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Université Paris-Dauphine, IuF, & CREST
http://www.ceremade.dauphine.fr/~xian

Bayes-250, Edinburgh, September 6, 2011

http://www.ceremade.dauphine.fr/~xian


ABC Methods for Bayesian Model Choice

Approximate Bayesian computation

Approximate Bayesian computation

Approximate Bayesian computation

ABC for model choice

Gibbs random fields

Generic ABC model choice



ABC Methods for Bayesian Model Choice

Approximate Bayesian computation

Regular Bayesian computation issues

When faced with a non-standard posterior distribution

π(θ|y) ∝ π(θ)L(θ|y)

the standard solution is to use simulation (Monte Carlo) to
produce a sample

θ1, . . . , θT

from π(θ|y) (or approximately by Markov chain Monte Carlo
methods)

[Robert & Casella, 2004]
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Untractable likelihoods

Cases when the likelihood function f(y|θ) is unavailable and when
the completion step

f(y|θ) =
∫

Z
f(y, z|θ) dz

is impossible or too costly because of the dimension of z
c© MCMC cannot be implemented!
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The ABC method

Bayesian setting: target is π(θ)f(x|θ)

When likelihood f(x|θ) not in closed form, likelihood-free rejection
technique:

ABC algorithm

For an observation y ∼ f(y|θ), under the prior π(θ), keep jointly
simulating

θ′ ∼ π(θ) , z ∼ f(z|θ′) ,

until the auxiliary variable z is equal to the observed value, z = y.

[Tavaré et al., 1997]
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[Tavaré et al., 1997]



ABC Methods for Bayesian Model Choice

Approximate Bayesian computation

A as approximative

When y is a continuous random variable, equality z = y is replaced
with a tolerance condition,

%(y, z) ≤ ε

where % is a distance

Output distributed from

π(θ)Pθ{%(y, z) < ε} ∝ π(θ|%(y, z) < ε)
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ABC algorithm

Algorithm 1 Likelihood-free rejection sampler

for i = 1 to N do
repeat

generate θ′ from the prior distribution π(·)
generate z from the likelihood f(·|θ′)

until ρ{η(z), η(y)} ≤ ε
set θi = θ′

end for

where η(y) defines a (maybe in-sufficient) statistic
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Output

The likelihood-free algorithm samples from the marginal in z of:

πε(θ, z|y) =
π(θ)f(z|θ)IAε,y(z)∫

Aε,y×Θ π(θ)f(z|θ)dzdθ
,

where Aε,y = {z ∈ D|ρ(η(z), η(y)) < ε}.

The idea behind ABC is that the summary statistics coupled with a
small tolerance should provide a good approximation of the
posterior distribution:

πε(θ|y) =
∫
πε(θ, z|y)dz ≈ π(θ|y) .
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MA example

Consider the MA(q) model

xt = εt +

q∑
i=1

ϑiεt−i

Simple prior: uniform prior over the identifiability zone, e.g.
triangle for MA(2)
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MA example (2)

ABC algorithm thus made of

1. picking a new value (ϑ1, ϑ2) in the triangle

2. generating an iid sequence (εt)−q<t≤T

3. producing a simulated series (x′t)1≤t≤T

Distance: basic distance between the series

ρ((x′t)1≤t≤T , (xt)1≤t≤T ) =
T∑
t=1

(xt − x′t)2

or between summary statistics like the first q autocorrelations

τj =
T∑

t=j+1

xtxt−j



ABC Methods for Bayesian Model Choice

Approximate Bayesian computation

MA example (2)

ABC algorithm thus made of

1. picking a new value (ϑ1, ϑ2) in the triangle

2. generating an iid sequence (εt)−q<t≤T

3. producing a simulated series (x′t)1≤t≤T

Distance: basic distance between the series

ρ((x′t)1≤t≤T , (xt)1≤t≤T ) =
T∑
t=1

(xt − x′t)2

or between summary statistics like the first q autocorrelations

τj =

T∑
t=j+1

xtxt−j



ABC Methods for Bayesian Model Choice

Approximate Bayesian computation

Comparison of distance impact

Evaluation of the tolerance on the ABC sample against both
distances (ε = 100%, 10%, 1%, 0.1%) for an MA(2) model
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Bayesian model choice

Principle
Several models M1,M2, . . . are considered simultaneously for
dataset y and model index M central to inference.
Use of a prior π(M = m), plus a prior distribution on the
parameter conditional on the value m of the model index, πm(θm)
Goal is to derive the posterior distribution of M, a challenging
computational target when models are complex.
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Generic ABC for model choice

Algorithm 2 Likelihood-free model choice sampler (ABC-MC)

for t = 1 to T do
repeat

Generate m from the prior π(M = m)
Generate θm from the prior πm(θm)
Generate z from the model fm(z|θm)

until ρ{η(z), η(y)} < ε
Set m(t) = m and θ(t) = θm

end for

[Toni, Welch, Strelkowa, Ipsen & Stumpf, 2009]
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ABC estimates

Posterior probability π(M = m|y) approximated by the frequency
of acceptances from model m

1

T

T∑
t=1

Im(t)=m .

Early issues with implementation:

I should tolerances ε be the same for all models?

I should summary statistics vary across models? incl. their
dimension?

I should the distance measure ρ vary across models?

Extension to a weighted polychotomous logistic regression estimate
of π(M = m|y), with non-parametric kernel weights

[Cornuet et al., DIYABC, 2009]
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ABC estimates

Posterior probability π(M = m|y) approximated by the frequency
of acceptances from model m

1

T

T∑
t=1

Im(t)=m .

Early issues with implementation:

I ε then needs to become part of the model

I Varying statistics incompatible with Bayesian model choice
proper

I ρ then part of the model

Extension to a weighted polychotomous logistic regression estimate
of π(M = m|y), with non-parametric kernel weights

[Cornuet et al., DIYABC, 2009]
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ABC for model choice

The great ABC controversy

On-going controvery in phylogeographic genetics about the validity
of using ABC for testing

Against: Templeton, 2008,
2009, 2010a, 2010b, 2010c, &tc
argues that nested hypotheses
cannot have higher probabilities
than nesting hypotheses (!)
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The great ABC controversy

On-going controvery in phylogeographic genetics about the validity
of using ABC for testing

Against: Templeton, 2008,
2009, 2010a, 2010b, 2010c, &tc
argues that nested hypotheses
cannot have higher probabilities
than nesting hypotheses (!)

Replies: Fagundes et al., 2008,
Beaumont et al., 2010, Berger et
al., 2010, Csillèry et al., 2010
point out that the criticisms are
addressed at [Bayesian]
model-based inference and have
nothing to do with ABC...
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Gibbs random fields

Potts model

Potts model∑
c∈C Vc(y) is of the form∑

c∈C

Vc(y) = θS(y) = θ
∑
l∼i

δyl=yi

where l∼i denotes a neighbourhood structure

In most realistic settings, summation

Zθ =
∑
x∈X

exp{θTS(x)}

involves too many terms to be manageable and numerical
approximations cannot always be trusted

[Cucala et al., 2009]
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Gibbs random fields

Neighbourhood relations

Setup
Choice to be made between M neighbourhood relations

i
m∼ i′ (0 ≤ m ≤M − 1)

with
Sm(x) =

∑
i
m∼i′

I{xi=xi′}

driven by the posterior probabilities of the models.
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Gibbs random fields

Model index

Computational target:

P(M = m|x) ∝
∫

Θm

fm(x|θm)πm(θm) dθm π(M = m)

If S(x) sufficient statistic for the joint parameters
(M, θ0, . . . , θM−1),

P(M = m|x) = P(M = m|S(x)) .
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Gibbs random fields

Sufficient statistics in Gibbs random fields

Each model m has its own sufficient statistic Sm(·) and
S(·) = (S0(·), . . . , SM−1(·)) is also (model-)sufficient.
Explanation: For Gibbs random fields,

x|M = m ∼ fm(x|θm) = f1
m(x|S(x))f2

m(S(x)|θm)

=
1

n(S(x))
f2
m(S(x)|θm)

where
n(S(x)) = ] {x̃ ∈ X : S(x̃) = S(x)}

c© S(x) is therefore also sufficient for the joint parameters
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Gibbs random fields

Toy example

iid Bernoulli model versus two-state first-order Markov chain, i.e.

f0(x|θ0) = exp

(
θ0

n∑
i=1

I{xi=1}

)/
{1 + exp(θ0)}n ,

versus

f1(x|θ1) =
1

2
exp

(
θ1

n∑
i=2

I{xi=xi−1}

)/
{1 + exp(θ1)}n−1 ,

with priors θ0 ∼ U(−5, 5) and θ1 ∼ U(0, 6) (inspired by “phase
transition” boundaries).



ABC Methods for Bayesian Model Choice

Gibbs random fields

Toy example (2)
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(left) Comparison of the true BFm0/m1
(x0) with B̂Fm0/m1

(x0)
(in logs) over 2, 000 simulations and 4.106 proposals from the
prior. (right) Same when using tolerance ε corresponding to the
1% quantile on the distances.
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Generic ABC model choice

Back to sufficiency

‘Sufficient statistics for individual models are unlikely to
be very informative for the model probability. This is
already well known and understood by the ABC-user
community.’

[Scott Sisson, Jan. 31, 2011, ’Og]

If η1(x) sufficient statistic for model m = 1 and parameter θ1 and
η2(x) sufficient statistic for model m = 2 and parameter θ2,
(η1(x), η2(x)) is not always sufficient for (m, θm)

c© Potential loss of information at the testing level
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Generic ABC model choice

Limiting behaviour of B12 (T →∞)

ABC approximation

B̂12(y) =

∑T
t=1 Imt=1 Iρ{η(zt),η(y)}≤ε∑T
t=1 Imt=2 Iρ{η(zt),η(y)}≤ε

,

where the (mt, zt)’s are simulated from the (joint) prior

As T go to infinity, limit

Bε
12(y) =

∫
Iρ{η(z),η(y)}≤επ1(θ1)f1(z|θ1) dz dθ1∫
Iρ{η(z),η(y)}≤επ2(θ2)f2(z|θ2) dz dθ2

=

∫
Iρ{η,η(y)}≤επ1(θ1)f

η
1 (η|θ1) dη dθ1∫

Iρ{η,η(y)}≤επ2(θ2)f
η
2 (η|θ2) dη dθ2

,

where fη1 (η|θ1) and fη2 (η|θ2) distributions of η(z)



ABC Methods for Bayesian Model Choice

Generic ABC model choice

Limiting behaviour of B12 (T →∞)

ABC approximation

B̂12(y) =

∑T
t=1 Imt=1 Iρ{η(zt),η(y)}≤ε∑T
t=1 Imt=2 Iρ{η(zt),η(y)}≤ε

,

where the (mt, zt)’s are simulated from the (joint) prior
As T go to infinity, limit

Bε
12(y) =

∫
Iρ{η(z),η(y)}≤επ1(θ1)f1(z|θ1) dz dθ1∫
Iρ{η(z),η(y)}≤επ2(θ2)f2(z|θ2) dz dθ2

=

∫
Iρ{η,η(y)}≤επ1(θ1)f

η
1 (η|θ1) dη dθ1∫

Iρ{η,η(y)}≤επ2(θ2)f
η
2 (η|θ2) dη dθ2

,

where fη1 (η|θ1) and fη2 (η|θ2) distributions of η(z)



ABC Methods for Bayesian Model Choice

Generic ABC model choice

Limiting behaviour of B12 (ε→ 0)

When ε goes to zero,

Bη
12(y) =

∫
π1(θ1)f

η
1 (η(y)|θ1) dθ1∫

π2(θ2)f
η
2 (η(y)|θ2) dθ2

Bayes factor based on the sole observation of η(y)
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Limiting behaviour of B12 (under sufficiency)

If η(y) sufficient statistic in both models,

fi(y|θi) = gi(y)f
η
i (η(y)|θi)

Thus

B12(y) =

∫
Θ1
π(θ1)g1(y)f

η
1 (η(y)|θ1) dθ1∫

Θ2
π(θ2)g2(y)f

η
2 (η(y)|θ2) dθ2

=
g1(y)

∫
π1(θ1)f

η
1 (η(y)|θ1) dθ1

g2(y)
∫
π2(θ2)f

η
2 (η(y)|θ2) dθ2

=
g1(y)

g2(y)
Bη

12(y) .

[Didelot, Everitt, Johansen & Lawson, 2011]

c© No discrepancy only when cross-model sufficiency
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Poisson/geometric example

Sample
x = (x1, . . . , xn)

from either a Poisson P(λ) or from a geometric G(p)
Sum

S =

n∑
i=1

xi = η(x)

sufficient statistic for either model but not simultaneously

Discrepancy ratio

g1(x)

g2(x)
=
S!n−S/

∏
i xi!

1
/(

n+S−1
S

)
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Poisson/geometric discrepancy

Range of B12(x) versus Bη
12(x): The values produced have

nothing in common.
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Formal recovery

Creating an encompassing exponential family

f(x|θ1, θ2, α1, α2) ∝ exp{θT
1 η1(x)+ θT

1 η1(x)+α1t1(x)+α2t2(x)}

leads to a sufficient statistic (η1(x), η2(x), t1(x), t2(x))
[Didelot, Everitt, Johansen & Lawson, 2011]
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Formal recovery

Creating an encompassing exponential family

f(x|θ1, θ2, α1, α2) ∝ exp{θT
1 η1(x)+ θT

1 η1(x)+α1t1(x)+α2t2(x)}

leads to a sufficient statistic (η1(x), η2(x), t1(x), t2(x))
[Didelot, Everitt, Johansen & Lawson, 2011]

In the Poisson/geometric case, if
∏
i xi! is added to S, no

discrepancy
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Formal recovery

Creating an encompassing exponential family

f(x|θ1, θ2, α1, α2) ∝ exp{θT
1 η1(x)+ θT

1 η1(x)+α1t1(x)+α2t2(x)}

leads to a sufficient statistic (η1(x), η2(x), t1(x), t2(x))
[Didelot, Everitt, Johansen & Lawson, 2011]

Only applies in genuine sufficiency settings...

c© Inability to evaluate loss brought by summary statistics
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Generic ABC model choice

The Pitman–Koopman lemma

Efficient sufficiency is not such a common occurrence:

Lemma

A necessary and sufficient condition for the existence of a sufficient
statistic with fixed dimension whatever the sample size is that the
sampling distribution belongs to an exponential family.

[Pitman, 1933; Koopman, 1933]

Provision of fixed support (consider U(0, θ) counterexample)
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Generic ABC model choice

Meaning of the ABC-Bayes factor

‘This is also why focus on model discrimination typically
(...) proceeds by (...) accepting that the Bayes Factor
that one obtains is only derived from the summary
statistics and may in no way correspond to that of the
full model.’

[Scott Sisson, Jan. 31, 2011, ’Og]

In the Poisson/geometric case, if E[yi] = θ0 > 0,

lim
n→∞

Bη
12(y) =

(θ0 + 1)2

θ0
e−θ0
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MA example
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Evolution [against ε] of ABC Bayes factor, in terms of frequencies of
visits to models MA(1) (left) and MA(2) (right) when ε equal to
10, 1, .1, .01% quantiles on insufficient autocovariance distances. Sample
of 50 points from a MA(2) with θ1 = 0.6, θ2 = 0.2. True Bayes factor
equal to 17.71.
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MA example
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Further comments

‘There should be the possibility that for the same model,
but different (non-minimal) [summary] statistics (so
different η’s: η1 and η∗1) the ratio of evidences may no
longer be equal to one.’

[Michael Stumpf, Jan. 28, 2011, ’Og]

Using different summary statistics [on different models] may
indicate the loss of information brought by each set but agreement
does not lead to trustworthy approximations.
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A population genetics evaluation

Population genetics example with

I 3 populations

I 2 scenari

I 15 individuals

I 5 loci

I single mutation parameter

I 24 summary statistics

I 2 million ABC proposal

I importance [tree] sampling alternative
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Stability of importance sampling
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Comparison with ABC

Use of 24 summary statistics and DIY-ABC logistic correction
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Comparison with ABC

Use of 15 summary statistics and DIY-ABC logistic correction
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Comparison with ABC

Use of 15 summary statistics and DIY-ABC logistic correction
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Comparison with ABC

Use of 15 summary statistics and DIY-ABC logistic correction
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A second population genetics experiment

I three populations, two divergent 100 gen. ago

I two scenarios [third pop. recent admixture between first two
pop. / diverging from pop. 1 5 gen. ago]

I In scenario 1, admixture rate 0.7 from pop. 1

I 100 datasets with 100 diploid individuals per population, 50
independent microsatellite loci.

I Effective population size of 1000 and mutation rates of
0.0005.

I 6 parameters: admixture rate (U [0.1, 0.9]), three effective
population sizes (U [200, 2000]), the time of admixture/second
divergence (U [1, 10]) and time of first divergence (U [50, 500]).
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Results

IS algorithm performed with 100 coalescent trees per particle and
50,000 particles [12 calendar days using 376 processors]
Using ten times as many loci and seven times as many individuals
degrades the confidence in the importance sampling approximation
because of an increased variability in the likelihood.
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Results

Blurs potential divergence between ABC and genuine posterior
probabilities because both are overwhelmingly close to one, due to
the high information content of the data.
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The only safe cases???

Besides specific models like Gibbs random fields,

using distances over the data itself escapes the discrepancy...
[Toni & Stumpf, 2010;Sousa et al., 2009]

...and so does the use of more informal model fitting measures
[Ratmann, Andrieu, Richardson and Wiujf, 2009]
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