

Probabilistic Programming or Revd. Bayes meets Countess Lovelace

John Winn, Microsoft Research Cambridge Bayes 250 Workshop, Edinburgh, September 2011

"Reverend Bayes, meet Countess Lovelace"

Statistician 1702 – 1761

Programmer 1815 – 1852

- Bayesian inference is hard
- Two key problems
- Probabilistic programming
- Examples
- Infer.NET
- An application
- Future of Bayesian inference

The average developer...

The expert statistician

The expert statistician

- Bayesian inference <u>at the language level</u>
- BUGS & WinBUGS showed the way
- Three keywords added to (any) language
 - random makes a random variable
 - constrain constrains a variable e.g. to data
 - infer returns the distribution of a variable

Normal variables have a fixed single value: int length=6, bool visible=true.

Random variables have uncertain value specified by a probability distribution: int length = random Uniform(0,10) bool visible = random Discrete(0.8)

random operator means 'is distributed as'.

We can define constraints on random variables: constrain (visible==true) constrain (length==4) constrain (length>0) constrain (i==j)

constrain (b) means 'we constrain b to be true'.

- The infer operator gives the posterior distribution of one or more random variables.
- Example: int i = random Uniform(1,10); bool b = (i*i>50); Dist bdist = infer(b);//Bernoulli(0.3)
 Output of infer is always deterministic
 - even when input is *random*.

string A = random new Uniform<string>(); string B = random new Uniform<string>(); string C = A+" "+B; constrain(C == "Hello Uncertain World");

infer(A)
// 50%: "Hello", 50%: "Hello Uncertain"
infer(B)
// 50%: "Uncertain World", 50%: "World"

Imagine running the program many times:

- random (d) samples from the distribution d
- constrain(b) discards the run if b is false
- infer (x) collects the value of x into a persistent memory
 - If enough x's have been stored, returns their distribution
 - Otherwise starts a new run

Bayesian Model Comparison (if, else)

```
bool drugWorks = random new Bernoulli(0.5);
if (drugWorks) {
 pControl = random new Beta(1,1);
  control[:] = random new Bernoulli (pControl);
 pTreated = random new Beta(1,1);
  treated[:] = random new Bernoulli(pTreated);
} else {
 pAll = random new Beta(1,1);
  control[:] = random new Bernoulli(pAll);
  treated[:] = random new Bernoulli(pAll);
// constrain to data
constrain(control == controlData);
constrain(treated == treatedData);
// does the drug work?
infer(drugWorks)
```

Probabilistic programs and graphical models

Probabilistic Program	Graphical Model
Variables	Variable nodes
Functions/operators	Factor nodes/edges
Fixed size loops/arrays	Plates
lf statements	Gates (Minka & Winn)
Variable sized loops, Complex indexing, jagged arrays, mutation, recursion, objects/ properties	No common equivalent

Causality

bool AcausesB = random new Bernoulli(0.5);

```
if (AcausesB) {
```

- A = **random** Aprior;
- B = NoisyFunctionOf(A);
- } **else** {

```
B = random Bprior;
```

```
A = NoisyFunctionOf(B);
```

```
}
// intervention replaces above definition of B
if (interventionOnB) B = interventionValue;
// constrain to data
constrain(A == AData);
constrain(B == BData);
constrain(interventionOnB==interventionData);
// does A causes B, or vice versa?
infer(AcausesB)
```

- Compiles probabilistic programs into inference code (EP/VMP/Gibbs).
- Supports many (but not all)
 probabilistic program elements

- Extensible distribution channel for new machine learning research
- Consists of a chain of code transformations:

Infer.NET inference engine

Infer.NET compiler

Infer.NET compiler

Infer.NET compiler

Infer.NET architecture

Application: Reviewer Calibration

[SIGKDD Explorations '09]

Reviewer calibration code

// Calibrated score - one per submission
Quality[s] = random Gaussian(qualMean,qualPrec).ForEach(s);

// Precision associated with each expertise level
Expertise[e] = random Gamma(expMean,expVar).ForEach(e);

// Review score - one per review
Score[r]= random Gaussian(Quality[sOf[r]],Expertise[eOf[r]]);

// Accuracy of judge
Accuracy[j] = random Gamma(judgeMean,judgeVar).ForEach(j);

// Score thresholds per judge
Threshold[t][j] = random Gaussian(NomThresh[t], Accuracy[j]);

// Constrain to match observed rating
constrain(Score[r] > Threshold[rating][j0f[r]]);
constrain(Score[r] < Threshold[rating+1][j0f[r]]);</pre>

Paper scores

- Highest score: I 'strong accept' and 2 'accept'
- Beat paper with 3 'strong accept' from more generous reviewers

Score certainties

- Most certain: 5 'weak accept' reviews
- Least certain: 'weak reject', 'weak accept', and 'strong accept'.

Reviewer generosity

- Most generous reviewer: 5 strong accepts
- More expert reviews are higher precision:
 - Informed Outsider: I.22, Knowledgeable: I.35 Expert: I.59
 - Experts are more likely to agree with each other (!)

How to make Bayesian inference accessible to the average developer + break the complexity barrier?

- Probabilistic programming in familiar languages
- Probabilistic debugging tools
- Scalable execution
- Online community with shared programs and shared data + continual evaluation of each program against all relevant data and vice versa.

We hope Infer.NET will be part of this future!

research.microsoft.com/infernet

Home

Microsoft^{*}

Research

Download

Documentation

- User Guide
- Tutorials & Examples
- API Documentation
- Resources & References

Support

- FAQ
- Forum
- Blog
- Contact Us

Team

- Meet the Team
- MLP Group
- MSR Cambridge

IIII Infer.NET

Infer.NET is a framework for running Bayesian inference in graphical models. It can also be used for probabilistic programming as shown in this video.

You can use Infer.NET to solve many different kinds of machine learning problems, from standard problems like classification or clustering through to customised solutions to domain-specific problems. Infer.NET has been used in a wide variety of domains including information retrieval, bioinformatics, epidemiology, vision, and many others.

Infer.NET 2.4 beta 2 is now available [17th December, 2010]. This release is a *minor update* to Infer.NET 2.4 beta 1. See the release change history for details.

 Questions?
 Please use the forum to provide feedback and to share the ways in which you are using

 Suggestions?
 Infer.NET (or send e-mail to infersup@microsoft.com).

Citing Infer.NET If you use Infer.NET as part of your research, please cite us as detailed in the FAQ.

Infer.NET now and next

Domains	Information retr Biological User modelling	rieval Social networ Software developme Healthcare	ks Semantic web nt Vision Natural language	
Models	Ranking Classification Regression Factor analysis	Hierarchical Collabo models filte Bayes nets HMM s Sparse	orative Undirected ring Topic models models Grid models	
Execution platform	CPU	MPI Multicor DryadLINQ (e Azure GPU CamGraph	
Data size	MB	GB	ТВ	
	2008	2009 2010	2011 Future	