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Bayesian inference is hard 

! Complex mathematics  

! Approximate algorithms 

! Error toleration 

! Hard to schedule 

! Hard to detect convergence 
! Numerical stability 

! Computational cost 
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Probabilistic programming 

 Bayesian inference at the language level 

 BUGS & WinBUGS showed the way 

 Three keywords added to (any) language 

 random – makes a random variable 

 constrain – constrains a variable e.g. to data 

 infer – returns the distribution  

      of a variable 



Random variables 

 Normal variables have a fixed single value: 
int length=6,  

bool visible=true. 

 Random variables have uncertain value 

specified by a probability distribution: 
int length = random Uniform(0,10) 

bool visible = random Discrete(0.8) 

 random operator means ‘is distributed as’. 



Constraints 

 We can define constraints on random 

variables: 
constrain(visible==true) 

constrain(length==4) 

constrain(length>0) 

constrain(i==j) 

 constrain(b)means ‘we constrain b 

to be true’. 



Inference 

 The infer operator gives the posterior 

distribution of one or more random 

variables.  

 Example: 
int i = random Uniform(1,10); 

bool b = (i*i>50); 

Dist bdist = infer(b);//Bernoulli(0.3) 

 Output of infer is always deterministic 

even when input is random. 



Hello Uncertain World 

string A = random new Uniform<string>(); 

string B = random new Uniform<string>(); 

string C = A+" "+B; 

constrain(C == "Hello Uncertain World"); 

 

infer(A)  

 

infer(B) 

 

// 50%: "Hello", 50%: "Hello Uncertain" 

// 50%: “Uncertain World", 50%: “World" 



Semantics: sampling interpretation 

Imagine running the program many times:  

 random(d) samples from the distribution d 

 constrain(b) discards the run if b is false 

 infer(x) collects the value of x into a 

persistent memory 

 If enough x’s have been stored, returns their 

distribution 

 Otherwise starts a new run 



bool drugWorks = random new Bernoulli(0.5); 

if (drugWorks) {  

  pControl = random new Beta(1,1); 

  control[:]  = random new Bernoulli(pControl); 

  pTreated = random new Beta(1,1); 

  treated[:]  = random new Bernoulli(pTreated); 

} else {   

  pAll     = random new Beta(1,1); 

  control[:]  = random new Bernoulli(pAll); 

  treated[:]  = random new Bernoulli(pAll); 
} 

Bayesian Model Comparison (if, else) 

// constrain to data 

constrain(control == controlData); 

constrain(treated == treatedData); 

// does the drug work? 

infer(drugWorks) 



Probabilistic programs and graphical models 

Probabilistic 

Program 

Graphical 

Model 

Variables Variable nodes 

Functions/operators Factor nodes/edges 

Fixed size loops/arrays Plates 

If statements Gates (Minka & Winn) 

Variable sized loops, 

Complex indexing, 

jagged arrays, mutation, 

recursion, objects/ 

properties… 

No common equivalent 



Causality 
bool AcausesB = random new Bernoulli(0.5); 

if (AcausesB) {  

  A = random Aprior; 

  B = NoisyFunctionOf(A); 

} else {   

  B = random Bprior; 

  A = NoisyFunctionOf(B); 

} 

 

 

 

// intervention replaces above definition of B 

if (interventionOnB) B = interventionValue;  

// constrain to data 

constrain(A == AData); 

constrain(B == BData); 

constrain(interventionOnB==interventionData); 

// does A causes B, or vice versa? 

infer(AcausesB) 



Infer.NET 

 Compiles probabilistic programs into 

inference code (EP/VMP/Gibbs). 

 Supports many (but not all)  

probabilistic program elements 

 Extensible – distribution channel for new 

machine learning research 

infer.net

 Consists of a chain of code transformations: 

T1 T2 T3 
Probabilistic 

program  

Inference 

program 
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Infer.NET architecture 
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Application: Reviewer Calibration 

Submissions 
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Reviewers 

[SIGKDD Explorations ‘09] 



Reviewer calibration code 

// Calibrated score – one per submission 
Quality[s] = random Gaussian(qualMean,qualPrec).ForEach(s); 

// Precision associated with each expertise level 
Expertise[e] = random Gamma(expMean,expVar).ForEach(e); 

// Review score – one per review  
Score[r]= random Gaussian(Quality[sOf[r]],Expertise[eOf[r]]); 

// Accuracy of judge 
Accuracy[j] = random Gamma(judgeMean,judgeVar).ForEach(j); 

// Score thresholds per judge 
Threshold[t][j] = random Gaussian(NomThresh[t], Accuracy[j]); 

// Constrain to match observed rating 
constrain(Score[r] > Threshold[rating][jOf[r]]); 
constrain(Score[r] < Threshold[rating+1][jOf[r]]); 



Results for KDD 2009 

 Paper scores 

 Highest score: 1 ‘strong accept’ and 2 ‘accept’ 

 Beat paper with 3 ‘strong accept’ from more generous reviewers 

 Score certainties 

 Most certain: 5  ‘weak accept’ reviews 

 Least certain:  ‘weak reject’, ‘weak accept’, and ‘strong accept’. 

 Reviewer generosity 

 Most generous reviewer: 5 strong accepts 

 More expert reviews are higher precision: 

 Informed Outsider: 1.22,  Knowledgeable: 1.35 Expert: 1.59 

 Experts are more likely to agree with each other (!) 



Future of Bayesian inference 

How to make Bayesian inference accessible to the 

average developer + break the complexity barrier? 

 Probabilistic programming in familiar languages 

 Probabilistic debugging tools 

 Scalable execution 

 Online community with shared programs and 

shared data + continual evaluation of each 

program against all relevant data and vice versa. 

We hope Infer.NET will be part of this future! 



research.microsoft.com/infernet 



Questions? 





Infer.NET now and next 
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