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Basic ABC

Data: y?, prior p(θ), model p(y |θ). Likelihood p(y |θ) is
intractable.

1 Sample θ ∼ p(θ)

2 Sample y ∼ p(y |θ)

3 Accept θ i� ‖s(y)− s(y?)‖ ≤ ε
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ABC target

The previous algorithm targets:

pε(θ|y?) ∝ p(θ)

ˆ
p(y |θ)1{‖s(y)−s(y?)‖≤ε} dy

which approximates the true posterior p(θ|y). Two levels of
approximation:

1 Non-parametric error, governed by �bandwidth� ε;
pε(θ|y?)→ p(θ|s(y?)) as ε→ 0.

2 Bias introduced by summary stat. s, since
p(θ|s(y?)) 6= p(θ|y?).

Note that p(θ|s(y?)) ≈ p(θ|y?) may be a reasonable
approximation, but p(y?) and p(s(y?)) have no clear relation:
hence standard ABC cannot reliably approximate the evidence.
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EP-ABC target

Assume that the data y decomposes into (y1, . . . , yn), and consider
the ABC approximation:

pε(θ|y?) ∝ p(θ)
n∏

i=1

{ˆ
p(yi |y?1:i−1,θ)1{‖yi−y?i ‖≤ε} dyi

}
(1)

Standard ABC cannot target this approximate posterior, because
the probability that ‖yi − y?i ‖ ≤ ε for all i simultaneously is
exponentially small w.r.t. n. But it does not depend on some
summary stats s, and pε(θ|y?)→ p(θ|y?) as ε→ 0 (one level of
approximation).
The EP-ABC algorithm computes a Gaussian approximation of (1).

4 / 22



Noisy ABC interpretation

Note that the EP-ABC target of the previous slide can be
interpreted as the correct posterior distribution of a model where
the datapoints are corrupted with a U[−ε, ε] noise, following
Wilkinson (2008).
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EP: an introduction
Introduced in Machine Learning by Minka (2001). Consider a
generic posterior:

π(θ) = p(θ|y) ∝ p (θ)
n∏

i=1

li (θ) (2)

where the li are n contributions to the likelihood. Aim is to
approximate π with

q(θ) ∝
n∏

i=0

fi (θ) (3)

where the fi 's are the �sites�. To obtain a Gaussian approximation,
take fi (θ) ∝ exp

(
−1

2θ
tQ iθ + rti θ

)
, so that:

q(θ) ∝ exp

{
−1

2
θt

(
n∑

i=0

Qi

)
θ +

(
n∑

i=0

ri

)t

θ

}
(4)

where Qi and ri are the site parameters.
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Site update

We wish to minimise KL(π‖q). To that aim, we update each site
(Q i , r i ) in turn, as follows. Consider the hybrid:

hi (θ) ∝ q−i (θ)li (θ), q−i (θ) =
∏
j 6=i

fj(θ)

and adjust (Q i , r i ) so that KL(hi‖q) is minimal. One may easily
prove that this may be done by moment matching, i.e. calculate:

µh = Ehi [θ] , Σh = Ehi
[
θθT

]
− µiµ

T
i

set Qh = Σ−1h , rh = Σ−1h µh, then adjust (Q i , r i ) so that (Qh, rh)
and (Q, r) = (

∑n
i=0Q i ,

∑n
i=0 r i ) (the moments of q) match.

Q i ← Σ−1h −Q−i , r i ← Σ−1h µh − r−i .
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EP quick summary

• Convergence is usually obtained after a few complete cycles
over all the sites.

• Output is a Gaussian distribution which is �closest� to target
π, in KL sense.

• We use the Gaussian family for q, but one may take another
exponential family.

• Feasiblity of EP is determined by how easy it is to compute
the moments of order 1 and 2 of the hybrid distribution (i.e. a
Gaussian density q−i times a single likelihood contribution li ).

8 / 22



EP-ABC

Going back to the EP-ABC target:

pε(θ|y?) ∝ p(θ)
n∏

i=1

{ˆ
p(yi |y?1:i−1,θ)1{‖yi−y?i ‖≤ε} dyi

}
(5)

we take

li (θ) =

ˆ
p(yi |y?1:i−1,θ)1{‖yi−y?i ‖≤ε} dyi .

In that case, the hybrid distribution is a Gaussian times li . The
moments are not available in close-form (obviously), but they are
easily obtained, using some form of ABC for a single observation.
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EP-ABC site update

Inputs: ε, y?, i , and the moment parameters µ−i , Σ−i of the
Gaussian pseudo-prior q−i .

1 Draw M variates θ[m] from a N(µ−i ,Σ−i ) distribution.

2 For each θ[m], draw y
[m]
i ∼ p(yi |y?1:i−1,θ[m]).

3 Compute the empirical moments

Macc =
M∑

m=1

1{
‖y [m]

i
−y?

i
‖≤ε

}, µ̂h =

∑M
m=1 θ

[m]1{
‖y [m]

i
−y?

i
‖≤ε

}
Macc

(6)

Σ̂h =

∑M
m=1 θ

[m]
{
θ[m]

}t
1{
‖y [m]

i
−y?

i
‖≤ε

}
Macc

− µ̂(hi )µ̂(hi )
t . (7)

Return Ẑ (hi ) = Macc/M, µ̂(hi ) and Σ̂(hi ).
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Numerical stability

We are turning a deterministic, �xed-point algorithm, into a
stochastic algorithm, hence numerical stability may be an issue.
Solutions:

• We adjust dynamically M the number of simulated points at a
given site, so that the number of accepted points exceeds
some threshold.

• We use Quasi-Monte Carlo in the θ dimension.

• Slow EP updates may also be used.
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Acceleration in the IID case

In the IID case, p(yi |y1:i−1,θ) = p(yi |θ), and the simulation step

y
[m]
i ∼ p(yi |θ[m]) is the same for all the sites, so it is possible to
recycle simulations, using importance sampling.
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First example: alpha-stable distributions

An IID univariate model taken from Peters et al. (2010). The
observations are alpha-stable, with common distribution de�ned
through the characteristic function

ΦX (t) =

{
exp
{
iδt − γα |t|α

[
1 + iβ tan πα

2 sgn(t)(|γt| − 1)
]}

α 6= 1

exp
{
iδt − γ |t|

[
1 + iβ 2

π sgn(t) log |γt|
]}

α = 1

Density is not available in close-form.
Data: n = 1200 AUD/GBP log-returns computed from daily
exchange rates.
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Results from alpha-stable example
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Marginal posterior distributions of α, β, γ and δ for alpha-stable
model: MCMC output from the exact algorithm (histograms, 60h),
approximate posteriors provided by EP-ABC (40min, solid line),

kernel density estimates computed from MCMC-ABC sample based
on summary statistic proposed by Peters et al (50 times more
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Second example: Lokta-Volterra processes

The stochastic Lotka-Volterra process describes the evolution of
two species Y1 (prey) and Y2 (predator):

Y1
r1→ 2Y1

Y1 + Y2
r2→ 2Y2

Y2
r3→ ∅

We take θ = (log r1, log r2, log r3), and we observe the process at
discrete times. Model is Markov, p(y?i |y?1:i−1,θ) = p(y?i |y?i−1,θ).
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Simulated data
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Results
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PMCMC approximations of the ABC target (histograms) for ε = 3
(top), EP-ABC approximations, for ε = 3 (top) and ε = 1
(bottom).
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Third example: reaction times

Subject must choose between k alternatives. Evidence ej(t) in
favour of choice j follows a Brownian motion with drift:

τdej(t) = mjdt + dW j
t .

Decision is taken when one evidence �wins the race�; see plot.

0 50 100 150

time (ms)

Threshold for "Signal Absent"

Threshold for "Signal Present"

Evidence for "Signal Absent"

Evidence for "Signal Present"

18 / 22



Data

1860 Observations, from a single human being, who must choose
between �signal absent�, and �signal present�.
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Results

Individual datapoint
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Conclusion

• EP-ABC features two levels of approximations: EP, and ABC
(ε, no summary stat.).

• standard ABC also has two levels of approximations: ABC (ε),
plus summary stats.

• EP-ABC is fast (minutes), because it integrates one datapoint
at a time (not all of them together).

• EP-ABC also approximates the evidence.

• current scope of EP-ABC is restricted to models such that one
may sample from p(yi |y?1:i−1).

• Convergence of EP-ABC is an open problem.
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Quote, references

�It seems quite absurd to reject an EP-based approach, if the only

alternative is an ABC approach based on summary statistics, which

introduces a bias which seems both larger (according to our

numerical examples) and more arbitrary, in the sense that in

real-world applications one has little intuition and even less

mathematical guidance on to why p(θ|s(y)) should be close to

p(θ|y) for a given set of summary statistics.�

• Barthelmé, S. and Chopin, N. (2011). ABC-EP: Expectation
Propagation for Likelihood-free Bayesian Computation, ICML
2011 (Proceedings of the 28th International Conference on
Machine Learning), L. Getoor and T. Sche�er (eds), 289-296.

• Barthelmé, S. & Chopin, N. (2011). Expectation-Propagation
for Summary-Less, Likelihood-Free Inference, arxiv:1107.5959.
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