
Some remarks on Bisimulation and
Coinduction

Davide Sangiorgi

University of Bologna

Email: Davide.Sangiorgi@cs.unibo.it
http://www.cs.unibo.it/˜sangio/

Edinburgh, April 2012

The ’91 Turing Award to
Arthur John Robin Gorell Milner

page 1

From http://amturing.acm.org/

“For three distinct and complete achievements:

1. LCF

2. ML

3. CCS.

In addition, he formulated and strongly advanced full
abstraction”

page 2

No bisimulation and coinduction

page 3

Another fundamental contribution for Milner:
Bisimulation and Coinduction

page 4

Bisimulation, bisimilarity, coinduction

Bisimulation:

A relationR s.t. P
α

R Q

α

P ′ R Q′

Bisimilarity (∼) :

∪ {R : R is a bisimulation } (coind. definition)

Hence:

P R Q R is a bisimulation
P ∼ Q

(coind. proof principle)

page 5

Major contributions to concurrency theory...

– To define equality on processes (fundamental !!)

– To prove equalities
∗ even if bisimilarity is not the chosen equivalence

· trying bisimilarity first
· coinductive characterisations of the chosen equivalence

– To justify algebraic laws

– To minimise the state space

– To abstract from certain details

page 6

In fact, major contributions to computer
science...

– Functional languages and OO languages

– Program analysis

– Verification tools:

– Type theory

– Databases

– Compiler correctness

page 7

And beyond computer science....

– Set Theory and Mathematics

– Modal Logics

– Artificial Intelligence

– Cognitive Science

– Philosophy

– Physics

page 8

The discovery of bisimulation and coinduction

page 9

Robin Milner David Park

page 10

Milner, early 1970s

page 11

A formal notion of simulation between programs. Memo 14,
Comp. and Logic Research Group, University of Swansea, 1970
Program simulation: an extended formal notion. Memo 17,
Comp. and Logic Research Group, University of Swansea, 1971
An algebraic definition of simulation between programs 2nd
International Joint Conferences on Artificial Intelligence, London, 1971

page 12

– Programs: partial, sequential, imperative

– Program correctness

– When 2 programs realise the same algorithm?

– Milner’s proposal: simulation

– not quite today’s simulation
the proof technique, locality

– tree-like computation and concurrency mentioned for future
work

– ... but Milner never looked into that
(bisimulation might have been discovered)

page 13

Milner, later in the 1970s

A novel theory of processes (CCS) where behavioural
equivalence is fundamental and based on locality

P
a

∼n+1 Q

a

P ′ ∼n Q′

∼0 ! P × P

∼ω !
⋂

n ∼n

A Calculus of Communicating Systems LNCS 92, Springer,
1980

Lemma ∼ω is not invariant under transitions

page 14

Park, 80/81: sabbatical in Edinburgh

– Staying at Milner’s (!)

– A fixed-point reading of Milner’s theory:
The definition of ∼ω is based on a functional F that is
∗ monotone
∗ non-cocontinuous

– Applying fixed-point theory:
Bisimilarity (∼) ! gfp(F)
A bisimulation : a post-fixed point of F
Corollary : any bisimulation ⊆ ∼

∼ !
⋂
λ ordinalF

λ(P × P)

page 15

if you buy a big enough house you can benefit
from other people’s ideas

— Milner

page 16

Milner’s insights

– an equivalence based on locality

– the proof technique

And he made popular both bisimulation and coinduction

– CCS

– Milner and Tofte. Co-induction in relational semantics. TCS,
1991, and Tech. Rep. LFCS, Edinburgh, 1988.

page 17

Origins of the names

Milner and Park, after the breakfast in which bisimulation
came up:

We went for a walk in the hills in the after-
noon, wondering what to call the equivalence.
He wanted "mimicry", which I thought a bad
idea (it’s a hard word to pronounce!). I sug-
gested "bisimulation"; his first reaction was "too
many syllables"; I replied that it was easy to
pronounce. I won.

— Milner

page 18

Coinduction

– Barwise and Etchemendy, “The Liar: an Essay in Truth and
Circularity”, 1987

– Milner and Tofte, “Co-induction in relational semantics”.
Tech. Rep. LFCS, Edinburgh, 1988.

page 19

Why bisimulation and coinduction
discovered so late?

page 20

Weak homomorphism in automata theory

– well-known in the 1960s
[cf: Ginzburg’s book]

– Milner’s simulation, algebraically

page 21

Algorithm for minimisation of automata

[Huffman 1954 and Moore 1956]
[also: the Myhill-Nerode theorem 1957-58]

Find the non-equivalent states, as an inductive setN :

1. If s final and t is not, then s N t

2. if ∃ a s.t. σ(s, a) N σ(s, a) then s N t

The complement set: the equivalent states

page 22

What is this complement set?

The largest relationR s.t.

1. s final and s R t imply t final, and the converse

2. ∀ a, if s R t then σ(s, a) R σ(s, a)

[cf: bisimilarity]

NB: any relation with 1-2 above relates equivalent states

[cf: bisimulation]

page 23

The appearance of bisimulation in Set Theory

Foundations of set theory (cf: non-well-founded sets)

– Forti, Honsell ’80-83, Hinnion ’80-81
Bisimulations: f-conservative relations, contractions
Coinduction?
∗ yes
∗ a little hidden (more attention to bisimulation equivalences than
bisimulations)

– Aczel ’85-89
nwf sets popular, motivated by Milner’s work on CCS
the basis of the coalgebraic approach to semantics

page 24

Much earlier than that....

– Dimitry Mirimanoff [1917] (“ensembles extraordinaires”)
Isomorphism between two nwf sets E and E′:
A perfect correspondence can be established between the
elements of E and E′, in such a way that:
1. all atoms e ∈ E corresponds to an atom e ∈ E′ and
conversely;

2. all sets F ∈ E corresponds to a set F ′ ∈ E′ so that the
perfect correspondence can also be established on F

and F ′ (ie, all atoms in F corresponds to an atom in F ′,
and so forth)

page 25

For Mirimanoff: isomorphism is not equality
(cf: Zermelo’s extensionality axiom)
Hence isomorphism remains different from bisimilarity

Example:
A = {B} and B = {A} isomorphic, not equal
{A,B} not isomorphic to {A} or {B}

Had one investigated the impact of isomorphism on
extensionality, bisimulation and bisimilarity would have
been discovered

We have to wait 65 years : why?

page 26

So: why bisimulation has been discovered so
late?

– Dangers of circularity and paradoxes (like Burali-Forti’s and
Russel’s)

– Russel’s stratified approach

– Common sense

– Lack of concrete motivations

page 27

So: why bisimulation has been discovered so
late?

– Dangers of circularity and paradoxes (like Burali-Forti’s and
Russel’s)

– Russel’s stratified approach

– Common sense

– Lack of concrete motivations

– none of these entirely convincing (cf: automata theory)

page 28

So: why bisimulation has been discovered so
late?

– Dangers of circularity and paradoxes (like Burali-Forti’s and
Russel’s)

– Russel’s stratified approach

– Common sense

– Lack of concrete motivations

– none of these entirely convincing (cf: automata theory)

– because Robin had not thought
about it earlier

page 29

For the future

page 30

– metatheory

– probabilistic coinduction

– higher-order languages

– ...

page 31

Enhancements of the
bisimulation/coinduction proof method

page 32

Ambients: syntax

Processes
P ::= n〈P 〉 ambient

| inn.P in action

| outn.P out action

| openn.P open action

| P | P parallel

| νn P restriction

| . . .

page 33

The in movement

n

inm.P |

m

Q −→

m

n

P | Q

The out movement

m

n

outn.P1 | P2 | Q
−→

n

P1 | P2
|

m

Q

page 34

Enhancements of the method: an example

The perfect-firewall equation in Ambients

P : a process with n not free in it

νn n〈P 〉 ∼ 0

Proof: Let’s find a bisimulation...

page 35

Is this a bisimulation?

R ! { (νn n〈P 〉 , 0) }

page 36

Is this a bisimulation?

R ! { (νn n〈P 〉 , 0) }

No! Suppose P
enter k〈Q〉

−−−−−−−−−→ P

(the loop: simplifies the example, not necessary)

νn n〈P 〉

enter k〈Q〉

R 0

enter k〈Q〉

k〈Q | νn n〈P 〉 〉 R! k〈Q〉 | 0

Try again...

page 37

Is this a bisimulation?

R ! { (νn n〈P 〉 , 0) }

∪k,Q { (k〈Q | νn n〈P 〉 〉 , k〈Q〉 | 0) }

page 38

Is this a bisimulation?

R ! { (νn n〈P 〉 , 0) }

∪k,Q { (k〈Q | νn n〈P 〉 〉 , k〈Q〉 | 0) }

No! Suppose Q = h〈out k.R〉 | Q′

k〈Q | νn n〈P 〉 〉 R k〈Q〉 | 0

k〈Q′ | νn n〈P 〉 〉 | h〈R〉 R! k〈Q′〉 | h〈R〉 | 0

Try again...
page 39

Is this a bisimulation?

R ! { (νn n〈P 〉 , 0) }

∪k,Q { (k〈Q | νn n〈P 〉 〉 , k〈Q〉 | 0) }

Also: Suppose Q = inh.Q′

k〈Q | νn n〈P 〉 〉

enter h〈R〉

R k〈Q〉 | 0

enter h〈R〉

h〈R | k〈Q′ | νn n〈P 〉 〉 〉 R! h〈R | k〈Q′ 〉 〉 | 0

Try again...
page 40

The bisimulation:

R ! ∪C is a static contexts
{(S, T) : S ∼ C[νn n〈P 〉]

T ∼ C[0] }

C ::= k〈C〉 | P | C | νa C | []

We started with the singleton relation

{(νn n〈P 〉 , 0)}

The added pairs: redundant? (derivable, laws of ∼)

Can we work with relations smaller than bisimulations?

Advantage: fewer and simpler bisimulation diagrams
page 41

Redundant pairs

What we would like to do:

R ! R∗ − {some redundant pairs}

P

α
R Q

α

P ′ R∗ Q′

impliesR ⊆ ∼

page 42

Redundant pairs
What we would like to do:

R ! R∗ − {some redundant pairs}

P
α

R Q

α

P ′ R∗ Q′

impliesR ⊆ ∼

A wrong definition of redundant:

S ! a set of inference rules valid for ∼

(P,Q) is redundant in (P,Q) ∪ R if

S
R ⊆ ∼

P ∼ Q

page 43

False!

Counterexample
S !

a.P ∼ a.Q

P ∼ Q

R ! {(a. b, a. c)}

R∗ ! R ∪ {(b, c)}

a. b
a

R a. c
a

b R∗ c

but a. b -∼ a. c

page 44

In some cases it works

– Rules for transitivity of ∼ (up-to ∼) [Milner]

P
α

R Q

α

P ′ ∼ P ′′ R Q′′ ∼ Q′

impliesR ⊆∼

Warning: in some cases it does not work,
even though ∼ is transitive

page 45

In some cases it works

– Rules for transitivity of ∼ (up-to ∼)

– rules for substitutivity of ∼ (up-to context)
[Sangiorgi]

P

α

R Q

α

C! [P ′] R C! [Q′]

impliesR ⊆∼

Warning: in some cases it does not work,
even though the contexts preserve ∼

page 46

In some cases it works

– Rules for transitivity of ∼ (up-to ∼)

– rules for substitutivity of ∼ (up-to context)

– rules for invariance of ∼ under injective substitutions
(up-to injective substitutions)

P
α

R Q

α

P ′σ R Q′σ

σ: an injective function σ

impliesR ⊆∼

page 47

Composition of techniques

diagram : P

α

R Q

α

P ′ ∼ C![P ′′σ!] R C![Q′′ σ!] ∼ Q′

More sophistication⇒

– more powerful technique

– harder soundness proof for the technique

page 48

Proof of the firewall, composition of up-to
techniques

We can prove νn n〈P 〉 ∼ 0 using the singleton relation

νn n〈P 〉

enter k〈Q〉

R 0
enter k〈Q〉

k〈Q | νn n〈P 〉 〉 k〈Q〉 | 0

page 49

Proof of the firewall, composition of up-to
techniques

We can prove νn n〈P 〉 ∼ 0 using the singleton relation

νn n〈P 〉

enter k〈Q〉

R 0
enter k〈Q〉

k〈Q | νn n〈P 〉 〉 k〈Q〉 | 0

∼ ∼

k〈Q | νn n〈P 〉 〉 k〈Q | 0〉

page 50

Proof of the firewall, composition of up-to
techniques

We can prove νn n〈P 〉 ∼ 0 using the singleton relation

νn n〈P 〉

enter k〈Q〉

R 0
enter k〈Q〉

k〈Q | νn n〈P 〉 〉 k〈Q〉 | 0

∼ ∼

k〈Q |νn n〈P 〉 〉! R k〈Q | 0〉!
[Merro, Zappa Nardelli, JACM]

“up-to ∼” and “up-to context”

(full proof also needs up-to injective substitutions)
page 51

Counterexample : up-to context that fails

P := f(P) | a. P | 0

P
a

−→ P ′ P ′
a

−→ P ′′

f(P)
a

−→ P ′′

Bisimulation is a congruence, yet:

a. 0
a

R a. a. 0
a

0 ∼ f! (a. 0) R f! (a. a. 0) ∼ a. 0

page 52

Counterexample : up-to context that fails

P := f(P) | a. P | 0

P
a

−→ P ′ P ′
a

−→ P ′′

f(P)
a

−→ P ′′

Bisimulation is a congruence, yet:

a. 0
a

R a. a. 0
a

0 ∼ f!(a. 0) R f!(a. a. 0) ∼ a. 0

page 53

Lessons

– Enhancements of the bisimulation proof methods:
extremely useful
∗ essential in π-calculus-like languages, higher-order
languages

– Various forms of enhancement (“up-to techniques”)
∗ composition of techniques

– Proofs of soundness of these techniques may be
complex
∗ separate ad hoc proofs for each technique

page 54

Needed

– A general theory of enhancements
∗ powerful techniques
∗ combination of techniques
∗ easy to derive their soundness
Partial results: [Pous, Sangiorgi]

– What is a redundant pair?
(i.e., a pair for which the bisimulation diagram is not necessary)

– Robust definition of enhancement

– Weak bisimilarity
Partial results: [Hirschkoff, Pous]

– Mechanical verification

– Metatheory of bisimulation enhancements
page 55

