to ∼” and “up-to context”

(full proof also needs up-to injective substitutions)
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Counterexample : up-to context that fails

P := f(P ) | a. P | 0

P
a

−→ P ′ P ′
a

−→ P ′′

f(P )
a

−→ P ′′

Bisimulation is a congruence, yet:

a. 0
a

R a. a. 0
a

0 ∼ f! (a. 0) R f! (a. a. 0) ∼ a. 0
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Counterexample : up-to context that fails

P := f(P ) | a. P | 0

P
a

−→ P ′ P ′
a

−→ P ′′

f(P )
a

−→ P ′′

Bisimulation is a congruence, yet:

a. 0
a

R a. a. 0
a

0 ∼ f!(a. 0) R f!(a. a. 0) ∼ a. 0
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Lessons

– Enhancements of the bisimulation proof methods:
extremely useful
∗ essential in π-calculus-like languages, higher-order
languages

– Various forms of enhancement (“up-to techniques”)
∗ composition of techniques

– Proofs of soundness of these techniques may be
complex
∗ separate ad hoc proofs for each technique
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Needed

– A general theory of enhancements
∗ powerful techniques
∗ combination of techniques
∗ easy to derive their soundness
Partial results: [ Pous, Sangiorgi]

– What is a redundant pair?
(i.e., a pair for which the bisimulation diagram is not necessary)

– Robust definition of enhancement

– Weak bisimilarity
Partial results: [Hirschkoff, Pous]

– Mechanical verification

– Metatheory of bisimulation enhancements
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