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Systems biology modelling

Uses accurate high-resolution time-course data on a relatively
small number of bio-molecules to parametrise carefully
constructed mechanistic dynamic models of a process of
interest based on current biological understanding

Traditionally, models were typically deterministic, based on a
system of ODEs known as the Reaction Rate Equations
(RREs)

It is now increasingly accepted that biochemical network
dynamics at the single-cell level are intrinsically stochastic

The theory of stochastic chemical kinetics provides a solid
foundation for describing network dynamics using a Markov
jump process
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Stochastic Chemical Kinetics

Stochastic molecular approach:

Statistical mechanical arguments lead to a Markov jump
process in continuous time whose instantaneous reaction rates
are directly proportional to the number of molecules of each
reacting species

Such dynamics can be simulated (exactly) on a computer
using standard discrete-event simulation techniques

Standard implementation of this strategy is known as the
“Gillespie algorithm” (just discrete event simulation), but
there are several exact and approximate variants of this basic
approach
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Lotka-Volterra system

Trivial (familiar) example from population dynamics (in reality, the
“reactions” will be elementary biochemical reactions taking place
inside a cell)

Reactions

X −→ 2X (prey reproduction)

X + Y −→ 2Y (prey-predator interaction)

Y −→ ∅ (predator death)

X – Prey, Y – Predator

We can re-write this using matrix notation

Darren Wilkinson — Bayes–250, Edinburgh, 5/9/2011 Bayesian inference for POMP models using pMCMC



Stochastic modelling of dynamical systems
Bayesian inference

Particle MCMC
Summary and conclusions

Systems biology models
Population dynamics
Stochastic chemical kinetics
Genetic autoregulation

Forming the matrix representation

The L-V system in tabular form

Rate Law LHS RHS Net-effect
h(·, c) X Y X Y X Y

R1 c1x 1 0 2 0 1 0
R2 c2xy 1 1 0 2 -1 1
R3 c3y 0 1 0 0 0 -1

Call the 3× 2 net-effect (or reaction) matrix N. The matrix
S = N ′ is the stoichiometry matrix of the system. Typically both
are sparse. The SVD of S (or N) is of interest for structural
analysis of the system dynamics...
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Stochastic chemical kinetics

u species: X1, . . . ,Xu, and v reactions: R1, . . . ,Rv

Ri : pi1X1 + · · ·+piuXu −→ qi1X1 + · · ·+qiuXu, i = 1, . . . , v

In matrix form: PX −→ QX (P and Q are sparse)

S = (Q − P)′ is the stoichiometry matrix of the system

Xjt : # molecules of Xj at time t. Xt = (X1t , . . . ,Xut)
′

Reaction Ri has hazard (or rate law, or propensity) hi (Xt , ci ),
where ci is a rate parameter, c = (c1, . . . , cv )′,
h(Xt , c) = (h1(Xt , c1), . . . , hv (Xt , cv ))′ and the system evolves
as a Markov jump process

For mass-action stochastic kinetics,

hi (Xt , ci ) = ci

u∏
j=1

(
Xjt

pij

)
, i = 1, . . . , v
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The Lotka-Volterra model
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Example — genetic auto-regulation
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Biochemical reactions

Simplified view:

Reactions

g + P2 ←→ g · P2 Repression
g −→ g + r Transcription
r −→ r + P Translation
2P ←→ P2 Dimerisation
r −→ ∅ mRNA degradation
P −→ ∅ Protein degradation
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Simulated realisation of the auto-regulatory network
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Partially observed Markov process (POMP) models

Continuous-time Markov process: X = {Xs |s ≥ 0} (for now,
we suppress dependence on parameters, θ)

Think about integer time observations (extension to arbitrary
times is trivial): for t ∈ N, Xt = {Xs |t − 1 < s ≤ t}
Sample-path likelihoods such as π(xt |xt−1) can often (but not
always) be computed (but are often computationally difficult),
but discrete time transitions such as π(xt |xt−1) are typically
intractable

Partial observations: D = {dt |t = 1, 2, . . . ,T} where

dt |Xt = xt ∼ π(dt |xt), t = 1, . . . ,T ,

where we assume that π(dt |xt) can be evaluated directly
(simple measurement error model)
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Bayesian inference for POMP models

Most “obvious” MCMC algorithms will attempt to impute (at
least) the skeleton of the Markov process: X0,X1, . . . ,XT

This will typically require evaluation of the intractable discrete
time transition likelihoods, and this is the problem...
Two related strategies:

Data augmentation: “fill in” the entire process in some way,
typically exploiting the fact that the sample path likelihoods
are tractable — works in principle, but difficult to “automate”,
and exceptionally computationally intensive due to the need to
store and evaluate likelihoods of cts sample paths
Likelihood-free (AKA plug-and-play): exploits the fact that it
is possible to forward simulate from π(xt |xt−1) (typically by
simulating from π(xt |xt−1)), even if it can’t be evaluated

Likelihood-free is really just a special kind of augmentation
strategy
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Bayesian inference

Let π(x|c) denote the (complex) likelihood of the simulation
model

Let π(D|x, τ) denote the (simple) measurement error model

Put θ = (c, τ), and let π(θ) be the prior for the model
parameters

The joint density can be written

π(θ, x,D) = π(θ)π(x|θ)π(D|x, θ).

Interest is in the posterior distribution π(θ, x|D)
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Marginal MH MCMC scheme

Full model: π(θ, x,D) = π(θ)π(x|θ)π(D|x, θ)

Target: π(θ|D) (with x marginalised out)

Generic MCMC scheme:

Propose θ? ∼ f (θ?|θ)
Accept with probability min{1,A}, where

A =
π(θ?)

π(θ)
× f (θ|θ?)

f (θ?|θ)
× π(D|θ?)

π(D|θ)

π(D|θ) is the “marginal likelihood” (or “observed data
likelihood”, or...)
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LF-MCMC

Posterior distribution π(θ, x|D)

Propose a joint update for θ and x as follows:

Current state of the chain is (θ, x)
First sample θ? ∼ f (θ?|θ)
Then sample a new path, x? ∼ π(x?|θ?)
Accept the pair (θ?, x?) with probability min{1,A}, where

A =
π(θ?)

π(θ)
× f (θ|θ?)

f (θ?|θ)
× π(D|x?, θ?)

π(D|x, θ)
.

Note that choosing a prior independence proposal of the form
f (θ?|θ) = π(θ?) leads to the simpler acceptance ratio

A =
π(D|x?, θ?)

π(D|x, θ)
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“Ideal” joint MCMC scheme

LF-MCMC works by making the proposed sample path
consistent with the proposed new parameters, but
unfortunately not with the data

Ideally, we would do the joint update as follows

First sample θ? ∼ f (θ?|θ)
Then sample a new path, x? ∼ π(x?|θ?,D)
Accept the pair (θ?, x?) with probability min{1,A}, where

A =
π(θ?)

π(θ)

π(x?|θ?)

π(x|θ)

f (θ|θ?)

f (θ?|θ)

π(D|x?, θ?)

π(D|x, θ)

π(x|D, θ)

π(x?|D, θ?)

=
π(θ?)

π(θ)

π(D|θ?)

π(D|θ)

f (θ|θ?)

f (θ?|θ)

This joint scheme reduces down to the marginal scheme (Chib
(1995)), but will be intractable for complex models...
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Particle MCMC (pMCMC)

Of the various alternatives, pMCMC is the only obvious
practical option for constructing global likelihood-free MCMC
algorithms which are exact (Andreiu et al, 2010)

Start by considering a basic marginal MH MCMC scheme with
target π(θ|D) and proposal f (θ?|θ) — the acceptance
probability is min{1,A} where

A =
π(θ?)

π(θ)
× f (θ|θ?)

f (θ?|θ)
× π(D|θ?)

π(D|θ)

We can’t evaluate the final terms, but if we had a way to
construct a Monte Carlo estimate of the likelihood, π̂(D|θ),
we could just plug this in and hope for the best:

A =
π(θ?)

π(θ)
× f (θ|θ?)

f (θ?|θ)
× π̂(D|θ?)

π̂(D|θ)
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“Exact approximate” MCMC (the pseudo-marginal
approach)

Remarkably, provided only that E[π̂(D|θ)] = π(D|θ), the
stationary distribution of the Markov chain will be exactly
correct (Beaumont, 2003, Andreiu & Roberts, 2009)

Putting W = π̂(D|θ)/π(D|θ) and augmenting the state space
of the chain to include W , we find that the target of the
chain must be

∝ π(θ)π̂(D|θ)π(w |θ) ∝ π(θ|D)wπ(w |θ)

and so then the above “unbiasedness” property implies that
E(W |θ) = 1, which guarantees that the marginal for θ is
exactly π(θ|D)

Blog post: http://tinyurl.com/6ex4xqw
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Particle marginal Metropolis-Hastings (PMMH)

Likelihood estimates constructed via importance sampling
typically have this “unbiasedness” property, as do estimates
constructed using a particle filter

If a particle filter is used to construct the Monte Carlo
estimate of likelihood to plug in to the acceptance probability,
we get (a simple version of) the particle Marginal Metropolis
Hastings (PMMH) pMCMC algorithm

The full PMMH algorithm also uses the particle filter to
construct a proposal for x, and has target π(θ, x|D) — not
just π(θ|D)

The (bootstrap) particle filter relies only on the ability to
forward simulate from the process, and hence the entire
procedure is “likelihood-free”

Blog post: http://bit.ly/kvznmq

Darren Wilkinson — Bayes–250, Edinburgh, 5/9/2011 Bayesian inference for POMP models using pMCMC

http://bit.ly/kvznmq


Stochastic modelling of dynamical systems
Bayesian inference

Particle MCMC
Summary and conclusions

Particle MCMC and the PMMH algorithm
PMMH
Example: Lotka-Volterra model
Improved filtering for SDEs

Test problem: Lotka-Volterra model
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Simulated time series data set consisting of 16 equally spaced
observations subject to Gaussian measurement error with a
standard deviation of 10.
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Marginal posteriors for the Lotka-Volterra model
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Note that the true parameters, θ = (1, 0.005, 0.6) are well
identified by the data
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Marginal posteriors observing only prey
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Note that the mixing of the MCMC sampler is reasonable, and
that the true parameters, θ = (1, 0.005, 0.6) are quite well
identified by the data
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Marginal posteriors for unknown measurement error
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Note that the mixing of the MCMC sampler is poor, and that the
true parameters, θ = (1, 0.005, 0.6, 10) are less well identified by
the data than in the case of a fully specified measurement error
model
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R package: smfsb

Free, open source, well-documented software package for R,
smfsb, associated with the forthcoming second edition of
“Stochastic modelling for systems biology”

Code for stochastic simulation and of (biochemical) reaction
networks (Markov jump processes and chemical Langevin),
and pMCMC-based Bayesian inference for POMP models

Full installation and “getting started” instructions at
http://tinyurl.com/smfsb2e

Once the package is installed and loaded, running
demo("PMCMC") at the R prompt will run a PMMH algorithm
for the Lotka-Volterra model discussed here

Darren Wilkinson — Bayes–250, Edinburgh, 5/9/2011 Bayesian inference for POMP models using pMCMC
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Hitting the data...

The above algorithm works well in many cases, and is
extremely general (works for any Markov process)

In the case of no measurement error, the probability of hitting
the data (and accepting the proposal) is very small (possibly
zero), and so the mixing of the MCMC scheme is very poor

ABC (approximate Bayesian computation) strategy is to
accept if

‖x?t+1 − dt+1‖ < ε

but this forces a trade-off between accuracy and efficiency
which can be unpleasant (cf. noisy ABC)

Same problem in the case of low measurement error

Particularly problematic in the context of high-dimensional
data

Would like a strategy which copes better in this case

Darren Wilkinson — Bayes–250, Edinburgh, 5/9/2011 Bayesian inference for POMP models using pMCMC
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The chemical Langevin equation (CLE)

The CLE is a diffusion approximation to the true Markov
jump process

Start with the time change representation

Xt − X0 = S N

(∫ t

0
h(Xτ , c)dτ

)
and approximate Ni (t) ' t + Wi (t), where Wi (t) is an
independent Wiener process for each i

Substituting in and using a little stochastic calculus gives:

The CLE as an Itô SDE:

dXt = Sh(Xt , c) dt +
√
S diag{h(Xt , c)}S ′ dWt

Darren Wilkinson — Bayes–250, Edinburgh, 5/9/2011 Bayesian inference for POMP models using pMCMC
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Improved particle filters for SDEs

The “bootstrap” particle filter uses blind forward simulation
from the model

If we are able to evaluate the “likelihood” of sample paths, we
can use other proposals

The particle filter weights then depend on the
Radon-Nikodym derivative of law of the proposed path wrt
the true conditioned process

For SDEs, the weight will degenerate unless the proposed
process is absolutely continuous wrt the true conditioned
process

Ideally we would like to sample from π(x?t+1|c?, x?t , dt+1), but
this is not tractable for nonlinear SDEs such as the CLE

Darren Wilkinson — Bayes–250, Edinburgh, 5/9/2011 Bayesian inference for POMP models using pMCMC
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Modified diffusion bridge (MDB)

Need a tractable process q(x?t+1|c?, x?t , dt+1) that is locally
equivalent to π(x?t+1|c?, x?t , dt+1)

Diffusion dXt = µ(Xt)dt + β(Xt)
1
2 dWt

The nonlinear diffusion bridge

dXt =
x1 − Xt

1− t
dt + β(Xt)

1
2 dWt

hits x1 at t = 1, yet is locally equivalent to the true diffusion
as it has the same diffusion coefficient

This forms the basis of an efficient proposal; see Durham &
Gallant (2002), Chib, Pitt & Shephard (2004), Delyon & Hu
(2006), and Stramer & Yan (2007) for technical details

Darren Wilkinson — Bayes–250, Edinburgh, 5/9/2011 Bayesian inference for POMP models using pMCMC
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Summary

POMP models form a large, important and interesting class of
models, with many applications

It is possible, and often desirable, to develop inferential
algorithms which are “likelihood free” or “plug-and-play”, as
this allows the separation of the modelling from the inferential
algorithm, allowing more rapid model exploration

Many likelihood free approaches are possible, including
sequential LF-MCMC, PMMH (pMCMC), (sequential) ABC
for Bayesian inference and iterative filtering for maximum
likelihood estimation

Much work needs to be done to properly understand the
strengths and weaknesses of these competing approaches
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