
Coherent Inference on Distributed Bayesian Expert
Systems

Jim Q. Smith

Warwick University

Sep 2011

Jim Smith (Institute) Distributed Bayesian Systems Sep 2011 1 / 30



Abstract

It is becoming increasingly necessary for di¤erent probabilistic expert
systems to be networked together. Di¤erent collections of domain experts
must independently specify their judgments within each component system
and update these in the light of the data they receive. But in these
circumstances what overarching beliefs must the collective agree and what
types of data can be admitted in the system so that the collective acts as
if it were a single Bayesian? In this talk I will explore these issues and
illustrate the main technical problems through discussing some simple
examples.
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The Setting

Decision Support for a single Bayesian user:

User adopts expert judgments as her own.

Network of di¤erent panels of experts over di¤erent domains.

On-line updating necessary.

Coherence and auditability.
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So more speci�cally

The Decision Support system has:

Large number of random variables Y = (Y1,Y2, . . . ,Yn).

Di¤erent, panels fG1,G2, . . .Gmg of domain experts (the collective)
oversee di¤erent domains.

Agreed qualitative framework used to paste judgments into a single
probability model.

User�s prespeci�ed class of utility functions can help simplify required
inputs.

Support: identi�es and explains user�s expected utility maximising
decisions.

All adaptations to admissible data must appear rational from the
outside.
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Example: decision support after a nuclear accident

Many panels of experts/statistical models in the system:

Power station described by a Bayesian Network - Panel nuclear
physicists, engineers and managers.

Accidental release into the atmosphere or water supply the dangerous
radiation will be distributed into the environment, Panel atmospheric
physicists, hydrologist, local weather forecasters....

Taking outputs of dispersion models and data on demography and
implemented countermeasures predict exposure of humans animal and
plants of the contaminant. Panel biologists Food scientists, local
adminstrators, ..

Taking outputs giving type and extent of exposure predict health
consequences: Panel epidemiologists, medics, genetic researchers
And so on ...

Jim Smith (Institute) Distributed Bayesian Systems Sep 2011 5 / 30



So more formally

Collective jointly responsible for all the probability statements for
intirinsic vector Y.informing potential user�s reward vector R - of her
utility. (Y(R) often indexed by d 2 D)
Each panel Gi , i = 1.2, . . . ,m delivers beliefs fΠi (d) : d 2 Dg.about
the parameters of P(Yi jZi = zi , d), where Yi (d),Zi (d) are disjoint
(Zi (d) possibly null) subvectors of Y(d).
Call Θi the domain, Πi (d) the panel beliefs (πi (θi , d) the panel
density)

Key point: each panel only provides collective with quantative (composite)
beliefs concerning their particular domain.
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Example: Observables a pair of binary variables

R = Y , (Y1,Y2). Panel G1 inputs about θ1 , P(Y1 = 1).
Panel G2, θ2,0 , P(Y2 = 1jY1 = 0) and θ2,1 , P(Y2 = 0jY1 = 1).
Distribution of R, θ ,

�
θ00, θ01, θ10, θ11

�
given by the polynomials

θ00 = (1� θ1)(1� θ2,0), θ01 = (1� θ1)θ2,0,

θ10 = θ1(1� θ2,1), θ11 = θ1θ2,1

G1 donates densities Π1 = fπ1 (θ1, d) : d 2 Dg .
G2 gives densities Π2 = f(π2 (θ2,0, d) ,π2 (θ2,1, d)) : d 2 Dg .
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Recapping the Problem

Collective agrees set of qualitative (e.g. conditional independence)
assumptions about fYi : 1 � i � ng conditional on
θ = (θ1, θ2, . . . θm) whatever d 2 D.
Let Π = f (Π1,Π2, . . . ,Πm) be the distributional statements about θ
available to the user. Panel beliefs fΠj (d) : 1 � j � m, d 2 Dg the
only quantitative inputs to the collective beliefs Π(d) about θ.

Note: not trivial that Π(d) is function of Πj (d) : 1 � j � m.
e.g distribution of parameters of Y = (Y1,Y2) is not fully recoverable
from the two marginal densities πi (θi ) ,provided by Gi , i = 1, 2 e.g. no
covariance between Y1 and Y2 .
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Questions to Answer

1 When and how can panel judgments be combined to provide a
coherent composite system?

2 Given Π is su¢ ciently detailed and coherent what protocols need to
be followed? When does π(θ) de�ne the genuine beliefs held by the
collective and user?

3 For online distributed updating, panels must update their beliefs
autonomously with the data available to provide individual inputs
fΠi . : 1 � i � mg.to a new coherent speci�cation within the same
framework. What beliefs must the collective share about
accommodated data structures for f to respect this updating? What
characteristics of admissible data makes this possible?

We will see that such a system is surprisingly easy to de�ne if we restrict
data allowed.
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Example: The Queen in Danger!!

Example

Panel G1 domain is margin of binary Y1 - θ1 = P(Y1 = 1) (Y1 queen
comes in contact with a particular virus). Panel G2 domain margin of
binary Y2, θ2 = P(Y2 = 1). (Y2 when queen exposed su¤ers an adverse
reaction).G1 says θ1 v Be(α1, β1) and G2 says θ2 v Be(α2, β2). No
decision will a¤ect these distributions. Agreed structural information is
Y1 q Y2j(θ1, θ2),

Case1: User has a separable utility

u1(y1, y2, d1, d2) = a+ b1(d1)y1 + b2(d2)y2

Gi needs only supply µi , E(θi ) = αi (αi + βi )
�1, i = 1, 2. No need to

be concerned about dependency.
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Example

Case 2

Interest is only in W , Y1Y2 (whether queen is infected). So

u2(w , d12) = a+ b12(d12)w

where E(W ) = E (θ1θ2).

If collective assumes global independence ) distribution θ1θ2 is well
de�ned.

Then E (θ1θ2) = µ1µ2 - so Gi needs only supply µi , i = 1, 2.

However Global independence not only choice!
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An Alternative Prior

Suppose α1 + β1 = α2 + β2 , σ. Panels donate (µ1, µ2, σ),
where σ = γ00 + γ10 + γ10 + γ11, π v Di(γ00,γ10,γ01,γ11),

α1 = γ10 + γ11, β1 = γ00 + γ01
α2 = γ01 + γ11, β2 = γ00 + γ10

This collective prior consistent with panel margins but not global
independence.

Collective parameters (µ1, µ2, σ, ρ), ρ , σ�2 (γ11γ00 � γ10γ011)

Collective�s E(θ1θ2) = γ11σ
�1 = µ1µ2 + ρ 6= µ1µ2 unless ρ = 0.

So E(θ1θ2) is not identi�ed from inputs.
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Now assume global independence

Panels supplement judgments by independently randomly sampling.

Collective needs only two updated posterior means µ�i .i = 1, 2.

So all data of this form allows distributed inference.

Problem 1: Global independence critical for distributivity. Even in Case 1
when only individuals margins of θ1, θ2 needed if collective did not believe
θ1 q θ2 it would need to draw on what it learns about θ2 - through G2�s
experiments to modify distribution of θ1.
Problem 2 :Even if global independence is justi�ed, assuming experiments
of two panels never mutually informative also critical.
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Example of data set: table of counts below (Case 2)

Y1nY2 0 1
0 5 45 50 n� x1
1 45 5 50 x1

50 50 100
n� x2 x2

Each panel updates using only their respective margin (with weak
priors) ) µ�i ' 0.5, i = 1, 2 ) E(θ1θ2) to be approximately 0.25.

OTOH with whole info E(θ1θ2) ' 0.05.i.e. �ve times smaller!

(Note structural independence assumption: Y2 q Y1j(θ1, θ2) looks
dubious)
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Non-compatible sampling

Binomial sample 100 units like queen, acquiring disease, so prob
φ , P(W = 1). See 5 infected.

In either case collective easily incorporates this information directly:
e.g. giving φ a beta prior and treating data as random sample.
However, without further assumptions such data impossible for Gi to
individually update πi (θi ).

Ignore this information � uniform priors ) vastly overestimate the
probability.

So π(θ1θ2) no longer decomposes into a G1 density and a G2 density:
Sampling induces dependence.

So even in simplest scenarios, problems quite involved! Need to be
sensitive to what information is received.
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External Bayesianity

External Bayesianity (EB) if all individually update priors using experiment
(common knowledge) - giving likelihood l(θjx) - this same as if all �rst
combined beliefs into single panel density to accommodate their new
information and then updated.
EB property characterises the logarithmic pool

π(θjw) _
k
∏
i=1

πwii (θ)

where w = (w1, . . . ,wk ) weights, re�ecting credibility of di¤erent experts,
sum to unity.
Collective appears Bayesian from outside irrespective of sampling and
order of information. Consistent with the Strong Likelihood Principle.
Preserves integrity of panel independence over time.
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Beliefs and Facts: What goes into system?

Shared beliefs collective agrees re�ect best (generally acceptable)
available judgments about the global domain. Examples ci / causal/
functional relationships hardwired into system.

Accepted facts Published data from well conducted experiments and
sample surveys/events.

BUT most analyses implicitly or explicitly exclude certain data
Typical selection criteria:

Compellingness of the evidence (e.g.to user � auditor/Cochraine).

Defensibility of modeling assumptions needed to be employed.

Wealth of less ambiguous and less costly evidence

Held v Stated Bayesian beliefs Collective updates only in the light of
agreed experiments/surveys/observational studies . Cannot use all relevant
information.
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Comments about what to include in an analysis

Any practical Bayesian expert system needs a protocol for what
information is admitted into the system.

Such an admissibility protocol decided before seeing data xt from a
collection of experiments (sample surveys observational studies ) Et
will be available to the collective at time t,

Information not incorporated still useful e.g. for diagnostics.

An admissiblity protocol has the separability property if it only admits
data xt to time t whose associated likelihood is panel separable.
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Separable Likelihoods: The key to distributivity

De�nition
A set of experiments E with likelihood l(θjx,d) ,d 2 D, is panel separable
over θi , i = 1, . . . ,m when

l(θjx,d) =
m
∏
i=1
li (θi jti (x), d)

where li (θi jti (x)) is fn.of θ only through θi and ti (x) is a function of the
data x, i = 1, 2, 3, . . . ,m, for each d 2 D.

De�nition
A collective is panel independence (pi) at time t i¤ it believes qmi=1θi
given any d 2 D.
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Examples of Panel Independence in Probabilistic Collectives

BNs: Panels donate distribution of parameters of a variable given its
parents. Panel independence v global independence.

Context speci�c or object orientated BNs. Single panels need to be
jointly responsible for shared cpts.

Chain graphs: One panel responsible for each each box of variables
conditional on parents.

MDM structures (Queen and Smith, 1993) Panels donate dynamic
regression states.

CEG. Smith(2010) example cites Panels donate parts of the tree:
juror, forensic scientist, court and judicial statistician.

And so on...
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Panel independence, Panel Separability and Distributivity

Density π(θ) over θ = (θ1, θ2, . . . , θm), both collectively and individually

π(θ) =
n
∏
i=1

πi (θi ).

1 Panel Gi updates prior πi (θi ) only with function ti (xt ) of xt . to
obtain posterior π

(t)
i (θi ) _ li (θi jti (xt ))πi (θi ), i = 1, . . . ,m.

2 Prior panel independence ) π(t)(θ) =
n
∏
i=1

π
(t)
i (θi ).

3 EB preserved wrt separable likelihoods. If panels use the log pool to
combine judgments then the collective is also EB with respect to all
the individual experts and their panel margins.

4 But what protocols are most informative to which situations.
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Ordering Experiments using Strong Likelihood Principle

Key idea: Only update on functions of data whose associated likelihood
separates!

De�nition
Experiments E1 with likelihood l1(θjx) and E2 with likelihood l2(θjx0) are
equivalent (written E1 v E2) for θ if for all possible values of x, and for
some maps τ : X ! X 0, x 7�! τ(x) = x0 and τ0 : X ! X 0,
x0 7�! τ0(x0) = x

l2(θjτ(x)) = l1(θjx) and l1(θjτ0(x0)) = l2(θjx0)
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Ordering Experiments and Redundancy

De�nition

Say E1 is dominated by E2 (written E1 � E2) for θ if 9 experiments eE2(x)
v E1(t(x)) and experiments eE2(x) s E2(x) s.t. eE2(x) consists ofeE1(t(x)) and then subsequently observing more units and/or taking
additional observations whose distribution - extra E2:1(xjt(x)) - whose
associated distribution also depends only on θ. Write E1 � E2 if E1 � E2
and E1 � E2.

If Ei has likelihood li (θjx) i = 1, 2 and E1 � E2

l2(θjx) = l1(θjt(x))l2:1(θjx)
where l2:1(θjx) _ p2:1(xjθ, t(x))) the sample density of data from the
additional experiment E2:1(xjt(x)).
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Cores of experiments

De�nition
Experiment E� is a core of E i¤ E is panel separable, E� � E and there is
no other separable experiment E 0 s. t. E� � E 0 � E

When E is separable it is equal to its core.
Sometimes a protocol needs to establish which core to choose.

If E not separable then it has a subexperiment that is.

Theorem
The combination of two independent panel separable experiments E1 and
E2 is panel separable. The core of two independent panel separable
experiments is contained in a combination of individual cores.
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Qualitative v. Quantitative sensitivities

Theorem
Suppose E1 - n random discrete measurements of n units x has mass
function

p(xjθ) = c(x)
m
∏
i=1
pi (ti (x)jθi ,fi (t(i�1)(x)))

where fi (t(i�1)(x)) fn. of x only through (t1(x),t2(x), . . . ,ti�1(x)) ,
pi (ti (x)jθ,fi (t(i�1)(x))) fn. only of its arguments, and
θ = (θ1, θ2, . . . , θm) takes values in Θ = Θ1 �Θ2 � . . .�Θm . Then
E1 � E2 of m sets of strati�ed random samples. The �rst set corresponds
to taking a random sample of n units where we observe the same values
t1(x) as we did in E1(x). For the i th set of randomised experiments
i = 2, . . . ,m are strati�ed according to the levels of their conditioning set.

Thus sample each level of fi (t(i�1)(x)) #
n
fi (t(i�1)(x))

o
times,
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Causality and designed experiments

Experimental information can also be used by the panels. But then need
additional causal assumptions.

Theorem
When the collective agrees that G is a causal Bayesian Network and
parameters of di¤erent variables in the system respect global
independence. at any time t: then system remains distributed under a
likelihood composed of ancestral sampling experiments.

An observational data set to update.


 ! � ! 
 ! 
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Discussion

Distributive Networks surprisingly easy to build and form a fruitful
and useful area of theoretical development.

Panel independence critical! Admissibility of data critical!

Directional conditioning of panels almost essential for distributivity.

Approximations or simply valid partial inference?.

Often,form of utility function,only requires panels to donate a few
moments (e.g. see Queen example). When this is the case
modi�cation of ideas of separability and generalisations of LB
(Goldstein and Woo¤) simpli�es. Collective a partial Bayesian?
Panels also partial Bayesians

Because outputs are ofen polynomial these ammenable to study
through algebraic geometry.
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Thank you Thank you Thank you

THANK YOU FOR YOUR ATTENTION!!!
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