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o ENSAE

Basic ABC ~

Data: y*, prior p(8), model p(y|0). Likelihood p(y|0) is
intractable.

® Sample 6 ~ p(0)
® Sample y ~ p(y[0)
© Accept 0 iff [|s(y) — s(y*)|| < e
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o ENSAE

ABC target &

The previous algorithm targets:

pe(6]y*) o< p(0) / PWY10)Lg|s(y)—s(y)|<e} 9Y

which approximates the true posterior p(€|y). Two levels of
approximation:
@ Non-parametric error, governed by “bandwidth” ¢;
pe(0ly*) — p(B]s(y*)) as € — 0.
® Bias introduced by summary stat. s, since
p(0]s(y*)) # p(6ly™).
Note that p(@|s(y*)) ~ p(@|y*) may be a reasonable

approximation, but p(y*) and p(s(y*)) have no clear relation:
hence standard ABC cannot reliably approximate the evidence.
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EP-ABC target

Assume that the data y decomposes into (yi,...,ys), and consider
the ABC approximation:

n

01y o< ) [T{ [ ol 1000y dif (1)

i=1

Standard ABC cannot target this approximate posterior, because
the probability that ||y; — y7|| < e for all / simultaneously is
exponentially small w.r.t. n. But it does not depend on some
summary stats s, and p.(0|y*) — p(0|y*) as € — 0 (one level of
approximation).

The EP-ABC algorithm computes a Gaussian approximation of (1).
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o ENSAE

Noisy ABC interpretation ~

Note that the EP-ABC target of the previous slide can be
interpreted as the correct posterior distribution of a model where
the datapoints are corrupted with a U[—e¢, €] noise, following
Wilkinson (2008).

5 /22



o ENSAE

EP: an introduction

where the /; are n contributions to the likelihood. Aim is to
approximate 7 with

a(0) o< [ £(6) (3)
i=0

where the f;'s are the “sites”. To obtain a Gaussian approximation,
take f; (6) o exp (—360'Q;6 + r!6), so that:

q(0) x exp {—ief <Z Q,-) 0+ (Z r,-) 0} (4)
i=0 i=0

where Q; and r; are the site parameters.
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Site update

We wish to minimise KL(7||q). To that aim, we update each site
(Qj, rj) in turn, as follows. Consider the hybrid:

hi(6) < q_i(0)1i(8), q-i(0) =] £(6)
J#
and adjust (Q;, r;) so that KL(h;||q) is minimal. One may easily
prove that this may be done by moment matching, i.e. calculate:

pun=EM 0], E,=E"|007| - pi]

set Qp = 2;1, rp = 2;1;1,,, then adjust (Qj, r;) so that (Qp, rp)
and (Q,r) = (-7 Qi, Y1 ri) (the moments of g) match.

Q<X -Q, riX py—r_;
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o ENSAE

EP quick summary ~

e Convergence is usually obtained after a few complete cycles
over all the sites.

e Output is a Gaussian distribution which is “closest” to target
7, in KL sense.

e We use the Gaussian family for g, but one may take another
exponential family.

e Feasiblity of EP is determined by how easy it is to compute
the moments of order 1 and 2 of the hybrid distribution (i.e. a
Gaussian density g_; times a single likelihood contribution /;).
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o ENSAE

<

Going back to the EP-ABC target:

n

pe(8ly") o p(6) [ | { / PUilyti-1 Oy, yeyi<e) dy,} (5)

i=1
we take

i(8) = /p(yl'lyl*;,-_p OV {1y <} A

In that case, the hybrid distribution is a Gaussian times /;. The
moments are not available in close-form (obviously), but they are
easily obtained, using some form of ABC for a single observation.
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o ENSAE

EP-ABC site update ~

Inputs: €, y*, i, and the moment parameters p_;, X_; of the
Gaussian pseudo-prior g_;.
@ Draw M variates 0™ from a N(p—;, X_;) distribution.
@ For each 0l draw y,-[m] ~ p(yilyg; 4, 0™).
©® Compute the empirical moments

ZM olm] ]l{ [m]
~ Iy -y li<e}
Mace = Z ]l{lly,-[m]—y;*llée}’ B = Macc
m=1

(6)
S OO oy

$) = i Ak @)

Return Z(h;) = Mace/M, fi(hi) and (k).
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o ENSAE

Numerical stability ~

We are turning a deterministic, fixed-point algorithm, into a
stochastic algorithm, hence numerical stability may be an issue.
Solutions:

e We adjust dynamically M the number of simulated points at a
given site, so that the number of accepted points exceeds
some threshold.

e We use Quasi-Monte Carlo in the 8 dimension.

e Slow EP updates may also be used.
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o ENSAE

Acceleration in the 1ID case ~

In the 11D case, p(yilyi:i-1,0) = p(yi|@), and the simulation step

y,-[m] ~ p(y;|0!™) is the same for all the sites, so it is possible to
recycle simulations, using importance sampling.
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o ENSAE

First example: alpha-stable distributions ~

An 1ID univariate model taken from Peters et al. (2010). The
observations are alpha-stable, with common distribution defined
through the characteristic function

Ox(t) = exp {idt —y*[t|* [1 4+ iBtan Z2sgn(t)(|vt] —1)]} a#1
X exp {idt — |t [1+ iﬁ%sgn(t) log [vt[] } a=1

Density is not available in close-form.
Data: n = 1200 AUD/GBP log-returns computed from daily
exchange rates.
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o ENSAE

Results from alpha-stable example
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Marginal posterior distributions of «, 3, v and ¢ for alpha-stable
model: MCMC output from the exact algorithm (histograms, 60h),
approximate posteriors provided by EP-ABC (40min, solid line),
kernel density estimates computed from MCMC-ABC sample based
on summary statistic proposed by Peters et al (50 times more

vt latimme Arachad Lins)
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Second example: Lokta-Volterra processes ~

The stochastic Lotka-Volterra process describes the evolution of
two species Y7 (prey) and Y, (predator):

Y, 3 2vy
Y1+ Ya LY 2Ys
Y, B0

We take 0 = (log r1,log 2, log r3), and we observe the process at
discrete times. Model is Markov, p(y*|y;;_1,0) = p(y/ly* 1, 0).
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o ENSAE

Simulated data ~

Predators

Population
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Results

o ENSAE
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PMCMC approximations of the ABC target (histograms) for e = 3
(top), EP-ABC approximations, for e = 3 (top) and e =1
(bottom).
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o ENSAE

Third example: reaction times ~

Subject must choose between k alternatives. Evidence ej(t) in
favour of choice j follows a Brownian motion with drift:

Tdej(t) = midt + dWi.

Decision is taken when one evidence “wins the race”; see plot.

Threshold for “Signal Absent
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o ENSAE

<

1860 Observations, from a single human being, who must choose
between “signal absent”, and “signal present”.

Poston A Posiion® Posiion
w0, g
w00 :
500 g
w00 2

Z o g

o 200 g

g

: .

S @

£ 0 ¢

3 3

g H

2 o E
50
400 3
300 2
20

Relative target contrast

19 / 22



o ENSAE

Results
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Conclusion

e EP-ABC features two levels of approximations: EP, and ABC
(€, no summary stat.).

e standard ABC also has two levels of approximations: ABC (¢),
plus summary stats.

e EP-ABC is fast (minutes), because it integrates one datapoint
at a time (not all of them together).

e EP-ABC also approximates the evidence.

e current scope of EP-ABC is restricted to models such that one
may sample from p(y;|y;;_;)-

e Convergence of EP-ABC is an open problem.
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Quote, references

“It seems quite absurd to reject an EP-based approach, if the only
alternative is an ABC approach based on summary statistics, which
introduces a bias which seems both larger (according to our
numerical examples) and more arbitrary, in the sense that in
real-world applications one has little intuition and even less
mathematical guidance on to why p(0|s(y)) should be close to
p(B|y) for a given set of summary statistics.”

e Barthelmé, S. and Chopin, N. (2011). ABC-EP: Expectation
Propagation for Likelihood-free Bayesian Computation, ICML
2011 (Proceedings of the 28th International Conference on
Machine Learning), L. Getoor and T. Scheffer (eds), 289-296.

e Barthelmé, S. & Chopin, N. (2011). Expectation-Propagation
for Summary-Less, Likelihood-Free Inference, arxiv:1107.5959.
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