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Decomposable graphs

Graphical models

The conditional independence graph of a multivariate distribution (for a
random vector X , say) tells us much about the structure of the
distribution. Recall that G = (V ,E) where the vertex set V is the set of
indices of the components of X , and there is an (undirected) edge
between vertices i and j , written i ∼ j

unless Xi ⊥⊥ Xj | XV\{i,j}

Under conditions (positivity is sufficient), global and local Markov
properties also hold.

Given i.i.d. observations on X , we are often interested in inferring G,
sometimes known as structural learning.
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Decomposable graphs

Decomposable graphical models

The case where G is decomposable has been much studied.
Decomposability is a graph theory concept with statistical and
computational implications.

A graph is complete if every pair of vertices is joined by an edge. A
maximal complete subgraph is called a clique. An ordering of the
cliques of an undirected graph, (C1,C2, . . . ,Cc) is said to be perfect if
for each i = 2,3, . . . , c, there exists h = h(i) such that

Si = Ci ∩
i−1⋃
j=1

Cj ⊆ Ch

The sets Si are called separators. If an undirected graph admits a
perfect ordering, it is said to be decomposable.
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Decomposable graphs

Decomposability: junction trees

Decomposable graphs are also known as triangulated: a graph is
decomposable if and only if it has no chordless k -cycles for k ≥ 4.

A perfect ordering guides the construction of a junction tree: a graph
whose vertices are cliques, and with edges between Ci and Ch(i), often
labelled with Si , for i = 2,3, . . . , c. There may be many perfect
orderings, and many junction trees, for a given decomposable graph.
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Decomposable graphs

A small decomposable graph

Non-uniqueness 7 6 5
of junction tree

2 3 41

267 236 345626 36267 236 345626 36
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Decomposable graphs

A small decomposable graph
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Decomposable graphs

Probabilistic significance of decomposability

If the distribution of a random vector X has a decomposable
conditional independence graph, then it has a remarkable
representation in terms of (often low-dimensional) marginals:

p(X ) =

∏c
i=1 p(XCi )∏c
i=2 p(XSi )

This is the ultimate generalisation of the fact that for an ordinary
Markov chain

p(X ) = p(X0)
N∏

i=1

p(Xi |Xi−1) =

∏N
i=1 p(X{i−1,i})∏N−1

i=2 p(Xi−1)

For a general decomposable graph, the same kind of factorisation
follows the edges of the junction tree.
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Decomposable graphs

Computational significance of decomposability

There are many consequences for computing with distributions on
decomposable graphs, including junction tree algorithms (message
passing/probability propagation) for Bayes nets (discrete graphical
models).
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Decomposable graphs

Message passing

A B CA B C

AB BCB

C=1C=0A=1A=0 1B=0

.2.4B=1

.1.3B=0
1/32/3B=1

1/43/4B=0
1B=1

A 1A 0

.6B=1

.4B=0

1/3  6/12/3  6/1B=1

1/4 .4/13/4.4/1B=0

A=1A=0

Passing message from BC to AB (1)
1/3 .6/12/3 .6/1B=1
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Decomposable graphs

Message passing
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Decomposable graphs

Scheduling the messagesScheduling messages

rootroot
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Decomposable graphs

Scheduling the messagesScheduling messages

rootroot
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Decomposable graphs

Statistical significance of decomposability

Maximum likelihood estimates can be computed exactly for
contingency tables and multivariate Gaussian distributions on
decomposable graphs, and there are exact tests for conditional
independence. Some of this theory extends to mixed data models
based on CG distributions.

In Bayesian modelling, the ideas of hyper Markov modelling allow the
construction of prior distributions respecting the graphical structure,
which in turn supports the adoption of priors that are guaranteed to be
consistent across models.

The clique–separator factorisation yields dramatic speed-ups in
computing MCMC updates in structural learning, and in simulation and
posterior analysis of fitted models.
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Decomposable graphs

How restrictive is decomposability?

How many graphs are decomposable?

There are 2(v
2) graphs altogether on v vertices.

For v ≤ 3 vertices, all are decomposable
for 4 vertices, 61/64
for 6, ≈ 80%
for 16, ≈ 45%.

The 3 non-decomposable 4-vertex graphs:

Is decomposability a serious constraint?Is decomposability a serious constraint?








22
n

out of

• How many graphs are decomposable?

2out of

Number of
vertices

Proportion of graphs
that are
decomposable

3 all
  4 61/64 – all but:

   6 ~80%
16 45%

• Models using decomposable graphs are 
16 ~45%

‘dense’
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Bayesian model determination

Bayesian graphical model determination

Given n i.i.d. samples X = (X1,X2, . . . ,Xn) from a multivariate
distribution on Rv parameterised by the graph G and parameters ψ, a
typical formulation takes the form

p(G, ψ,X) = p(G)p(ψ|G)p(X|G, ψ)

and we perform joint structural/quantitative learning by computing the
posterior p(G, ψ|X) ∝ p(G, ψ,X).

Decomposable G: see Giudici & G (1999) (Gaussian case) and by
Giudici, G & Tarantola (2000) (contingency table case). These follow
the important work of Dawid & Lauritzen (1993) on hyper-Markov laws
that encode parameter priors p(ψ|G) that are consistent across G.
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Bayesian model determination

Bayesian graphical model determination

Given n i.i.d. samples X = (X1,X2, . . . ,Xn) from a multivariate
distribution on Rv parameterised by the graph G and parameters ψ, a
typical formulation takes the form

p(G, ψ,X) = p(G)p(ψ|G)p(X|G, ψ)

and we perform joint structural/quantitative learning by computing the
posterior p(G, ψ|X) ∝ p(G, ψ,X).

General G: Earlier and later work, by Dellaportas & Forster and others
– but use non-hierarchical non-necessarily-consistent formulations.
See also Jones et al, Stat. Sci., 2005.
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Bayesian model determination

Bayesian graphical model determination

The Giudici & G work on decomposable graphical gaussian model
determination considers the joint posterior p(G, ψ|X). In the gaussian
case X ∼ Nv (µ,Σ), the graph G is encoded in the pattern of zeroes in
the concentration (inverse variance) matrix:

(Σ−1)ij = 0⇔ Xi ⊥⊥ Xj | XV\{i,j}

The model places a hyper inverse Wishart prior on Σ−1, in various
versions, and exploits ideas of covariance selection and positive
definite matrix completion.
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Bayesian model determination

Bayesian graphical model determination

In MCMC sampling using single-edge moves, a junction tree
representation of the current G permits both

cheap pre-testing that the proposed new graph G′ is
decomposable
fast local updating of the graph from G to G′ when the move
passes the Metropolis–Hastings acceptance test
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Bayesian model determination

Pre-tests for maintaining decomposability

Frydenberg & Lauritzen: Let G and G′ be decomposable graphs on the
same vertex set, with G′ formed from G by the addition of exactly one
edge. Then this edge must be contained in exactly one clique of G.

Giudici & Green: If a and b are non-adjacent vertices in a
decomposable graph G, then the graph G′ formed from G by
connecting (a,b) is decomposable if and only if either

1 a and b are in different connected components, or
2 they are in the same component of G, and there exist cliques

a ∪ R and b ∪ T , for which S = R ∩ T is a separator on the path
between a ∪ R and b ∪ T in a junction forest representing G.
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Bayesian model determination

Single edge move

You can add edge g
(1,7) since 1R
and 7T are 7 6 5
cliques (with R={2}
and T={2,6}) and { })
RT={2} is a 
separator on path 

2 3 41

between them

267 236 345626 36267 236 345626 36

2

12

15
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Bayesian model determination

Single edge move

You cannot add 
edge (1,4) since 
the only cliques 7 6 5y q
containing 1 and 4
resp. are {1,2} and p { }
{3,4,5,6}, and 
{2}{3,5,6} is not a 

2 3 41
{ } { }
separator on path 
between them 267 236 345626 36267 236 345626 36

2

12

19
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Bayesian model determination

Single edge move

Once the test is 7 6 5
complete, actually 
committing to adding 
or deleting the edge 
is little work

2 3 41

267 236 345626 36267 236 345626 36

2

12

22
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Bayesian model determination

Single edge move

7 6 5Once the test is 
complete, actually 
committing to adding 

2 3 41or deleting the edge 
is little work

267 236 345626 36
It makes only

( l ti l ) 267 236 345626 36

27 2

a (relatively)
local change 
t th j ti t

127 12
to the junction tree

23
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7 6 5Once the test is 
complete, actually 
committing to adding 

2 3 41or deleting the edge 
is little work

267 236 345626 36
It makes only

( l ti l ) 267 236 345626 36

27

a (relatively)
local change 
t th j ti t 6

127
to the junction tree

24

Green/Thomas (Bristol/Utah) Decomposable graphs in statistics Edinburgh, September 2011 25 / 54



Bayesian model determination

Single edge move

7 6 5Once the test is 
complete, actually 
committing to adding 

2 3 41or deleting the edge 
is little work
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It makes only
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t th j ti t 35
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to the junction tree
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Bayesian model determination

Bayesian graphical model determination

In MCMC sampling using single-edge moves, a junction tree
representation of the current G permits both

cheap pre-testing that the proposed new graph G′ is
decomposable
fast local updating of the graph from G to G′ when the move
passes the Metropolis–Hastings acceptance test

However, the current junction tree may need to be manipulated to a
different tree representing the current graph G before the move can be
completed.
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Bayesian model determination Sampling junction trees

Using the junction tree as the state

Can we by-pass this manipulation by using directly the junction tree J
as part of the model parameterisation, in place of the graph G?

This means augmenting the model so that, conditional on G, the
junction tree J is a priori drawn uniformly from among all equivalent
junction trees, thus replacing the prior p(G) on decomposable graphs
by

p̃(J) =
p(G(J))

µ(G(J))

where G(J) is the decomposable graph determined by J and µ(G) is
the number of equivalent junction trees representing G.
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Bayesian model determination Sampling junction trees

Using the junction tree as the state

Trade-off between
faster, more restrictive choice of proposed vertex pairs (x , y)
specifying edges to be added, and avoidance of the manipulation
from one junction tree to another, and
the space of possible (junction tree) states of the chain being less
connected

Green/Thomas (Bristol/Utah) Decomposable graphs in statistics Edinburgh, September 2011 29 / 54



Bayesian model determination Sampling junction trees

Using the junction tree as the state

Two
decomposable

graphs differing in
only one edge.
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Bayesian model determination Sampling junction trees

Using the junction tree as the state

Whether they are
adjacent in the

junction tree
representation

depends on the
choice of junction

tree.
127

267 236 345626 36
27

12

267 236 345626 36
2

12

267 236 345626 36
2

(a1) (a2)

(b)
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Bayesian model determination Sampling junction trees

Using the junction tree as the state

Paraphrasing the conditions for maintaining decomposability:
(C) Connecting x and y by adding an edge (x , y) to G will result in a

decomposable graph if and only if x and y are contained in cliques
that are adjacent in some junction tree of G.

(D) Disconnecting x and y by removing an edge (x , y) from G will
result in a decomposable graph if and only if x and y are
contained in exactly one clique.

Our new approach means that we only have to look at the current
junction tree in (C).
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Bayesian model determination Sampling junction trees

Multiple-edge perturbations

We can make bigger perturbations, without losing ability to pre-test for
maintaining decomposability and make local updates.

We say two disjoint non-empty connected sets of vertices X and Y are
completely connected if every vertex in X is connected to every vertex
in Y . They are completely disconnected if no vertices in X are
connected to any vertices in Y .
(C) If X and Y are completely disconnected and subsets of cliques

that are adjacent in some junction tree, then X and Y can be
completely connected, resulting in a new decomposable graph

(D) If X and Y are completely connected, and subsets of exactly one
clique, and some other stuff too complicated to fit in here but all
checkable locally, then X and Y can be completely disconnected,
resulting in a new decomposable graph
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Bayesian model determination Sampling junction trees

Manipulations to
junction tree on

connecting or
disconnecting X

and Y .

XSP YSQXS YSXYS

XSP YSQSXS YSQS

XYS YSQYS

XSP YSS

XSP XYSXS

XS YSS

XYS

(a) (b)

(c) (d)
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Bayesian model determination Sampling junction trees

Manipulations to
junction tree on

connecting or
disconnecting X

and Y .

XSP YSQXS YSXYS

XSP YSQSXS YSQS

XYS YSQYS

XSP YSS

XSP XYSXS

XS YSS

XYS

(a) (b)

(c) (d)
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Bayesian model determination Enumerating junction trees

Enumerating junction trees

To use this, we need to know the number of equivalent junction trees
for the graph G. We do! It is

µ(G) =
s∏

i=1

ν(S[i])

where S[i], i = 1,2, . . . , s are the distinct separators, and

ν(S) = tmS−1
S

mS+1∏
j=1

fj .

Here tS is the number of nodes in TS, the subtree of J induced by the
cliques containing S, mS is the multiplicity of separator S, and
fj , j = 1,2, . . . ,mS + 1 are the sizes of the components of the forest FS
obtained from TS by deleting links associated with S.
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Bayesian model determination Enumerating junction trees

Example of enumerating junction trees

A decomposable
graph G

containing 23
vertices in 4

disjoint
components.
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Bayesian model determination Enumerating junction trees

Example of enumerating junction trees

One possible
junction tree J for
the graph shown

before.
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Bayesian model determination Enumerating junction trees

Example of enumerating junction trees

T{3}, the
connected subtree

of the junction
graph J induced

by the cliques that
contain the

separator {3}.
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Bayesian model determination Enumerating junction trees

Example of enumerating junction trees

F{3}, the forest
obtained by from

the tree T{3} by
deleting edges

associated with
the separator {3}.
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Bayesian model determination Enumerating junction trees

Example of enumerating junction trees

The
decomposable

graph G can be
represented by

57,802,752
different junction

trees!
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Examples

Demo
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Examples

All decomposable graphs on 7 vertices

We iterated through all 2,097,152 undirected graphs on 7 labelled
vertices and identified the 617,675 decomposable ones. A list of the
cliques of each decomposable graph was found and used as an index
into a table of counters.

The decomposable graphs were sorted from those with most
representations (16,807 for the trivial graph) to least (187,447 have a
single junction tree).

To test the uniformity of sampling with the new sampler, we used it to
sample both uniformly on decomposable graphs, and uniformly on
junction trees: 1,000,000 graphs sampled in each case.
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Examples

All decomposable graphs on 7 vertices

Comparing
theoretical and

empirical
distributions over

graphs, when
sampling uniformly
(a) on trees, (b) on

graphs
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Examples

A graphical Gaussian intra-class model

Given a decomposable graph G on v vertices labelled 1,2, . . . , v , and
real scalar parameters σ2 > 0 and ρ, we define a non-negative definite
matrix V = VG(σ2, ρ) by

Vij =

{
σ2 if i = j
ρσ2 if (i , j) is an edge in G,

and (V−1)ij = 0 if (i , j) is not an edge in G.
By Grone et al (1984), since G is decomposable and V restricted to
each clique is positive definite, V exists and is unique, in fact the
unique completion of the specified entries that is positive definite; it is
the variance matrix of a v–variate Gaussian distribution for which G is
the conditional independence graph. We call this the graphical
Gaussian intra-class model (GGIM).
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Examples

A 50-vertex graphical Gaussian intra-class model

We simulated 1000 GGIM observations on 50 variables with σ2 = 30
and ρ = 0.2. We used a second order Markov Chain graphical
structure, that is, (V−1)ij = 0 for all i and j such that |i − j | > 2.

In each case we started from the initial conditions of σ2 = 1, ρ = 0 and
G set to have no edges indicating complete independence between
the 50 variables. We made 1,000,000 Metropolis–Hastings updates
with each sampler and output values indicating the state of the chain
after ever 100 iterations. The parameters σ2 and ρ were updated after
each 1,000 Metropolis–Hastings steps. For the junction tree samplers
we also randomized the junction tree after every 1,000
Metropolis–Hastings steps.
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Examples

A 50-vertex graphical Gaussian intra-class model

Log likelihoods
and parameter

estimates for three
samplers for the

GGIM model,
plotted by sample

number. The
values of the

parameters used
to generate the

data are shown by
the red horizontal

lines.
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Examples

A 50-vertex graphical Gaussian intra-class model

Cumulative
acceptance rates

and times taken by
the three samplers

for the GGIM
model. In each

case the curve (a)
is the single edge

junction tree
sampler, (b) is the

multi edge junction
tree sampler, and

(c) is the
Giudici–Green

sampler.
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Examples

A 50-vertex graphical Gaussian intra-class model

A graph typical of
the type sampled
early in their runs

by all three
samplers for the

GGIM model. The
edge between

variables 1 and 39
is spurious, and

has to be removed
before the correct

edges near
variables 25 and

26 can be added.
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Examples

A 1000-vertex graphical Gaussian intra-class model
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Examples

A 1000-vertex graphical Gaussian intra-class model
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Examples

A 1000-vertex graphical Gaussian intra-class model
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Examples

A 1000-vertex graphical Gaussian intra-class model
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Examples

“Enumerating the decomposable neighbours of a decomposable
graph under a simple perturbation scheme”, CSDA, 2009, by
Thomas and Green
“Enumerating the junction trees of a decomposable graph”, JCGS,
2009, by Thomas and Green
“Sampling decomposable graphs using a Markov chain on
junction trees”, submitted, 2011, by Green and Thomas
Webpage: www.stats.bris.ac.uk/∼peter/
Email: P.J.Green@bristol.ac.uk
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