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What are the implications of RAPID-WATCH observing system data and other
recent observations for estimates of the risk due to rapid change in the MOC?
In this context risk is taken to mean the probability of rapid change in the MOC
and the consequent impact on climate (affecting temperatures, precipitation,
sea level, for example). This project must:
* contribute to the MOC observing system assessment in 2011;
* investigate how observations of the MOC can be used to constrain estimates
of the probability of rapid MOC change, including magnitude and rate of
change;
* make sound statistical inferences about the real climate system from model
simulations and observations;
* investigate the dependence of model uncertainty on such factors as changes
of resolution;
* assess model uncertainty in climate impacts and characterise impacts that
have received less attention (eg frequency of extremes).
The project must also demonstrate close partnership with the Hadley Centre.
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1.1.1 What do we mean by probability in UKCP09?
It is important to point out early in this report that a probability given in UKCP09
(or indeed IPCC) is not the same as the probability of a given number arising in
a game of chance, such as rolling a dice. It can be seen as the relative degree
to which each possible climate outcome is supported by the evidence available,
taking into account our current understanding of climate science and
observations, as generated by the UKCP09 methodology. If the evidence
changes in future, so will the probabilities.
Subjective probability is a measure of the degree to which a particular outcome
is consistent with the information considered in the analysis (i.e. strength of the
evidence) ... Probabilistic climate projections are based on subjective
probability, as the probabilities are a measure of the degree to which a
particular level of future climate change is consistent with the evidence
considered. In the case of UKCP09, a Bayesian statistical framework was
used, and the evidence comes from historical climate observations, expert
judgement and results of considering the outputs from a number of climate
models, all with their associated uncertainties.
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ABSTRACT ... An uncertainty analysis of a computer model known as Galform
is presented. Galform models the creation and evolution of approximately one
million galaxies from the beginning of the Universe until the current day, and is
regarded as a state-of-the-art model within the cosmology community. It
requires the specification of many input parameters in order to run the
simulation, takes significant time to run, and provides various outputs that can
be compared with real world data.
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Galaxy formation: a Bayesian Uncertainty Analysis Ian Vernon, Michael
Goldstein and Richard G. Bower Bayesian Analysis (2010) 5, 619 - 67
ABSTRACT ... An uncertainty analysis of a computer model known as Galform
is presented. Galform models the creation and evolution of approximately one
million galaxies from the beginning of the Universe until the current day, and is
regarded as a state-of-the-art model within the cosmology community. It
requires the specification of many input parameters in order to run the
simulation, takes significant time to run, and provides various outputs that can
be compared with real world data.
A Bayes Linear approach is presented in order to identify the subset of the
input space that could give rise to acceptable matches between model output
and measured data. This approach takes account of the major sources of
uncertainty in a consistent and unified manner, including input parameter
uncertainty, function uncertainty, observational error, forcing function
uncertainty and structural uncertainty ...
The analysis was successful in producing a large collection of model
evaluations that exhibit good fits to the observed data.
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Modeller’s fallacy Analysing the model is the same as analysing the system.
The most common way to ‘correct’ this fallacy is based on the idea that the
model, F , is informative for system behaviour at the “best” input choice.
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Model
evaluations F ∗ // F ∗(x∗) // Actual

system
// System
observations

A model describes how system properties influence system behaviour
simplifying both the properties and how they influence behaviour.
A full uncertainty representation must consider how model evaluations are
informative for the actual relationship, F ∗, [the “reified” model] between system
properties and behaviour.
Now F ∗ is informative for system behaviour at the “best” input.
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Some Questions

What do we mean by uncertainty quantification ?

Does Bayes theorem quantify uncertainty?
[And if so, how?]

Alternately, is Bayes analysis actually a model for quantifying uncertainty?
[And if so, is it a good model?]

If Bayesian analysis is a model for uncertainty quantification, then do we need
to correct for the modeller’s fallacy, to bridge the gap between Bayesian model
uncertainty quantification and real world quantification of uncertainty?
[And how could we do that?]
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In the subjectivist Bayes view, the meaning of any probability statement is
straightforward. It is the uncertainty judgement of a specified individual,
expressed on the scale of probability by consideration of some operational
elicitation scheme, for example by consideration of betting preferences.
In the subjectivist interpretation, any probability statement is the judgement of a
named individual, so we should speak not of the probability of rapid climate
change, but instead of Anne’s probability or Bob’s probability of rapid climate
change and so forth.

Most people expect something more authoritative and objective than a
probability which is one person’s judgement. However, the disappointing thing
is that, in almost all cases, stated probabilities emerging from a complex
analysis are not even the judgements of any individual.

So, it is not unreasonable that an objective of our analysis should be
probabilities which are asserted by at least one person (more would be good!).
Is this a sufficient objective?
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When is the probability of an individual scientifically valuable?
[1] This individual is knowledgeable in the area
[2] the analysis that has led to this judgement has been sufficiently careful,
thorough and exhaustive to support this judgement and sufficiently well
documented that the reasoning can be critically assessed by similarly
knowledgeable experts.
If a problem is important enough that the uncertainty analysis will have a large
scientific, commercial or public policy implications, then best current
judgements set a meaningful, rigorous standard for the analysis.
So, a worthwhile objective of an analysis is to produce the “best” current
judgements of a specified expert (or group), in a transparent form.
This is the objective of our analysis in the same way as the objective of a
climate modeller is to represent actual climate as closely as possible.
To avoid the modeller’s fallacy, we must be honest as to how well we achieve
this aim. So, we need a way to express this.
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Bayesian analysis is built on the collection of all your prior judgements,
likelihood assessments etc. Inevitably, these involve many simplifications.
Bayesian uncertainty quantification is by use of Bayes theorem.
Does Bayes theorem work (i.e. quantify real-world uncertainty) or is this a
modelling simplification?
If A and B are both events, what does P(B|A) mean?
P(B) is your betting rate on B (e.g. your fair price for a ticket that pays 1 if B
occurs, and pays 0 otherwise).
P(B|A) is your “called off” betting rate on B (e.g. your fair price for a ticket
that pays 1 if B occurs, and pays 0 otherwise, if A occurs. If A doesn’t occur
your price is refunded).
This is NOT the same as the posterior probability that you will have for B if you
find out that A occurs. There is no obvious relationship between the called off
bet and posterior judgment at all. Equating the two meanings is an example of
the modeller’s fallacy.
Even worse: B often is the ‘parameters’ of some statistical model. The model
may have been discarded when A is observed - so B no longer exists.
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Expectation as a primitive

The Bayesian approach is hard for complicated problems because thinking
about complicated problems is hard, and there is so much to think about.
You can think about less if you use EXPECTATION rather than PROBABILITY
as the primitive for expressing uncertainty judgments
That way you just make the expectation statements that you do need, (this
might include some probability statements), rather than all of the uncountably
many expectation statements that you might possibly need,
(see de Finetti “Theory of Probability”, Wiley, 1974, who made expectation
primitive for exactly that reason).
The version of Bayesian analysis which you get if you start with expectation is
termed Bayes linear analysis, see
Bayes linear Statistics: Theory and Methods, 2007, (Wiley)
Michael Goldstein and David Wooff
Our account of the meaning of Bayesian analysis requires expectation as
primitive. (I know no such account with probability as primitive.)
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We treat expectation as primitive, follow the development of de Finetti, and
define the expectation of a random quantity, Z as the value z̄ that you would
choose for z, if faced with the penalty

L = k(Z − z)2,

where k is a constant defining the units of loss, and the penalty is paid in
probability currency. [You can trade proper scoring rules for practical elicitation.]
The adjusted or Bayes linear expectation for B given D, where
D = (D0, D1, ..., Ds), with D0 = 1 is the linear combination ā

T
D where ā

is the value of a that you would choose if faced with the penalty

L = (B − a
T
D)2

It is given by

ED(B) = E(B) + Cov(B,D)(Var(D))−1(D − E(D))

[Variances, covariances specified directly as primitive - or found by analysis.]
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Adjusted expectation is equivalent to conditional expectation in the particular
case where D comprises the indicator functions for the elements of a partition,
i.e. where each Di takes value one or zero and precisely one element Di will
equal one, eg, if B is the indicator for an event, then

ED(B) =
∑

i

P(B|Di)Di

Therefore, any interpretation of the meaning of belief adjustment immediately
applies to full Bayes analysis.
In order to establish links between our judgments now (conditional) and future
(posterior), we need a meaningful notion of ‘temporal rationality’.
Our description is operational. It concerns preferences between random
penalties, as assessed at different time points, considered as small cash
penalties [or (better) payoffs in probability currency (i.e. tickets in a lottery with
a single prize)].
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Current preferences, even when constrained by current conditional preferences
given possible future outcomes, cannot require you to hold certain future
preferences; for example, you may obtain further, hitherto unsuspected,
information or insights into the problem before you come to make your future
judgments.
It is much more compelling to suggest that future preferences may determine
prior preferences. Suppose that you must choose between two random
penalties, J and K .
For your future preferences to influence your current preferences, you must
know what your future preference will be. You have a sure preference for J
over K at (future) time t, if you know now, as a matter of logic, that at time t

you will not express a strict preference for penalty K over penalty J .
Our (extremely weak) temporal consistency principle is that future sure
preferences are respected by preferences today. We call this
The temporal sure preference principle Suppose that you have a sure
preference for J over K at (future) time t. Then you should not have a strict
preference for K over J now.
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Adjusted and posterior expectation

For a particular random quantity Z , you specify a current expectation E(Z)
and you intend to express a revised expectation Et(Z) at time t. As Et(Z) is
unknown to you, you may express beliefs about this quantity.
What does adjusted expectation ED(B) imply about the posterior
assessment Et(B) that we may make having observed D?
The temporal sure preference principle implies that your actual posterior
expectation, ET (B), at time T when you have observed D, satisfies

B = ET (B)⊕ S

ET (B) = ED(B)⊕R

where S,R each have, a priori, zero expectation and are uncorrelated with
each other and with D.

Therefore, ED(B) resolves some of your current uncertainty for ET (B) which
resolves some of your uncertainty for B.
[Actual amount of variance resolved is Cov(B,D)(Var(D))−1Cov(D, B)]
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Why this works

You can make a current expectation for (Z − Et(Z))2.
Suppose that F is any random quantity whose value you will surely know by
time t. Suppose that you assess a current expectation for (Z − F )2.
To satisfy temporal sure preference you must now assign

E((Z − Et(Z))2) ≤ E((Z − F )2)

For any set of random quantities X = (X1, X2, ...), create the inner product
space I(X) whose vectors are linear combinations of the elements of X , with
covariance as the inner product.
If D is a vector whose elements will surely be known by time t, then, for any
quantity Y , then ED(Y ) is the orthogonal projection of Y into I(D).
If we let I(D,Et(Y )) be the inner product space formed by adding Et(Y ) to
I(D), then Et(Y ) is the orthogonal projection of Y into I(D,Et(Y )).
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If D represents a partition, then conditional and posterior judgements relate by

ET (B) = E(B|D) +R

where

E(R|Di) = 0, ∀i

This relation holds whatever the posterior extension consistent with the current
conditional specification. In particular, if we view the Bayes analysis as
modelling best expert judgements for the problem, then the conditional Bayes
analysis, as a model for such judgements, reduces, but does not eliminate,
uncertainty about what those judgements should be.
This is no different than any other relationship between a real quantity and a
model for that quantity, except that, for probabilistic analysis, we can rigorously
derive the corresponding relationship, under very weak, plausible and testable
assumptions.
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If X1,X2, .... are infinite Second Order Exchangeable (SOE), i.e. each has
same mean, variance and all pairwise covariances the same, then
Xi = M ⊕Ri ∀i where R1, R2, ... are SOE, uncorrelated, mean zero.
Suppose you will observe a sample (X[n] = X1, ...,Xn), by time T . You
don’t know whether Xn+1,Xn+2, .... will be SOE at time T .
Theorem Given (i) Temporal Sure Preference
(ii) current judgement that sequence ET (Xn+1),ET (Xn+2), .... is SOE,
you can construct a further quantity, ET (M), which decomposes your
judgements about any future outcome Xj = M ⊕Rj , j > n as

Xj − E(X) = [M − ET (M)]

⊕[ET (M)− EX[n]
(M)]

⊕[EX[n]
(M)− E(M)]

⊕[Rj − ET (Rj)]

⊕[ET (Rj)]
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Does Bayes theorem work?

Does Bayes analysis tell you how to update your beliefs given data?
No. That’s the modeller’s fallacy.

Is Bayes analysis informative for belief updating?
Yes. Conditional probabilities, adjusted expectations, etc. resolve some of the
uncertainty about such updating, in a precise and well-defined way.

The notion of Best Current Judgements, and how informative our analysis is for
them, is a useful and constructive way to give practical meaning to a Bayesian
analysis. There is a logical structure to help us to do this.
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