

Happy ABC: Expectation-Propagation for Summary-Less, Likelihood-Free Inference

Nicolas Chopin

CREST (ENSAE)

joint work with Simon Barthelmé (TU Berlin)

Basic ABC

Data: y^* , prior $p(\theta)$, model $p(y|\theta)$. Likelihood $p(y|\theta)$ is intractable.

- $oldsymbol{0}$ Sample $oldsymbol{ heta} \sim p(oldsymbol{ heta})$
- 2 Sample $y \sim p(y|\theta)$
- **3** Accept $\boldsymbol{\theta}$ iff $\|s(\boldsymbol{y}) s(\boldsymbol{y}^{\star})\| \leq \epsilon$

ABC target

The previous algorithm targets:

$$p_{\epsilon}(\boldsymbol{\theta}|\mathbf{y}^{\star}) \propto p(\boldsymbol{\theta}) \int p(\mathbf{y}|\boldsymbol{\theta}) \mathbb{1}_{\{\|s(\mathbf{y}) - s(\mathbf{y}^{\star})\| \leq \epsilon\}} d\mathbf{y}$$

which approximates the true posterior $p(\theta|y)$. Two levels of approximation:

- **1** Non-parametric error, governed by "bandwidth" ϵ ; $p_{\epsilon}(\theta|\mathbf{y}^{\star}) \rightarrow p(\theta|s(\mathbf{y}^{\star}))$ as $\epsilon \rightarrow 0$.
- 2 Bias introduced by summary stat. s, since $p(\theta|s(y^*)) \neq p(\theta|y^*)$.

Note that $p(\theta|s(y^*)) \approx p(\theta|y^*)$ may be a reasonable approximation, but $p(y^*)$ and $p(s(y^*))$ have no clear relation: hence standard ABC cannot reliably approximate the evidence.

EP-ABC target

Assume that the data y decomposes into (y_1, \ldots, y_n) , and consider the ABC approximation:

$$p_{\epsilon}(\boldsymbol{\theta}|\boldsymbol{y}^{\star}) \propto p(\boldsymbol{\theta}) \prod_{i=1}^{n} \left\{ \int p(y_{i}|y_{1:i-1}^{\star}, \boldsymbol{\theta}) \mathbb{1}_{\left\{ \|y_{i}-y_{i}^{\star}\| \leq \varepsilon \right\}} dy_{i} \right\}$$
(1)

Standard ABC cannot target this approximate posterior, because the probability that $\|y_i-y_i^\star\|\leq \varepsilon$ for all i simultaneously is exponentially small w.r.t. n. But it does not depend on some summary stats s, and $p_\epsilon(\theta|\mathbf{y}^\star)\to p(\theta|\mathbf{y}^\star)$ as $\epsilon\to 0$ (one level of approximation).

The EP-ABC algorithm computes a Gaussian approximation of (1).

Noisy ABC interpretation

Note that the EP-ABC target of the previous slide can be interpreted as the correct posterior distribution of a model where the datapoints are corrupted with a $U[-\epsilon, \epsilon]$ noise, following Wilkinson (2008).

ENSA

EP: an introduction

Introduced in Machine Learning by Minka (2001). Consider a generic posterior:

$$\pi(\boldsymbol{\theta}) = p(\boldsymbol{\theta}|\boldsymbol{y}) \propto p(\boldsymbol{\theta}) \prod_{i=1}^{n} l_i(\boldsymbol{\theta})$$
 (2)

where the l_i are n contributions to the likelihood. Aim is to approximate π with

$$q(\boldsymbol{\theta}) \propto \prod_{i=0}^{n} f_i(\boldsymbol{\theta})$$
 (3)

where the f_i 's are the "sites". To obtain a Gaussian approximation, take $f_i(\theta) \propto \exp\left(-\frac{1}{2}\theta^t Q_i \theta + \mathbf{r}_i^t \theta\right)$, so that:

$$q(\theta) \propto \exp\left\{-\frac{1}{2}\theta^t \left(\sum_{i=0}^n \mathbf{Q}_i\right)\theta + \left(\sum_{i=0}^n \mathbf{r}_i\right)^t \theta\right\}$$
 (4)

where \mathbf{Q}_i and \mathbf{r}_i are the site parameters.

Site update

We wish to minimise $KL(\pi||q)$. To that aim, we update each site (Q_i, r_i) in turn, as follows. Consider the hybrid:

$$h_i(\boldsymbol{\theta}) \propto q_{-i}(\boldsymbol{\theta}) l_i(\boldsymbol{\theta}), \quad q_{-i}(\boldsymbol{\theta}) = \prod_{j \neq i} f_j(\boldsymbol{\theta})$$

and adjust (Q_i, r_i) so that $KL(h_i||q)$ is minimal. One may easily prove that this may be done by moment matching, i.e. calculate:

$$oldsymbol{\mu}_h = \mathbb{E}^{h_i} \left[oldsymbol{ heta}
ight], \quad oldsymbol{\Sigma}_h = \mathbb{E}^{h_i} \left[oldsymbol{ heta}oldsymbol{ heta}^{ au}
ight] - oldsymbol{\mu}_i oldsymbol{\mu}_i^{ au}$$

set $Q_h = \Sigma_h^{-1}$, $r_h = \Sigma_h^{-1} \mu_h$, then adjust (Q_i, r_i) so that (Q_h, r_h) and $(Q, r) = (\sum_{i=0}^n Q_i, \sum_{i=0}^n r_i)$ (the moments of q) match.

$$Q_i \leftarrow \Sigma_h^{-1} - Q_{-i}, \quad r_i \leftarrow \Sigma_h^{-1} \mu_h - r_{-i}.$$

EP quick summary

- Convergence is usually obtained after a few complete cycles over all the sites.
- Output is a Gaussian distribution which is "closest" to target π , in KL sense.
- We use the Gaussian family for q, but one may take another exponential family.
- Feasiblity of EP is determined by how easy it is to compute the moments of order 1 and 2 of the hybrid distribution (i.e. a Gaussian density q_{-i} times a single likelihood contribution l_i).

Going back to the EP-ABC target:

$$p_{\epsilon}(\boldsymbol{\theta}|\boldsymbol{y}^{\star}) \propto p(\boldsymbol{\theta}) \prod_{i=1}^{n} \left\{ \int p(y_{i}|y_{1:i-1}^{\star}, \boldsymbol{\theta}) \mathbb{1}_{\left\{ \|y_{i}-y_{i}^{\star}\| \leq \varepsilon \right\}} dy_{i} \right\}$$
(5)

we take

$$l_i(\boldsymbol{\theta}) = \int p(y_i|y_{1:i-1}^{\star}, \boldsymbol{\theta}) \mathbb{1}_{\left\{\|y_i - y_i^{\star}\| \leq \varepsilon\right\}} dy_i.$$

In that case, the hybrid distribution is a Gaussian times l_i . The moments are not available in close-form (obviously), but they are easily obtained, using some form of ABC for a single observation.

EP-ABC site update

Inputs: ϵ , y^* , i, and the moment parameters μ_{-i} , Σ_{-i} of the Gaussian pseudo-prior q_{-i} .

- **1** Draw M variates $heta^{[m]}$ from a $N(\mu_{-i}, \Sigma_{-i})$ distribution.
- **2** For each $\boldsymbol{\theta}^{[m]}$, draw $y_i^{[m]} \sim p(y_i|y_{1:i-1}^{\star}, \boldsymbol{\theta}^{[m]})$.
- 3 Compute the empirical moments

$$M_{acc} = \sum_{m=1}^{M} \mathbb{1}_{\left\{ \|y_{i}^{[m]} - y_{i}^{\star}\| \leq \varepsilon \right\}}, \quad \widehat{\mu}_{h} = \frac{\sum_{m=1}^{M} \theta^{[m]} \mathbb{1}_{\left\{ \|y_{i}^{[m]} - y_{i}^{\star}\| \leq \varepsilon \right\}}}{M_{acc}}$$
(6)

$$\widehat{\Sigma}_{h} = \frac{\sum_{m=1}^{M} \boldsymbol{\theta}^{[m]} \left\{ \boldsymbol{\theta}^{[m]} \right\}^{t} \mathbb{1}_{\left\{ \|\boldsymbol{y}_{i}^{[m]} - \boldsymbol{y}_{i}^{\star}\| \leq \varepsilon \right\}}}{M_{acc}} - \widehat{\boldsymbol{\mu}}(h_{i}) \widehat{\boldsymbol{\mu}}(h_{i})^{t}. \tag{7}$$

Return $\widehat{Z}(h_i) = M_{acc}/M$, $\widehat{\mu}(h_i)$ and $\widehat{\Sigma}(h_i)$.

Numerical stability

We are turning a deterministic, fixed-point algorithm, into a stochastic algorithm, hence numerical stability may be an issue. Solutions:

- We adjust dynamically M the number of simulated points at a given site, so that the number of accepted points exceeds some threshold.
- ullet We use Quasi-Monte Carlo in the $oldsymbol{ heta}$ dimension.
- Slow EP updates may also be used.

Acceleration in the IID case

In the IID case, $p(y_i|y_{1:i-1}, \theta) = p(y_i|\theta)$, and the simulation step $y_i^{[m]} \sim p(y_i|\theta^{[m]})$ is the same for all the sites, so it is possible to recycle simulations, using importance sampling.

First example: alpha-stable distributions

An IID univariate model taken from Peters et al. (2010). The observations are alpha-stable, with common distribution defined through the characteristic function

$$\Phi_{X}(t) = \begin{cases} \exp\left\{i\delta t - \gamma^{\alpha} \left|t\right|^{\alpha} \left[1 + i\beta \tan \frac{\pi\alpha}{2} \operatorname{sgn}(t)(\left|\gamma t\right| - 1)\right]\right\} & \alpha \neq 1 \\ \exp\left\{i\delta t - \gamma \left|t\right| \left[1 + i\beta \frac{2}{\pi} \operatorname{sgn}(t) \log \left|\gamma t\right|\right]\right\} & \alpha = 1 \end{cases}$$

Density is not available in close-form.

Data: n = 1200 AUD/GBP log-returns computed from dailyexchange rates.

Results from alpha-stable example

Marginal posterior distributions of α , β , γ and δ for alpha-stable model: MCMC output from the exact algorithm (histograms, 60h), approximate posteriors provided by EP-ABC (40min, solid line), kernel density estimates computed from MCMC-ABC sample based on summary statistic proposed by Peters et al (50 times more

Second example: Lokta-Volterra processes

The stochastic Lotka-Volterra process describes the evolution of two species Y_1 (prey) and Y_2 (predator):

$$\begin{array}{ccc} Y_1 & \stackrel{r_1}{\rightarrow} & 2Y_1 \\ Y_1 + Y_2 & \stackrel{r_2}{\rightarrow} & 2Y_2 \\ Y_2 & \stackrel{r_3}{\rightarrow} & \emptyset \end{array}$$

We take $\theta = (\log r_1, \log r_2, \log r_3)$, and we observe the process at discrete times. Model is Markov, $p(y_i^*|y_{1:i-1}^*, \theta) = p(y_i^*|y_{i-1}^*, \theta)$.

Simulated data

Results

PMCMC approximations of the ABC target (histograms) for $\epsilon=3$ (top), EP-ABC approximations, for $\epsilon=3$ (top) and $\epsilon=1$ (bottom).

Third example: reaction times

Subject must choose between k alternatives. Evidence $e_j(t)$ in favour of choice j follows a Brownian motion with drift:

$$\tau de_j(t) = m_j dt + dW_t^j.$$

Decision is taken when one evidence "wins the race"; see plot.

1860 Observations, from a single human being, who must choose between "signal absent", and "signal present".

Results

Conclusion

- EP-ABC features two levels of approximations: EP, and ABC (ε , no summary stat.).
- standard ABC also has two levels of approximations: ABC (ε), plus summary stats.
- EP-ABC is fast (minutes), because it integrates one datapoint at a time (not all of them together).
- EP-ABC also approximates the evidence.
- current scope of EP-ABC is restricted to models such that one may sample from $p(y_i|y_{1:i-1}^*)$.
- Convergence of EP-ABC is an open problem.

Quote, references

"It seems quite absurd to reject an EP-based approach, if the only alternative is an ABC approach based on summary statistics, which introduces a bias which seems both larger (according to our numerical examples) and more arbitrary, in the sense that in real-world applications one has little intuition and even less mathematical guidance on to why $p(\theta|s(y))$ should be close to $p(\theta|y)$ for a given set of summary statistics."

- Barthelmé, S. and Chopin, N. (2011). ABC-EP: Expectation Propagation for Likelihood-free Bayesian Computation, ICML 2011 (Proceedings of the 28th International Conference on Machine Learning), L. Getoor and T. Scheffer (eds), 289-296.
- Barthelmé, S. & Chopin, N. (2011). Expectation-Propagation for Summary-Less, Likelihood-Free Inference, arxiv:1107.5959.