Some remarks on Bisimulation and Coinduction

Davide Sangiorgi

University of Bologna

Email: Davide.Sangiorgi@cs.unibo.it
 http://www.cs.unibo.it/~sangio/

Edinburgh, April 2012

The '91 Turing Award to Arthur John Robin Gorell Milner

From http://amturing.acm.org/

"For three distinct and complete achievements:

- 1. LCF
- 2. ML
- 3. CCS.

In addition, he formulated and strongly advanced full abstraction"

No bisimulation and coinduction

Another fundamental contribution for Milner: Bisimulation and Coinduction

Bisimulation, bisimilarity, coinduction

Bisimulation:

$$\begin{array}{ccccc} \text{A relation } \mathcal{R} \text{ s.t.} & P & \mathcal{R} & Q \\ & \alpha \downarrow & & \downarrow \alpha \\ & P' & \mathcal{R} & Q' \end{array}$$

Bisimilarity (\sim) :

 $\bigcup \{\mathcal{R} : \mathcal{R} \text{ is a bisimulation }\}$

(coind. definition)

Hence:

 $\frac{P \ \mathcal{R} \ Q}{P \sim Q} \qquad \qquad \mathcal{R} \text{ is a bisimulation}$

(coind. proof principle)

Major contributions to concurrency theory...

- To **define equality** on processes (fundamental !!)

- To prove equalities

- * even if bisimilarity is not the chosen equivalence
 - trying bisimilarity first
 - coinductive characterisations of the chosen equivalence
- To justify algebraic laws
- To minimise the state space
- To abstract from certain details

In fact, major contributions to computer science...

- Functional languages and OO languages
- Program analysis
- Verification tools:
- Type theory
- Databases
- Compiler correctness

And beyond computer science....

- Set Theory and Mathematics
- Modal Logics
- Artificial Intelligence
- Cognitive Science
- Philosophy
- Physics

The discovery of bisimulation and coinduction

Robin Milner

David Park

Milner, early 1970s

Session No. 11 Theoretical Foundations 1971

AN ALCEBRAIC DEFINITION OF SIMULATION BETWEEN PROGRAMS *

Robin Milner

Computer Science Department Stanford University Stanford, California

A <u>simulation</u> relation between programs is defined which is a quasi-ordering. Mutual simulation is then an equivalence relation, and by dividing out by it we abstract from a program such details as how the sequencing is controlled and how data is represented. The equivalence classes are approximations to the <u>algorithms</u> which are realized, or expressed, by their member programs.

A technique is given and illustrated for proving simulation and equivalence of programs; there is an analogy with Floyd's technique for proving correctness of programs. Finally, necessary and sufficient conditions for simulation are given.

DESCRIPTIVE TERMS: Simulation, weak homomorphism, algorithm, program correctness, program equivalence. A formal notion of simulation between programs. Memo 14, Comp. and Logic Research Group, University of Swansea, 1970 Program simulation: an extended formal notion. Memo 17, Comp. and Logic Research Group, University of Swansea, 1971 An algebraic definition of simulation between programs 2nd International Joint Conferences on Artificial Intelligence, London, 1971

- Programs: partial, sequential, imperative
- Program correctness
- When 2 programs realise the same algorithm?
- Milner's proposal: simulation
- not quite today's simulation
 the proof technique, locality
- tree-like computation and concurrency mentioned for future work
- ... but Milner never looked into that (bisimulation might have been discovered)

Milner, later in the 1970s

A novel theory of processes (CCS) where behavioural equivalence is fundamental and based on locality

A Calculus of Communicating Systems LNCS 92, Springer, 1980

Lemma \sim_{ω} is not invariant under transitions

Park, 80/81: sabbatical in Edinburgh

- Staying at Milner's (!)
- A fixed-point reading of Milner's theory:
 - The definition of \sim_{ω} is based on a functional ${\mathcal F}$ that is
 - * monotone
 - * non-cocontinuous
- Applying fixed-point theory: Bisimilarity (\sim) \triangleq gfp(\mathcal{F}) A bisimulation : a post-fixed point of \mathcal{F} Corollary : any bisimulation $\subseteq \sim$ $\sim \triangleq \bigcap_{\lambda \text{ ordinal}} \mathcal{F}^{\lambda}(\mathcal{P} \times \mathcal{P})$

if you buy a big enough house you can benefit from other people's ideas

- Milner

Milner's insights

- an equivalence based on locality
- the proof technique

And he made popular both bisimulation and coinduction

- CCS
- Milner and Tofte. Co-induction in relational semantics. TCS, 1991, and Tech. Rep. LFCS, Edinburgh, 1988.

Origins of the names

Milner and Park, after the breakfast in which bisimulation came up:

We went for a walk in the hills in the afternoon, wondering what to call the equivalence. He wanted "mimicry", which I thought a bad idea (it's a hard word to pronounce!). I suggested "bisimulation"; his first reaction was "too many syllables"; I replied that it was easy to pronounce. I won.

– Milner

Coinduction

- Barwise and Etchemendy, "The Liar: an Essay in Truth and Circularity", 1987
- Milner and Tofte, "Co-induction in relational semantics".
 Tech. Rep. LFCS, Edinburgh, 1988.

Why bisimulation and coinduction discovered so late?

Weak homomorphism in automata theory

- well-known in the 1960s

[cf: Ginzburg's book]

- Milner's simulation, algebraically

Algorithm for minimisation of automata

[Huffman 1954 and Moore 1956]

[also: the Myhill-Nerode theorem 1957-58]

Find the **non-equivalent states**, as an inductive set N:

- 1. If s final and t is not, then s N t
- 2. if $\exists a$ s.t. $\sigma(s, a) N \sigma(s, a)$ then s N t

The complement set: the equivalent states

What is this complement set?

The largest relation \mathcal{R} s.t.

1. s final and s \mathcal{R} t imply t final, and the converse

```
2. \forall a, if s \mathcal{R} t then \sigma(s, a) \mathcal{R} \sigma(s, a)
```

[cf: bisimilarity]

NB: any relation with 1-2 above relates equivalent states

[cf: bisimulation]

The appearance of bisimulation in Set Theory

Foundations of set theory (cf: non-well-founded sets)

- Forti, Honsell '80-83, Hinnion '80-81

Bisimulations: f-conservative relations, contractions Coinduction?

- * yes
- * a little hidden (more attention to bisimulation equivalences than bisimulations)

- Aczel '85-89

nwf sets popular, motivated by Milner's work on CCS the basis of the coalgebraic approach to semantics

Much earlier than that....

- Dimitry Mirimanoff [1917] ("ensembles extraordinaires") **Isomorphism** between two nwf sets E and E':

A perfect correspondence can be established between the elements of E and E', in such a way that:

- 1. all atoms $e \in E$ corresponds to an atom $e \in E'$ and conversely;
- 2. all sets $F \in E$ corresponds to a set $F' \in E'$ so that the perfect correspondence can also be established on F and F' (ie, all atoms in F corresponds to an atom in F', and so forth)

For Mirimanoff: **isomorphism is not equality** (cf: Zermelo's extensionality axiom) Hence **isomorphism remains different from bisimilarity**

Example:

 $A = \{B\}$ and $B = \{A\}$ isomorphic, not equal $\{A, B\}$ not isomorphic to $\{A\}$ or $\{B\}$

Had one investigated the impact of isomorphism on extensionality, bisimulation and bisimilarity would have been discovered

We have to wait 65 years : why?

So: why bisimulation has been discovered so late?

- Dangers of circularity and paradoxes (like Burali-Forti's and Russel's)
- Russel's stratified approach
- Common sense
- Lack of concrete motivations

So: why bisimulation has been discovered so late?

- Dangers of circularity and paradoxes (like Burali-Forti's and Russel's)
- Russel's stratified approach
- Common sense
- Lack of concrete motivations
- none of these entirely convincing (cf: automata theory)

So: why bisimulation has been discovered so late?

- Dangers of circularity and paradoxes (like Burali-Forti's and Russel's)
- Russel's stratified approach
- Common sense
- Lack of concrete motivations
- none of these entirely convincing (cf: automata theory)

 - because Robin had not thought about it earlier

For the future

metatheory

. . .

- probabilistic coinduction
- higher-order languages

Enhancements of the bisimulation/coinduction proof method

Ambients: syntax

P	::=	$n\langle P angle$	<i>Processes</i> ambient
		$ ext{in} n. P$	in action
		$ ext{out} n. P$	out action
		$ ext{open}n.P$	open action
		$P \mid P$	parallel
		u n P	restriction
		• • •	

The in movement

The out movement

Enhancements of the method: an example

The perfect-firewall equation in Ambients

P: a process with n not free in it

$$u n \, \left< P \right> \sim 0$$

Proof: Let's find a bisimulation...

Is this a bisimulation?

$$\mathcal{R}\, riangleq\, \{\, (
u n\,\, n \langle P
angle\,,\, 0)\, \}$$

$$\mathcal{R}\, riangleq\, \{\, (
u n\,\, n \langle P
angle\,,\, 0)\, \}$$

No!

(the loop: simplifies the example, not necessary)

$$egin{array}{lll}
un \ n\langle P
angle & \mathcal{R} & 0 \ & & & & \downarrow ext{enter}_k\langle Q
angle \ & & & \downarrow ext{enter}_k\langle Q
angle \ & & & & & \downarrow ext{enter}_k\langle Q
angle \ & & & & & k\langle Q
angle \mid 0 \end{array}$$

Is this a bisimulation?

No! Suppose $Q = h \langle \text{out } k. R \rangle \mid Q'$

Try again...

Also: Suppose $Q = \operatorname{in} h. Q'$

 $\begin{array}{cccc} k\langle Q \mid \nu n \ n \langle P \rangle \ \rangle & \mathcal{R} & k \langle Q \rangle \mid 0 \\ \\ \texttt{enter} h \langle R \rangle & & & & & & & \\ h \langle R \mid k \langle Q' \mid \nu n \ n \langle P \rangle \ \rangle & & & & & & & & & \\ h \langle R \mid k \langle Q' \mid \nu n \ n \langle P \rangle \ \rangle & & & & & & & & & & \\ \end{array}$

Try again...

The bisimulation:

We started with the **singleton** relation

 $\{\left(
u n \,\, n \langle P
ight
angle \,, \,\, 0
ight)\}$

The added pairs: **redundant**? (derivable, laws of \sim)

Can we work with relations smaller than bisimulations?

Advantage: fewer and simpler bisimulation diagrams

Redundant pairs

What we would like to do:

 $\mathcal{R} \triangleq \mathcal{R}^* - \{\text{some redundant pairs}\}$

$$\begin{array}{cccc} P & \mathcal{R} & Q & \text{implies } \mathcal{R} \subseteq \sim \\ \alpha \swarrow & & & \downarrow \alpha \\ P' & \mathcal{R}^* & Q' \end{array}$$

Redundant pairs

What we would like to do:

 $\mathcal{R} \triangleq \mathcal{R}^* - \{\text{some redundant pairs}\}$

$$\begin{array}{cccc} P & \mathcal{R} & Q & \text{implies } \mathcal{R} \subseteq \sim \\ \alpha \swarrow & & & & \downarrow \alpha \\ P' & \mathcal{R}^* & Q' \end{array}$$

A wrong definition of redundant:

 $\mathcal{S} \triangleq$ a set of inference rules valid for \sim

(P,Q) is redundant in $(P,Q) \cup \mathcal{R}$ if $\mathcal{S} \quad \frac{\mathcal{R} \subseteq \sim}{P \sim Q}$

False!

Counterexample

$$\mathcal{S} riangleq rac{a.\,P \sim a.\,Q}{P \sim Q}$$

$$egin{array}{rcl} \mathcal{R} & riangleq & \{(a.\,b,a.\,c)\} \ R^* & riangleq & \mathcal{R} \cup \{(b,c)\} \end{array}$$

In some cases it works

– Rules for transitivity of \sim (up-to \sim) [Milner]

Warning: in some cases it does not work, even though \sim is transitive

In some cases it works

- Rules for transitivity of \sim (up-to \sim)
- rules for substitutivity of \sim (up-to context)

[Sangiorgi]

Warning: in some cases it does not work, even though the contexts preserve \sim

In some cases it works

- Rules for transitivity of \sim (up-to \sim)
- rules for substitutivity of \sim (up-to context)
- rules for invariance of \sim under injective substitutions (up-to injective substitutions)

$$\begin{array}{cccc} P & \mathcal{R} & Q \\ \alpha \downarrow & & \downarrow \alpha \\ P'\sigma & \mathcal{R} & Q'\sigma \end{array}$$

implies $\mathcal{R}\subseteq \sim$

 σ : an injective function σ

Composition of techniques

diagram : $\begin{array}{cccc} P & \mathcal{R} & Q \\ \alpha \downarrow & & \downarrow \alpha \\ P' & \sim & \swarrow [P'' \swarrow] \mathcal{R} \swarrow [Q'' \swarrow] & \sim Q' \end{array}$

More sophistication \Rightarrow

- more powerful technique
- harder soundness proof for the technique

Proof of the firewall, composition of up-to techniques

We can prove $\nu n \ n \langle P \rangle \sim 0$ using the singleton relation

 $egin{array}{lll}
un \ n\langle P
angle & \mathcal{R} & 0 \ & & & & \downarrow ext{enter}_k\langle Q
angle \ & & & \downarrow ext{enter}_k\langle Q
angle \ & & & & & k\langle Q
angle & & & k\langle Q
angle & & & k\langle Q
angle \ & & & & & k\langle Q
angle & & & & k\langle Q
angle & & & & 0 \ \end{array}$

Proof of the firewall, composition of up-to techniques

We can prove $\nu n \ n \langle P \rangle \sim 0$ using the singleton relation

 $egin{aligned} &
un \ n \langle P
angle & \mathcal{R} & 0 \ & & & & \downarrow ext{enter}_k \langle Q
angle \ & & & & \downarrow ext{enter}_k \langle Q
angle \ & & & & k \langle Q
angle & & & & k \langle Q
angle & & & & & & k \langle Q
angle & & & & & k \langle Q
angle & & & & & k \rangle \\ \end{array}$

 \sim

 \sim

Proof of the firewall, composition of up-to techniques

We can prove $\nu n \ n \langle P \rangle \sim 0$ using the singleton relation

 $egin{array}{lll}
un \ n\langle P
angle & \mathcal{R} & 0 \ & & & & \downarrow ext{enter}_k\langle Q
angle \ & & & \downarrow ext{enter}_k\langle Q
angle \ & & & & k\langle Q
angle \ & & & & k\langle Q
angle \mid 0 \end{array}$

 \sim

 \sim

 $k\langle Q \mid
un \mid n \langle P
angle
angle \quad \mathcal{R} \quad k \langle Q \mid 0
angle$

[Merro, Zappa Nardelli, JACM]

"up-to \sim " and "up-to context"

(full proof also needs up-to injective substitutions)

Counterexample : up-to context that fails

$$P := f(P) \mid a. P \mid 0$$

$$\frac{P \xrightarrow{a} P' \qquad P' \xrightarrow{a} P''}{f(P) \xrightarrow{a} P''}$$

Bisimulation is a congruence, yet:

$$\begin{array}{cccc} a.0 & \mathcal{R} & a.a.0 \\ a & & & & & \\ 0 & \sim f(a.\ 0) & f(a.\ a.\ 0) \sim & a.0 \end{array}$$

Counterexample : up-to context that fails

$$P := f(P) \mid a. P \mid 0$$

$$\frac{P \xrightarrow{a} P' \qquad P' \xrightarrow{a} P''}{f(P) \xrightarrow{a} P''}$$

Bisimulation is a congruence, yet:

$$\begin{array}{cccc} a.0 & \mathcal{R} & a.a.0 \\ a & & & & & \\ a & & & & \\ 0 & \sim & (a.0) & \mathcal{R} & (a.a.0) \sim a.0 \end{array}$$

Lessons

- Enhancements of the bisimulation proof methods: extremely useful
 - * **essential** in π -calculus-like languages, higher-order languages
- Various forms of enhancement ("up-to techniques")
 * composition of techniques
- Proofs of soundness of these techniques may be complex
 - * separate ad hoc proofs for each technique

Needed

- A general theory of enhancements

- * powerful techniques
- * combination of techniques
- * easy to derive their soundness

Partial results: [Pous, Sangiorgi]

- What is a redundant pair?

(i.e., a pair for which the bisimulation diagram is not necessary)

Robust definition of enhancement

Weak bisimilarity

Partial results: [Hirschkoff, Pous]

- Mechanical verification
- Metatheory of bisimulation enhancements