

Menu

- Bayesian inconsistency under misspecification

 G. and Langford, Machine Learning J. 2007
- 2. Learning Rate Relation to Convexity, PAC-Bayes
- 3. Sequential Prediction Detour
- paradox: Bayesian posterior good and bad at same time
 The Safe Bayesian Algorithm
- Use optimal learning rate, itself "learned" from data
- 5. "Unifying" Bayes and PAC-Bayes

Setting of Inconsistency Result

- Let $\mathcal{X} = [0, 1], \mathcal{Y} = \{0, 1\}$ (classification setting)
- Let $\mathcal P$ be a set of conditional distributions $P_{Y|X}$, and let Π be a prior on $\mathcal P$

Bayesian Consistency

- Let $\mathcal{X} = [0, 1], \mathcal{Y} = \{0, 1\}$ (classification setting)
- Let $\mathcal P$ be a set of conditional distributions $P_{Y|X}$, and let Π be a prior on $\mathcal P$
- Let ${\it P}^*$ be a distribution on ${\cal X}\times {\cal Y}$
- Let $(X_1, Y_1), (X_2, Y_2), \dots$ i.i.d. ~ P^*
- If $P_{Y|X}^* \in \mathcal{P}$, then Bayes is consistent under very mild conditions on Π and \mathcal{P}

Bayesian Consistency

- Let $\mathcal{X} = [0, 1], \mathcal{Y} = \{0, 1\}$ (classification setting)
- Let $\mathcal P\,$ be a set of conditional distributions $P_{Y|X}$, and let $\Pi\,$ be a prior on $\mathcal P$
- Let P^* be a distribution on $\mathcal{X} \times \mathcal{Y}$
- Let $(X_1, Y_1), (X_2, Y_2), \dots$ i.i.d. $\sim P^*$
- If $P_{Y|X}^* \in \mathcal{P}$, then Bayes is **consistent** under very mild conditions on Π and \mathcal{P}
- "consistency" can be defined in number of ways,
 e.g. posterior distribution ⊓(· | Xⁿ, Yⁿ)
 "concentrates" on "neighborhoods" of P*

Possible Solutions

- Let q achieve $\inf_{P \in \langle \mathcal{P} \rangle} D(P^* || P)$
- It turns out that, for convex $\langle \mathcal{P} \rangle$ for all $P \in \mathcal{P}$ $A(\lambda, p) := E_{P^*} \left(\frac{p(Y)}{q(Y)} \right)^{\lambda} \leq 1$ at $\lambda = 1$, and strictly increasing
- ...so indeed o.k. if we restrict to convex models (Barron & Li '99, Kleijn and v.d. Vaart '06)
- But we often *want* to use nonconvex models (e.g. regression)!

- Let $\eta_{\text{crit}} > 0$ be largest η such that $\sup_{P \in \mathcal{P}} E_{P^*} \left(\frac{p(Y)}{q(Y)} \right)^{\eta} \leq 1$
 - "scale down" model ...by defining "generalized posterior" (Vovk, Zhang, Hjort, Walker, Barron, G.)

$$(p \mid Y^i, \eta) := rac{\pi(p)p^\eta(Y^i)}{\sum\limits_{p \in \mathcal{P}} \pi(p)p^\eta(Y^i)}$$

- and do Bayesian inference for $\eta < \eta_{crit}$

π

• This works, but of course we don't know η_{crit}

Interpretation of Generalized Posterior

- In case of regression, decreasing η simply means increasing the variance of the model

$$\pi(p \mid X^n, Y^n, \eta) := \frac{\pi(p)p^{\eta}(Y^n \mid X^n)}{\sum\limits_{n \in \mathcal{D}} \pi(p)p^{\eta}(Y^n \mid X^n)}$$

- · In general though interpretation not so easy
- What does hold in general: the smaller η the larger the weight of the prior/regularization term in MAP

$$\hat{p}_{\mathsf{map}} = \arg\min_{p \in \mathcal{P}} \left(\frac{1}{\eta} \cdot (-\log \pi(p)) - \log p(Y^n \mid X^n) \right)$$

PAC-Bayes: beyond Log-Loss

- Define generalized posterior on set of predictors \mathcal{H} $\pi(h \mid Z^n, \eta) = \frac{\pi(dh)e^{-\eta \sum_{i=1}^{n} \log(Y_i, h(X_i))}}{\int_{Y_i \in Y_i \in \mathcal{H}(Y_i)} \sum_{i=1}^{n} \frac{1}{\sum_{i=1}^{n} \log(Y_i, h(X_i))}}$
- $\begin{array}{l} & \quad \\ & \quad$

$$\eta'_{\text{crit}} = \sup \left\{ \eta : \sup_{P \in \mathcal{P}} E_{P^*} \left(\frac{\mathbf{p}(Y)}{\mathbf{q}(Y)} \right)^{\eta} \le 1 + \frac{1}{n} \right\}$$

– optimal contraction rate determined by $\eta_{\rm crit}'$

- optimal contraction rate determined by $\eta'_{\rm crit}$

 $E_{P^*}\left[\frac{e^{-\eta \text{loss}(Y,h(X))}}{e^{-\eta \text{loss}(Y,\tilde{h}(X))}}\right]$

Bayesian and PAC-Bayesian Motivation

- Standard Bayesian inference uses η = 1

 This may not converge at all if model is wrong. Want to use smaller η, but how to find it?
- Standard PAC-Bayesian inference uses $\eta = 1/\sqrt{n}$ – This converges (but slowly). If situation is "nice", we can converge faster by using larger η , but how to find it?

Bayesian and PAC-Bayesian Motivation

- Standard Bayesian inference uses $\eta = 1$ – This may not converge at all if model is wrong. Want to use smaller η , but how to find it?
- Standard PAC-Bayesian inference uses $\eta = 1/\sqrt{n}$ – This converges (but slowly). If situation is "nice", we can converge faster by using larger η ,
 - but how to find it?

in fact, in both cases:

- if $\eta > \eta'_{crit}$ then we may not converge at all,
- if $\eta \ll \eta'_{\rm Crit}$ we may converge too slowly

Part 2: Towards a solution via a paradox

- So again: How to learn the learning rate?
 - "learning" learning rate η by empirical Bayes can give disastrous results (GL '07)
 - "hierarchical Bayes" (integrating out η) can give disastrous results! (GL '07)

Part 2: Towards a solution via a paradox

- · So again: How to learn the learning rate?
- "learning" learning rate η by empirical Bayes can give disastrous results (GL '07)
- "hierarchical Bayes" (integrating out η) can give disastrous results! (GL '07)
- I recently "solved" issue (after 10 year long search...)
- Paradox: Bayesian predictive distribution behaves well in terms of cumulative KL risk even when model is completely wrong
- · Understanding the paradox leads to a solution

Menu

- Bayesian inconsistency under misspecification

 G. and Langford, Machine Learning J. 2007
- 2. Learning Rate Relation to Convexity, PAC-Bayes
- 3. Sequential Prediction Detour
- paradox: Bayesian posterior good and bad at same time
 The Safe Bayesian Algorithm
- Use optimal learning rate, itself "learned" from data
- 5. "Unifying" Bayes and PAC-Bayes

The Safe Bayesian Algorithm

- Want to do Bayesian inference for $\eta\approx\eta_{\rm Crit}$
- But of course we don't know $\eta_{\rm crit}$
- Instead we pick î(Yⁿ) ∈ [1/√n, 1] which maximizes posterior-expected log-likelihood according to sequentially randomized Bayes predictive distr.
 (cf. Freund & Shapire's "Hedge" algorithm!)
- We then use the corresponding randomized predictive distribution as a (randomized) "estimator" /predictor of P*
- This (almost) works!

The Bayesian Belief in Concentration

 Under very weak conditions on prior, a Bayesian will believe that her posterior will concentrate, i.e. prediction by randomization not much worse than prediction by mixing:

$$\sqcap \left\{ E_{p \sim \Pi \mid Y^i} \left[-\log \frac{p(Y_{i+1})}{q(Y_{i+1})} \right] \rightarrow C \times \left(-\log E_{p \sim \Pi \mid Y^i} \left[\frac{p(Y_{i+1})}{q(Y_{i+1})} \right] \right) \right\} = 1$$

 Can view our work as a test (posterior predictive check!?!?) of Bayesian assumption. If test fails, we modify our model (not to make it true – that would be too ambitious – but to make Bayes predict well!)

Thank you for your attention!

- Preliminary version of work appears in ALT 2012
- Related work in worst-case setting: Van Erven, G., De Rooij, Koolen: Adaptive Hedge, NIPS '11
- See also Larry Wasserman's blog "normal deviate" under "self-repairing Bayesian inference"

"If a subjective distribution *P* attaches probability zero to a non-ignorable event, and if this event happens, then *P* must be treated with suspicion, and **modified** or replaced" - A. P. Dawid in *The Well-Calibrated Bayesian*, JASA 1982