
Probabilistic Programming
or

Revd. Bayes meets Countess Lovelace

John Winn, Microsoft Research Cambridge

Bayes 250 Workshop, Edinburgh, September 2011

Statistician Programmer

“Reverend Bayes, meet Countess Lovelace”

1702 – 1761 1815 – 1852

http://en.wikipedia.org/wiki/File:Thomas_Bayes.gif
http://en.wikipedia.org/wiki/File:Ada_lovelace.jpg

Roadmap

Bayesian inference is hard

Two key problems

Probabilistic programming

Examples

 Infer.NET

An application

Future of Bayesian inference

Bayesian inference is hard

! Complex mathematics

! Approximate algorithms

! Error toleration

! Hard to schedule

! Hard to detect convergence
! Numerical stability

! Computational cost

The average developer…

!
! !

!
! ! !

The expert statistician

!
! !

!
! ! !

The expert statistician

!
! !

!
! ! ! !

!

!
!

! ! !
! !

!

!

! !

!

!

!

!

!

Probabilistic programming

 Bayesian inference at the language level

 BUGS & WinBUGS showed the way

 Three keywords added to (any) language

 random – makes a random variable

 constrain – constrains a variable e.g. to data

 infer – returns the distribution

 of a variable

Random variables

 Normal variables have a fixed single value:
int length=6,

bool visible=true.

 Random variables have uncertain value

specified by a probability distribution:
int length = random Uniform(0,10)

bool visible = random Discrete(0.8)

 random operator means ‘is distributed as’.

Constraints

 We can define constraints on random

variables:
constrain(visible==true)

constrain(length==4)

constrain(length>0)

constrain(i==j)

 constrain(b)means ‘we constrain b

to be true’.

Inference

 The infer operator gives the posterior

distribution of one or more random

variables.

 Example:
int i = random Uniform(1,10);

bool b = (i*i>50);

Dist bdist = infer(b);//Bernoulli(0.3)

 Output of infer is always deterministic

even when input is random.

Hello Uncertain World

string A = random new Uniform<string>();

string B = random new Uniform<string>();

string C = A+" "+B;

constrain(C == "Hello Uncertain World");

infer(A)

infer(B)

// 50%: "Hello", 50%: "Hello Uncertain"

// 50%: “Uncertain World", 50%: “World"

Semantics: sampling interpretation

Imagine running the program many times:

 random(d) samples from the distribution d

 constrain(b) discards the run if b is false

 infer(x) collects the value of x into a

persistent memory

 If enough x’s have been stored, returns their

distribution

 Otherwise starts a new run

bool drugWorks = random new Bernoulli(0.5);

if (drugWorks) {

 pControl = random new Beta(1,1);

 control[:] = random new Bernoulli(pControl);

 pTreated = random new Beta(1,1);

 treated[:] = random new Bernoulli(pTreated);

} else {

 pAll = random new Beta(1,1);

 control[:] = random new Bernoulli(pAll);

 treated[:] = random new Bernoulli(pAll);
}

Bayesian Model Comparison (if, else)

// constrain to data

constrain(control == controlData);

constrain(treated == treatedData);

// does the drug work?

infer(drugWorks)

Probabilistic programs and graphical models

Probabilistic

Program

Graphical

Model

Variables Variable nodes

Functions/operators Factor nodes/edges

Fixed size loops/arrays Plates

If statements Gates (Minka & Winn)

Variable sized loops,

Complex indexing,

jagged arrays, mutation,

recursion, objects/

properties…

No common equivalent

Causality
bool AcausesB = random new Bernoulli(0.5);

if (AcausesB) {

 A = random Aprior;

 B = NoisyFunctionOf(A);

} else {

 B = random Bprior;

 A = NoisyFunctionOf(B);

}

// intervention replaces above definition of B

if (interventionOnB) B = interventionValue;

// constrain to data

constrain(A == AData);

constrain(B == BData);

constrain(interventionOnB==interventionData);

// does A causes B, or vice versa?

infer(AcausesB)

Infer.NET

 Compiles probabilistic programs into

inference code (EP/VMP/Gibbs).

 Supports many (but not all)

probabilistic program elements

 Extensible – distribution channel for new

machine learning research

infer.net

 Consists of a chain of code transformations:

T1 T2 T3
Probabilistic

program

Inference

program

Infer.NET inference engine

D

A Raining

C

B=1

T1 T2 T3
Probabilistic

program

Inference

program

Infer.NET compiler

Channel

transform
T2 T3

Inference

program

D

C

B=1 A

Probabilistic

program

Infer.NET compiler

Channel

transform

Message

transform
T3

Inference

program

D

A

C

B

Probabilistic

program

Infer.NET compiler

Channel

transform

Message

transform
Scheduler

Inference

program

D

C

Schedule

A B

Probabilistic

program

Infer.NET architecture

Infer.NET

compiler

C#

compiler
C# Algo-

rithm

Infer.NET Inference Engine

Probabilistic

program
Observed values

(data, priors)

Algorithm

execution

Probability

distributions

Application: Reviewer Calibration

Submissions

Strong

Reject

Accept

Weak

Accept

Weak

Reject

Weak

Accept Weak

Accept

Weak

Accept

Reviewers

[SIGKDD Explorations ‘09]

Reviewer calibration code

// Calibrated score – one per submission
Quality[s] = random Gaussian(qualMean,qualPrec).ForEach(s);

// Precision associated with each expertise level
Expertise[e] = random Gamma(expMean,expVar).ForEach(e);

// Review score – one per review
Score[r]= random Gaussian(Quality[sOf[r]],Expertise[eOf[r]]);

// Accuracy of judge
Accuracy[j] = random Gamma(judgeMean,judgeVar).ForEach(j);

// Score thresholds per judge
Threshold[t][j] = random Gaussian(NomThresh[t], Accuracy[j]);

// Constrain to match observed rating
constrain(Score[r] > Threshold[rating][jOf[r]]);
constrain(Score[r] < Threshold[rating+1][jOf[r]]);

Results for KDD 2009

 Paper scores

 Highest score: 1 ‘strong accept’ and 2 ‘accept’

 Beat paper with 3 ‘strong accept’ from more generous reviewers

 Score certainties

 Most certain: 5 ‘weak accept’ reviews

 Least certain: ‘weak reject’, ‘weak accept’, and ‘strong accept’.

 Reviewer generosity

 Most generous reviewer: 5 strong accepts

 More expert reviews are higher precision:

 Informed Outsider: 1.22, Knowledgeable: 1.35 Expert: 1.59

 Experts are more likely to agree with each other (!)

Future of Bayesian inference

How to make Bayesian inference accessible to the

average developer + break the complexity barrier?

 Probabilistic programming in familiar languages

 Probabilistic debugging tools

 Scalable execution

 Online community with shared programs and

shared data + continual evaluation of each

program against all relevant data and vice versa.

We hope Infer.NET will be part of this future!

research.microsoft.com/infernet

Questions?

Infer.NET now and next

 Domains

 Execution

 platform

 Models

 Data size MB GB TB

CPU

2008 Future

MPI

DryadLINQ

Multicore

CamGraph

Azure
GPU

Classification

Regression

Factor analysis

Bayes nets

Ranking Hierarchical

models

Sparse

Topic

models HMMs

Grid models

Undirected

models

Object models

Collaborative

filtering

Information retrieval

Biological

User modelling

Software development

Healthcare

Social networks

Natural language

Vision

Semantic web

NUI

2011 2010 2009

