
Bayes Lectures, Edinburgh, August 2012'

&

$

%

New Challenges and Bayes:

The world of computer models

Susie Bayarri (Universitat de València)
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Computer models

Simulators or computer models are intended as ’surrogates’ (or at least

good approximations) of reality

• Solutions of complex math/physics models (systems of ODE’s,

PDE’s, ...) which try to mimic a real process

• For complex models, they have to be numerically solved (and hence

the name computer models)

• CCM are (delayed) black boxes: feed specific values for the inputs

(x,u), get back some output yM(x,u), or computer model run at

those inputs (predictions of the real process)

– x ; vector of controllable (known) inputs (speed of a crash)

– u ; calibration/tuning/random (unknown) parameters

(friction/fudge factor/Richter index)
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• Usually deterministic: if you run the computer model at the same

inputs, you get the same outputs

• Complex computer models are expensive to run: a single run can

take hours or even days (so we don’t have many)

• outputs are complex; yM(x,u) refers to a simple (here scalar)

function of the outputs (the QoI)

• They are most common when physical data is scarce or non

existent, but they are becoming ubiquitous (crashes, porous media,

atmospheric ozone, health effects of pollutants, bomb deflagration,

infections dynamics, engineering, weather, hurricanes, ecology

models, high-energy physical collisions, social infections, traffic

networks, ocean models, computer networks, social networks,

engineering, medical devices, cell transport, PK/PD models ... )
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Three views of computer modeling:

• It is the future of science, technology and society.

• It can be highly successful, but requires careful statistical validation.

• It is too difficult to be useful in most practical scenarios

Predictions from different climate models/scenarios (IPCC Assessment Report)
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Uncertainties

There is usually considerable uncertainty in

• the “true” values of the u inputs

• the numerical implementation (approximation to the proposed

math/physics model)

• the adequacy of the models to describe reality (the bias function)

• observation of reality (field data)

• the output of complex computer models at un-run inputs

• relation among ‘similar’ experiments and/or models (ensemble)

• ... and many others

Deal with them mostly with Bayesian Analysis
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Why Bayes is so good in the analysis of computer models

• Bayesian analysis can handle, quantify, update, combine and

propagate all these uncertainties in the same analysis (probability

rules)

• In Bayesian analysis all uncertainties are quantified through

probability distributions ; no need to treat differently epistemic

uncertainty from aleatoric uncertainty

• Bayesian analysis is about the only satisfactory way to go from

P(data | inputs) to P(inputs | data) (methods not explicitly

incorporating a prior distribution will not work)
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• Applied math/Engineers/Physicists acknowledged uncertainty in

their analysis (they called it Uncertainty Quantification);

Statisticians acknowledged the role of deterministic models ... but

very little interaction Math/Stat for a while

• Increased collaboration is changing the meaning (and the world) of

Uncertainty Quantification
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What is Uncertainty Quantification (UQ)?

Vague Definition: Uncertainty quantification is everything at the

intersection of ‘mathematical modeling of processes’ with ‘probability

and statistics.’

• UQ has become a major area of science and statistics:

• Has put together SIAM (Society for Industrial and Applied

Mathematics) and ASA (American Statistical Association)

– Inaugural SIAM/ASA conference on UQ, on April 2-5, 2012 drew

417 participants

– There is a new SIAM/ASA Journal on Uncertainty Quantification

(www.siam.org/journals/juq.php)
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Four views on uncertainty quantification of computer
models:

• Hard Core Modeler: “Don’t bother me; I need every waking

moment to work on the science/math/computation to improve the

model.”

• Hard Core Statistician: “Practical use of the model is irresponsible

unless all sources of uncertainty have been properly accounted for.”

• Soft Core Modeler:

– “I’ll talk to statisticians if it help’s me to improve the model;”

– “I’ll consign some time and model runs to dealing with uncertainty.”

• Soft Core Statistician: “What I want in terms of model, field data,

and information about uncertainties is not possible, so I’ll take

what is available and try to do something.”

10



Bayes Lectures, Edinburgh, August 2012'

&

$

%

Statistical areas of uncertainty quantification
• Design: Designing runs of the simulator

• Emulation: Approximating the simulator (surrogates, reduced order)

• Sensitivity analysis and variance decomposition: Determine sensitivity of
simulator to inputs, often with goal of ignoring part of input space.

• Diagnosis: Detection of flaws in the simulator

• Parameterization: Incorporating probabilistic or statistical components

• Inverse problems: Determining tuning or calibration parameters of the
simulator, or the initial states of the system

• Output analysis: Determining how stochastic inputs affect outputs of
the simulator (uncertainty propagation)

• Data assimilation: Combining simulator runs with observational data for
prediction (e.g., ‘pseudo Kalman-filtering’ as used in weather prediction)

• Making decisions using the computer model and UQ analysis

• Validation: Instead, estimating the discrepancy of the simulator from
reality, and deciding if predictions are accurate enough for intended use.
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Quantifying Risks of Geophysical Hazards∗

with J.O. Berger, E. Calder, A. Patra, B. Pitman, E. Spiller, R. Wolpert

(Duke U, U Buffalo, Marquette U)

• A promising application of computer models (because it involves

serious extrapolation)

• General methodology is applicable to many risks analyses

• It presents a novel use of an ’inverse problem’, which is solved by a

combination of computer models and Bayes

∗ From a 2006-07 samsi Program on Development, Assessment and Utilization of

Complex Computer Models. Partially supported with several NSF grants
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Assessing risks of extreme hazards

• Events producing mild damage occur periodically. In rare occasions,

they are catastrophic (hurricanes, tsunamis, earthquakes, flooding, forest

fires, pyroclastic flows, ... )

• Interest for now: Pr(at least a catastrophic event in the next T

years) at certain locations

• Usual risk assessments are based on:

– expert opinion ; but phenomena way too complex

– statistical/probabilistic models ; but data way too scarce

– computer implementations of math models describing the

phenomena and extrapolating to unseeing situations ; but

LOTS of uncertainties ; it needs statistics
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What we do

Combine use of computer models and statistical models to assess the

risk of a volcanic hazard. (Test-bed: pyroclastic flows of Soufrière Hills

Volcano in the island of Montserrat.) We compute

Pr (a catastrophic inundation occurs in the next T years)

at specified locations, utilizing

• computer implementations of mathematical models of flows to allow

extrapolation to unseen situations;

• statistical models for needed stochastic inputs to the computer model,

to calibrate unknown parameters of the computer model, and to

account for uncertainties;

• a computational strategy for rare events, based on development of

adaptive approximations to the computer model.
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Although we present our methodology in the volcano hazard scenarios,

it is quite general, applicable to assess risk of catastrophic events

(probability of rare events) when:

- there is little or no data on the rare event

- a math model/simulator is available to describe the phenomena

- a statistical model is needed to feed the simulator, and there is

data available (even if scarce and challenging) to fit such a model

- the simulator is too expensive to run to evaluate the probability of

hazards by ‘brute force’
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Soufrière Hills Volcano
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Pyroclastic flows
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The Geophysical/Math Model

• Use ‘thin layer’ modeling ; system of PDE for the flow depth and

the depth-averaged momenta.

• Important feature: Incorporates topographical data from a digital

elevation map (DEM).
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The Computer Model Implementation

TITAN2D (U Buffalo) computes solution to the math model

• Stochastic inputs whose randomness is the basis of the risk

uncertainty (note: all inputs are denoted by x here; none controlable)

– x1 = initial volume V (size of initial flow),

– x2 = initial angle φ (direction of initial flow).

• Main deterministic inputs: internal friction, x3 = basal friction b

(which is very uncertain), initial velocity (set to zero).

• Output: flow height and depth-averaged velocity at every grid

point at every time step; we will focus on the maximum flow height

at each grid point.

• Each run takes about 1 hour
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a näıve risk assessment

• develop a distribution for the inputs x = (V, φ, b)

(needs to take into account frequency and severity)

• feed the simulator with simulations from this distribution

• estimate the probability of a ”hit” by straight MC or importance

sampling

This is unfeasible since

- simulator is very slow

- we are interested in the probabilities of very rare events
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Risk Assessment Part I: Defining a Catastrophe

• Let yM(x) be the computer model prediction, for input x ∈ X , of

the characteristic that defines catastrophic events.

SHV: x = (V, φ, b) ∈ X = (0,∞)× [0, 2π)× (0,∞) and

yM(x) = maximum height of the pyroclastic flow in

downtown Plymouth (or airport) for an eruption of

characteristics x.

• Catastrophe occurs if yM(x) ∈ YC.

SHV: Catastrophe if x is such that yM(x) ≥ 1m.

• what kind of inputs produce an inundation of at least 1m in the

location of interest? determine ‘catastrophic region’ XC in the

input space:

XC = {x ∈ X : yM(x) ∈ YC}
23



Bayes Lectures, Edinburgh, August 2012'

&

$

%

SHV: XC = {(V, φ, b) ∈ X : V > Ψ(φ, b)}, where the

critical contour, separating catastrophic and benign events, is

Ψ = Ψ(φ, b) = {value of V such that yM(V, φ, b) = 1m}
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Developing an emulator to help determine Ψ

• It is obviously impossible to determine the critical boundary Ψ with

simulator’s runs. We use instead an emulator/surrogate

• Emulators are very fast, statistical “approximations” (surrogates)

to some of the outputs yM(x) of (slow) computer models.

• More specifically, an emulator

– is fitted based on a set of runs of the computer model at

specified “design points” x ∈ D;

– is a statistical predictor of yM(x) for untried x, which provides

an estimate of the error incurred in the prediction;

– exactly equals the computer model runs at the design points

and interpolates at other values of x.
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localized emulator

• Here we construct a “localized” emulator, namely only around the

Critical Region XC (for us, critical contour Ψ)

• Localized emulators work better, and are easier to fit

• Initial Computer Model runs

– Begin with a Latin hypercube statistical (space filling) design to

select N design points in a large region

X = [105m3, 109.5m3]× [0, 2π]× [5, 25].

– Run the computer model at these preliminary points.

– For the purpose of fitting an emulator to find XC , keep only

design points D in a region ‘close’ to XC :
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Figure 1: Red dots: yM (V, φ, 15) > 0 at Plymouth. Green dots: yM (V, φ, 15) = 0.

Remember the goal: find the contour where yM (V, φ, b) = 1.
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Gaussian process emulators in the XC region

• Since we are interested in regions where the flow is small (1m), we

fit an emulator to ỹM(x) = log(yM(x) + 1). Let ỹ be the

transformed vector of computer model runs yM(x) for x ∈ D.

• In any given analysis, ỹM(x) is effectively an unknown function

(known only for x ∈ D) ; assess a prior; standard in the field is

use of GaSP, a Gaussian process

• Interpret a GaSP as saying Multivariate Normal. Indeed, the

unknown function ỹM()̇ ∼ GaSP if the joint distribution of any

finite set of L realizations (ỹM(x1), . . . , ỹ
M(xL)) is a multivariate

normal with mean a variance as specified by the mean function and

the covariance function
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Our GaSP choices:

We followed basically (but not entirely) the standard choices in the

area. Specifically our GaSP has:

• mean β + mV (a constant mean is often used)

note: we expect monotonicity in V , but not φ (b later)

• variance σ2
z ;

• a product exponential correlation structure, i.e., for any two

xi = (Vi, φi, bi),xj = (Vj, φj, bj) ∈ D, the correlation matrix is

R = [Rij]:

Rij = exp(−θV |Vi − Vj|αV ) exp(−θφ|φi − φj|αφ) exp(−θb|bi − bj|αb),

where θ′s (α′s) are range (smoothness) parameters.
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• this is the usual correlation function, but here initiation angle is

periodic (φ = 1 is the same as φ = 361)

• there are several ad-hoc solution. We formally modify the factor

corresponding to φ so that it is periodic (and defines a positive

definite correlation function):
∞∑

k=−∞

exp
(
− βφ|φi − φj + 2πk|αφ

)
/c(βφ, αφ)

with normalizing constant c(βb, αb) = 1 + 2
∑∞

k=1 exp(−βb|2πk|αb).

In most cases, a three term approximation is sufficient

• These assessments produce the likelihood function of the unknown

θ = (θV , θφ, θb, αV , αφ, αb, σ
2
z , β,m)) for the given data ỹ (the

computer model runs at inputs in D) given by

p(ỹ | θ) = 1
2πσ2

z |R|1/2 exp[−
1

2σ2
z
(y−β1−mV)TR−1(y−β1−mV)]
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Traditional (pre-Bayesians) emulator

• Compute MLE θ̂

• EB posterior p(ỹM(·) | θ̂, ỹ) is another GaSP with mean ŷ∗(x∗)

and variance ŝ2(x∗) at any input x∗ = (V ∗, φ∗), given by usual

kriging expressions

ŷ∗(x∗) = β̂ + m̂V ∗ + r̂′R̂−1(yg − β̂1− m̂V),

ŝ2(x∗) = σ̂2
z(1− r̂′R̂−1r̂+

(1− 1′R̂−1r̂)2

1′R̂−11
),

where r = (R(x∗,x1), . . . , R(x∗,xN))
′ with xi ∈ D.

• This (posterior) GaSP was the Plug-in emulator used for years

• We improve it in several ways with similar computational effort.
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Handling the unknown hyperparameters
θ = (θV , θφ, θb, αV , αφ, αb, σ

2
z , β,m)

• Deal with the crucial parameters (σ2
z , β,m) via a fully Bayesian

analysis (here an extension of Kriging) using objective priors:

π(β) ∝ 1, π(m) ∝ 1, and π(σ2
z) ∝ 1/σ2

z ;

• Use a “good estimate” (more later) ξ̂ of the correlation (nuissance)

parameters: ξ = (θV , θφ, θb, αV , αφ, αb) then R(ξ̂) is completely

specified (big simplification).

– A fully Bayesian analysis, accounting for uncertainty in ξ̂, is

certainly doable, but it is difficult and rarely affects the final

answer significantly because of confounding of variables.
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The estimate of ξ = (θV , θφ, θb, αV , αφ, αb)

• MLE fitting of ξ has enormous problems; we have given up on it.

Figure 2: GASP fit to a damped sine wave for m=10 (left) and m=9 (right) points.
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• A big improvement is finding the marginal MLE of ξ from the

marginal likelihood for ξ, found by integrating out over the

objective prior π(β,m, σ2
z) = 1/σ2

z ; the expression is

L(ξ) ∝ |R(ξ)|−
1
2 |X′R(ξ)−1X|−

1
2 (S2(ξ))−(n−q

2
) ;

– X = (1,V ) is the design matrix for the linear parameters,

µ = (β,m) (having dimension q = 2), 1 is the column vector of

ones, and V is the vector of volumes in the data set

– S2(ξ) = (ỹ −Xµ̂)′R(ξ)−1(ỹ −Xµ̂)

– µ̂ = (X′R(ξ)−1X)−1R(ξ)−1ỹ
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• An even bigger improvement arises by finding the posterior mode

from L(ξ)πR(ξ), where πR(ξ) is the reference prior for ξ (Paulo,

2005 AOS). Note that it is computationally expensive to work with

the reference posterior in an MCMC, but using it for a single

maximization to determine the posterior mode is easy.

• The reference prior for ξ is πR(ξ) ∝ |I⋆(ξ)|1/2, where

I⋆(ξ) =


(n− q) trW1 trW2 · · · trWp

trW2
1 trW1W2 · · · trW1Wp

. . . · · ·
...

trW2
p


Wk =

(
∂Σ

∂ξk

)
R(ξ)−1[In −X(X′R(ξ)X)−1X′R(ξ)−1] ,

q = 2 being the dimension of µ and p = 6 the dimension of ξ.
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The posterior predictive distribution at input x∗, conditional on ỹ and

ξ̂, yields the final emulator (in transformed space) at x∗

ỹM(x∗) | ỹ, ξ̂ ∼ t( y∗(x∗), s2(x∗), N − 2) ,

the t-distribution with N − 2 degrees of freedom and parameters

y∗(x∗) = rTR−1ỹ +
1TR−1ỹ

1TR−11
(1− rTR−11) +

Ṽ
T
R−1ỹ

Ṽ
T
R−1Ṽ

(Ṽ ∗ − rTR−1Ṽ )

s2(x∗) =

[
(1− rTR−1r) +

(1− rTR−11)2

(1TR−11)
+

(Ṽ ∗ − rTR−1Ṽ )2

(Ṽ
T
R−1Ṽ )

]

× 1

N − 2

[
(ỹ)

T
R−1ỹ − (1TR−1ỹ)2

1TR−11
− (Ṽ

T
R−1ỹ)2

Ṽ
T
R−1Ṽ

]
,

where Ṽi = Vi − VR, Ṽ
∗ = V ∗ − VR , VR = 1TR−1V /1TR−11, and

rT = (R(x∗,x1), . . . , R(x∗,xN)).
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Figure 3: Median of the emulator, transformed back to the original space.

Left: Plymouth, Right: Bramble Airport. Black points: max-height simulation

outputs at design points.
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One more problem: b is highly dependent on V :

• for each such function, replace b in the emulator by this fucntion, thus

the emulator becomes only a function of (V, φ)

• but b(V ) is very uncertain, and each possible function produces a

different critical contour (inserting b in the T2D was not possible)

• we perform a Hierarchical Bayes Analysis to “borrow information” from

similar volcanos, and account for uncertainty
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Volume/Basal-Friction Relationship
Data from Sarah Ogburn; hierarchical Bayes analysis by Danilo Lopes
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Hierarchical Modeling:

• For the jth PF at ith volcano, model the relationship of basal

friction angle ϕij to volume Vij by

log tanϕij = ai + bi log Vij .

• Assume that the ai and bi from different volcanoes arise from

normal distributions N(µa, σ
2
a) and N(µb, σ

2
b ).

• Assign prior distributions to µa, σ
2
a, µb, σ

2
b and find the posterior

distribution.

• Generate a sample of (a, b) for Montserrat, and utilize the resulting

volume/basal friction curves when required in the emulator to

determine the critical contours Ψ(φ | a, b).
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Risk Assessment Part II: Probability of Catastrophe

Recall what we did in Part I for quantifying risk of a hazard:

• Define catastrophic event in term of the outputs yM(x) ∈ YC.

• Determine the ‘catastrophic region’ XC in the input space:

XC = {x ∈ X : yM(x) ∈ YC}

What we have to do now is to

• Assess a suitable distribution for the inputs (fitted with data)

• Use this distribution to compute the probability of at least a

catastrophic event (x ∈ XC) in t years.

43



Bayes Lectures, Edinburgh, August 2012'

&

$

%

SHV: assessing the risk of a catastrophic inundation

• Once the critical boundary Ψ is found, we need to determine the

distribution of the stochastic variables (V, φ) to compute:

Pr(at least one (V, φ) ∈ XC in the next t years )

= Pr(at least one V ≥ Ψ(φ) in next t years)

(Note that this computation is solely a probability and statistics

computation: no more computer model runs are needed.)

• Volcanologists viewed the assumption of uniformity of φ as being

reasonable for the larger flows of interest.

• Volcanologists originally viewed φ to be independent of V (for

larger flows), so we need only the distribution for the V ′s and τ ’s

(volumes and times of PF events).
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Modeling the Input Distributions

Initial assumptions:

• φ has a uniform distribution (for the larger flows of interest).

• φ is independent of V (for larger flows).

• PFs are stationary and independent over disjoint time intervals (so

times of occurrence follow a stationary Poisson process) and

Number of flows V ≥ ϵ in (0, t) is Poisson(λ ϵ−αt),

with unknown rate parameter λ. (Here ϵ = 104.)

• Arrival times and flow volumes are independent.

Then we only need to characterize the distribution of flow volumes
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This looks almost linear on a log-log scale

• Linear log-log plots of Magnitude vs. Frequency point to a Pareto

distribution

log Pr(V ≥ v | V ≥ ϵ) ≈ −α log(v) + c, v ≥ ϵ

• in which case the probability density of V , for volumes greater than

ϵ, would be Pareto Pa(α, ϵ) with density

f(v | α) = α ϵα

vα+1
, v ≥ ϵ ,

with unknown parameter α.

• Data suggest α ≈ 0.64 and hence enormous tails, infinite mean and

variance, and significant chance of seeing in the future volumes

larger than any we have seen in the past
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Probability of a catastrophic event
It follows that, for any fixed t > 0, the number of catastrophic PF’s (those

with Vi > Ψ(φi)) in t years is Poisson with (conditional) mean

E
(
# catastrophic PFs in t yrs | α, λ

)
=

∫ 2π

0

∫ ∞

Ψ(φ)
[λϵ−αt]

f(v | α)
2π

dvdφ

=
t λ

2π

∫ 2π

0
Ψ(φ)−α dφ ,

Pr(At least one CPF in t yrs | α, λ) = 1− exp

[
− t λ

2π

∫ 2π

0
Ψ(φ)−α dφ

]
,

P (t) ≡ Pr(At least one CPF in t yrs | data)

= 1−
∫∫

exp

[
− t λ

2π

∫ 2π

0
Ψ(φ)−α dφ

]
π(α, λ | data) dα dλ ,

where π(α, λ | data) is the posterior distribution of (α, λ).
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Posterior distribution of (α, λ)

For a given ϵ and period [0, t], the sufficient statistics are J = # of

PF’s on [0, t], and S =
∑

log(Vj), the log-product of their volumes.

The likelihood function is: L(α, λ) ∝ (λα)J exp[−λt ϵ−α − αS].

Objective Priors:

• Jeffreys prior is πJ(α, λ) ∝ |I(α, λ)|1/2 ∝ α−1ϵ−α

• Reference priors

– α of interest gives πR1(α, λ) ∝ λ−1/2α−1ϵ−α/2

– λ of interest gives πR2(α, λ) ∝ λ−1/2[α−2 + (log ϵ)2]1/2ϵ−α/2

which also is Jeffrey’s independent prior

Posterior: π(α, λ | data) ∝ L(α, λ) π(α, λ).
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Computing the probabilities of catastrophe

To compute Pr(at least one catastrophic event in t years | data) for a
range of t, an importance sampling estimate is

P (t) ∼= 1−

∑
i exp

[
− t λi Ψ̂(αi)

2π

]
π∗(αi,λi)
fI(αi,λi)∑

i
π∗(αi,λi)
fI(αi,λi)

,

• where Ψ̂(α) is an MC estimate of
∫ 2π

0
Ψ(φ)−α dφ based on

draws φi ∼ Un(0, 2π);

• π∗(α, λ) is the un-normalized posterior;

• (αi, λi) are drawn from the importance sampling density

fI(α, λ) = t2(α, λ | µ̂, Σ̂, 3), with d.f. 3, mean µ̂t = (α̂, λ̂), and

scale Σ̂ = inverse of observed Fisher information matrix.
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Figure 4: P (t) at Plymouth (higher curves) and Airport (lower curves). Solid

(dashed) ; computed with the upper (lower) 75% confidence bands. Different ref-

erence priors lead to overlapping curves.
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Back to the Assumptions

• φ has a uniform distribution (for the larger flows of interest).

• φ is independent of V (for larger flows).

• PFs are stationary and independent over disjoint time intervals so

Number of flows V ≥ ϵ in (0, t) is Poisson(λ ϵ−αt),

with unknown rate parameter λ. (Here ϵ = 104.)

• Arrival times and flow volumes are independent.

• Flow volumes are Pareto.

None are correct.
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PF Initiation Angles

The data on angles is quite vague— we only know which of 7 or 8

valleys were reached by a given PF, from which we can infer a sector

but not a specific angle φ:
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Data seems to indicate non-uniformity in φ; also, the assumption of

indepence of φ on volume V seems suspect

We need a joint density function for V and φ, and are using

V, φ ∼ α εα V −α−1 πκ(φ) V > ε

where πκ(φ) is the von Mises distribution with pdf

f(φ | κ, µ) = eκ cos(φ−µ)

2πI0(κ)
,

centered at φ ≈ µ close to zero (East) with concentration κ that might

depend on V if the data support that.
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Stationarity and Independence of PFs

Wrong, but not necessarily a problem for long time periods.

For shorter time periods, nonstationary models are being developed

(Jianyu Wang) where the Poisson rate parameter λt varies over time via

a change point model, and can be zero over periods of time.

55



Bayes Lectures, Edinburgh, August 2012'

&

$

%

Assumption of Pareto Flows

Flows can’t be arbitrarily large, but for SHV the Pareto tails imply 0.1%

chances of a PF exceeding 1012 in a century (earth volume ≈ 1019).

Clearly need tempering (or truncation) of the tail. Data also seems to

suggest some tempering
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A Tempered Pareto model is

P [V > v] = (v/ϵ)−α e−β(v−ϵ), v > ϵ
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Discussion
We have argued that:

• Risk assessment of catastrophic events (in the absence of lots of

extreme data) requires

– Mathematical computer modeling to extrapolate beyond the

range of the data.

– Statistical modeling of available (possibly not extreme) data to

determine input distributions and perform calibration, while

attempting to account for all uncertainties.

– Statistical development of emulators of the computer model to

determine critical event contours.

• Major sources of uncertainty can be combined and incorporated

with a Bayesian analysis.
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To be highlighted:

• we only fit an emulator around XC . This:

– Improves the fitting (emulators work best when localized)

– Crucially simplifies the otherwise ”large data sets” GASP

computations

• Computing the probability of interest (a catastrophic event in t

years) only requires

– The input distribution, which is derived independently of the

computer model

– The (distribution of) the critical region, which does not need

the input distribution and is determined based on the computer

model runs

59



Bayes Lectures, Edinburgh, August 2012'

&

$

%

• Therefore

– Several improvements and changes in the input distribution

(tempering the tails, taking into account dependence

on volume and angles,...) can be entertained WITHOUT requiring

new runs of the computer model.

– This is not the case in the ’brute force’ MC approach to risk

analysis; any change in the distribution for the inputs, or simply

getting more data, requires new model runs.

Numerous uncertainties are present in each and every step of this Risk

Assessment; they are dealt with Bayesian analysis (mostly)
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THANKS!!
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