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• Let                                      (classification setting)

• Let      be a set of conditional distributions          ,   
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Bayesian Consistency

• Let                                      (classification setting)

• Let      be a set of conditional distributions          ,   
and let      be a prior on

• Let      be a distribution on

• Let                                     i.i.d.  

• If                 , then Bayes is consistent under        
very mild conditions on      and

Bayesian Consistency

• Let                                      (classification setting)

• Let      be a set of conditional distributions          ,   
and let      be a prior on

• Let      be a distribution on

• Let                                     i.i.d.  

• If                 , then Bayes is consistent under        
very mild conditions on      and

– “consistency” can be defined in number of ways, 
e.g. posterior distribution         
“concentrates” on “neighborhoods” of 
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Bayesian Consistency

• Let                                      (classification setting)

• Let      be a set of conditional distributions          ,   
and let      be a prior on

• Let      be a distribution on

• Let                                     i.i.d.  

• If                 , then Bayes is consistent under        
very mild conditions on      and

• If                 , then Bayes is consistent under        
mild conditions on      and

see e.g. Kleijn and 
Van der Vaart 2006

Bayesian Consistency

• Let                                      (classification setting)

• Let      be a set of conditional distributions          ,   
and let      be a prior on

• Let      be a distribution on

• Let                                     i.i.d.  

• If                 , then Bayes is consistent under        
very mild conditions on      and

• If                 , then Bayes is consistent under        
mild conditions on      and

but not nearly so mild!

Bayesian Inconsistency

• Let

• Let      be a set of conditional distributions          ,   
and let      be a prior on      such that 

• Let                                     i.i.d.  

•

• Here D is (conditional) KL divergence: 

π(Q) > 0

D(P ∗‖Q) = min
P∈P

D(P ∗‖P ) > 0

D(P ∗‖P ) = EX,Y∼P ∗
[

− log
p(Y | X)

p∗(Y | X)

]

“Theorem”, G. & Langford 2007

• Let

• Let      be a set of conditional distributions          ,   
and let      be a prior on      such that 

• Let                                     i.i.d.  

•

For all            there exist                  satisfying these
conditions such that     -a.s., we have

(P , P ∗, Q)K > 0

π(Q) > 0

D(P ∗‖Q) = min
P∈P

D(P ∗‖P ) > 0

“Theorem”, G. & Langford 2007

• Let

• Let      be a set of conditional distributions          ,   
and let      be a prior on      such that 

• Let                                     i.i.d.  

•

For all            there exist                  satisfying these
conditions such that     -a.s., we have

(P , P ∗, Q)K > 0

π(Q) > 0

D(P ∗‖Q) = min
P∈P

D(P ∗‖P ) > 0

very different from Diaconis-Freedman!

Root of the Problem

• Consider very simple case

• Let

• Then (Markov’s inequality) 

• If                     already get interesting bound for
since then generalized Hellinger affinity

P ∗
(
pbad(Y

n)

pgood(Y
n)

> K

)

≤ inf
λ>0

1

Kλ



 EP ∗

(
pbad(Y1)

pgood(Y1)

)λ



n

A(λ) := EP ∗

(
pbad(Y1)

pgood(Y1)

)λ
= 1 at λ = 1, and strictly increasing
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Root of the Problem

• Consider very simple case

• Let

• Then (Markov’s inequality) 

• If                     already get interesting bound for
since then generalized Hellinger affinity

• Yet if                                            then may have 

A(λ) := EP ∗

(
pbad(Y1)

pgood(Y1)

)λ
= 1at λ= 1, and strictly increasing

D(P ∗‖Pbad) > D(P ∗‖Pgood) > 0 A(1) > 1

Bound becomes worthless (exp. large) for all but very small     

P ∗
(
pbad(Y

n)

pgood(Y
n)

> K

)

≤ inf
λ>0

1

Kλ



 EP ∗

(
pbad(Y1)

pgood(Y1)

)λ



n

Root of the Problem

• If      finite or “regular parametric”, then for large n get 

consistency anyway by uniform law of large numbers

• G. & Langford ’07 give countably infinite      with 

– no uniform convergence; inconsistency

– relevant since in practice we often do apply 
Bayes in nonparametric situations without uniform 
convergence/optimal convergence rate depends 
on underlying degree of “smoothness” 

Possible Solutions

• Let q achieve 

• It turns out that, for convex       for all 

• ...so indeed o.k. if we restrict to convex models 
(Barron & Li ’99, Kleijn and v.d. Vaart ’06)

• But we often want to use nonconvex models        
(e.g. regression)!

A(λ, p) := EP ∗

(
p(Y

q(Y )

)λ
≤ 1 at λ = 1, and strictly increasing

inf
P∈〈P〉

D(P ∗‖P )

What to do for nonconvex models?

• Let               be largest    such that    

• “scale down” model 

...by defining “generalized posterior” 
(Vovk, Zhang,  Hjort, Walker, Barron, G.)

• and do Bayesian inference for 

• This works, but of course we don’t know            ....ηcrit

π(p | Y i, η) :=
π(p)pη(Y i)
∑

p∈P
π(p)pη(Y i)

η < ηcrit

ηcrit > 0 sup
P∈P

EP ∗

(
p(Y )

q(Y )

)η
≤ 1η

Interpretation of Generalized Posterior

• In case of regression, decreasing     simply means 
increasing the variance of the model

π(h | Xn, Y n, η) =
π(dh)e−η

∑n
i=1(Yi−h(Xi))

2

∫
h′∈H π(dh′)e−η

∑n
i=1(Yi,h

′(Xi))
2

π(p | Xn, Y n, η) :=
π(p)pη(Y n | Xn)
∑

p∈P
π(p)pη(Y n | Xn)

η

Interpretation of Generalized Posterior

• In case of regression, decreasing     simply means 
increasing the variance of the model

• In general though interpretation not so easy

– can get super- and sub-probabilities

– for exponential families

π(p | Xn, Y n, η) :=
π(p)pη(Y n | Xn)
∑

p∈P
π(p)pη(Y n | Xn)

η

η ≤ ηcrit ⇒ COVP ∗[X] � COVQ|η[X]

But in general converse only holds ‘locally’
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Interpretation of Generalized Posterior

• In case of regression, decreasing     simply means 
increasing the variance of the model

• In general though interpretation not so easy

• What does hold in general: the smaller     the larger 
the weight of the prior/regularization term in MAP

π(p | Xn, Y n, η) :=
π(p)pη(Y n | Xn)
∑

p∈P
π(p)pη(Y n | Xn)

η

η

p̂map = argmin
p∈P

(
1

η
· (− logπ(p))− log p(Y n | Xn)

)

PAC-Bayes: beyond Log-Loss

• Let                                           be arbitrary loss fn.

• Define generalized posterior on set of predictors 
as

• With log-loss this reduces to original generalized 
posterior ; most often used for 0/1-loss

loss : Y ×A → [0,∞]

π(h | Zn, η) = π(dh)e−η
∑n

i=1 loss(Yi,h(Xi))

∫
h′∈H π(dh′)e−η

∑n
i=1 loss(Yi,h

′(Xi))

H

McAllester ’02, Seeger 02, Audibert ’04, Zhang ’06, Catoni ’07

PAC-Bayes: beyond Log-Loss

• Define generalized posterior on set of predictors 

• For 0/1-loss, this “procedure” “works” (posterior 
concentrates around best    ) if 

– optimal contraction rate determined by

π(h | Zn, η) =
π(dh)e−η

∑n
i=1 loss(Yi,h(Xi))

∫
h′∈H π(dh′)e−η

∑n
i=1 loss(Yi,h

′(Xi))

H

h̃ η < η′crit

η′crit = sup

{

η : sup
P∈P

EP ∗

(
p(Y )

q(Y )

)η
≤ 1+

1

n

}

η′crit

PAC-Bayes: beyond Log-Loss

• Define generalized posterior on set of predictors 

• For 0/1-loss, this “procedure” “works” (posterior 
concentrates around best    ) if 

– optimal contraction rate determined by

π(h | Zn, η) =
π(dh)e−η

∑n
i=1 loss(Yi,h(Xi))

∫
h′∈H π(dh′)e−η

∑n
i=1 loss(Yi,h

′(Xi))

H

h̃ η < η′crit

η′crit = sup

{

η : sup
P∈P

EP ∗

(
p(Y )

q(Y )

)η
≤ 1+

1

n

}

η′crit

EP ∗



e
−ηloss(Y,h(X))

e−ηloss(Y,h̃(X))





PAC-Bayes: beyond Log-Loss

• Define generalized posterior on set of predictors 

• For 0/1-loss, this “procedure” “works” (posterior 
concentrates around best    ) if 

– optimal contraction rate determined by

– we know

– if             satisfies Tsybakov-Mammen condition 
then

η′crit > 1/
√
n

π(h | Zn, η) =
π(dh)e−η

∑n
i=1 loss(Yi,h(Xi))

∫
h′∈H π(dh′)e−η

∑n
i=1 loss(Yi,h

′(Xi))

H

h̃ η < η′crit

η′crit = sup

{

η : sup
P∈P

EP ∗

(
p(Y )

q(Y )

)η
≤ 1+

1

n

}

η′crit

(P ∗,H)
η′crit � n−α, for some α ∈ [0,1/2]

Bayesian and PAC-Bayesian 
Motivation

• Standard Bayesian inference uses           

– This may not converge at all if model is wrong. 
Want to use smaller    , but how to find it?

• Standard PAC-Bayesian inference uses

– This converges (but slowly). If situation is “nice”, 
we can converge faster by using larger    ,          
but how to find it? 

η = 1

η = 1/
√
n

η

η
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Bayesian and PAC-Bayesian 
Motivation

• Standard Bayesian inference uses           

– This may not converge at all if model is wrong. 
Want to use smaller    , but how to find it?

• Standard PAC-Bayesian inference uses

– This converges (but slowly). If situation is “nice”, 
we can converge faster by using larger    ,          
but how to find it? 

η = 1

η = 1/
√
n

η

η

in fact, in both cases:

if                then we may not converge at all, 

if                we may converge too slowly 

η > η′crit
η � η′crit

Part 2: Towards a solution via a 
paradox

• So again: How to learn the learning rate? 

– “learning” learning rate    by empirical Bayes can 
give disastrous results (GL ’07)

– “hierarchical Bayes” (integrating out    ) can give 
disastrous results! (GL ’07)

η

η

Part 2: Towards a solution via a 
paradox

• So again: How to learn the learning rate? 

– “learning” learning rate    by empirical Bayes can 
give disastrous results (GL ’07)

– “hierarchical Bayes” (integrating out    ) can give 
disastrous results! (GL ’07)

• I recently “solved” issue (after 10 year long search...) 

• Paradox: Bayesian predictive distribution behaves 
well in terms of cumulative KL risk even when model 
is completely wrong

• Understanding the paradox leads to a solution

η

η

Menu

1. Bayesian inconsistency under misspecification
• G. and Langford, Machine Learning J. 2007

2. Learning Rate - Relation to Convexity, PAC-Bayes

3. Sequential Prediction Detour
• paradox: Bayesian posterior good and bad at same time

4. The Safe Bayesian Algorithm
• Use optimal learning rate, itself “learned” from data

5. “Unifying” Bayes and PAC-Bayes

Barron’s Theorem (baby version)

• Let      be arbitrary distribution on Y, extended to n

outcomes by independence. We have 

where

• Bayes predictive distribution has small cumulative KL 
risk even if model wrong 

P ∗

(KL risk)

Barron’s Theorem

• Can easily extend this to uncountable    , RHS then 
determined by discretization

• If model correct, then Bayes cumulative KL risk is 
usually minimax optimal by suitable choice of priors 
(Barron ’98)

• If model wrong – paradox??

P
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Paradox?

• must be very small at most i

• If model correct,               , good behaviour of Bayes’ 
predictive distribution implies posterior concentration:

small all P with substantial 

posterior weight must have
close to   

Paradox?

• must be very small at most i

• If model correct,               , good behaviour of Bayes’ 
predictive distribution implies posterior concentration:

small all P with substantial 

posterior weight must have
close to   

• Yet if model misspecified, we can have good 
behaviour of Bayes predictive without concentration!

Bad and Good Misspecification

model

“truth”

Bad and Good Misspecification

model

“truth”

G. and Langford (2007) show that 

this can happen even in the limit for 

large sample sizes 

Bad and Good Misspecification

model

“truth”

G. and Langford (2007) show that 

this can happen even in the limit for 

large sample sizes 

Now we intuitively understand 
importance of convexity! 

Bad and Good Misspecification

model
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1. If posterior “concentrated” then predicting by 
randomizing using posterior not much worse than 
standard Bayes prediction (which mixes by posterior) 

2. If GL phenomenon takes place, then randomized 
predictions much worse than mixed predictions

• right-hand side may even be negative

Three Observations

EYi+1∼P ∗
[

Ep∼Π|Y i

[

− log
p(Yi+1)

q(Yi+1)

]]

≤ C·EYi+1∼P ∗
[

− logEp∼Π|Y i

[
p(Yi+1)

q(Yi+1)

]]

1. If posterior “concentrated” then predicting by 
randomizing using posterior not much worse than 
standard Bayes prediction (which mixes by posterior)

2. If GL phenomenon takes place, then randomized 
predictions much worse than mixed predictions

3. If we use generalized posterior with                      
then posterior will tend to concentrate! (Thm.!)

Three Observations

η < ηcrit

EYi+1∼P ∗
[

Ep∼Π|Y i

[

− log
p(Yi+1)

q(Yi+1)

]]

≤ C·EYi+1∼P ∗
[

− logEp∼Π|Y i

[
p(Yi+1)

q(Yi+1)

]]

1. If posterior “concentrated” then predicting by 
randomizing using posterior not much worse than 
standard Bayes prediction (which mixes by posterior)

2. If GL phenomenon takes place, then randomized 
predictions much worse than mixed predictions

3. If we use generalized posterior with                      
then posterior will tend to concentrate! (Thm.!)

Three Observations

η < ηcrit

EYi+1∼P ∗
[

Ep∼Π|Y i

[

− log
p(Yi+1)

q(Yi+1)

]]

≤ C·EYi+1∼P ∗
[

− logEp∼Π|Y i

[
p(Yi+1)

q(Yi+1)

]]

Idea: determine    that optimizes the fit of a  
randomizing rather than a mixing Bayesian!

η

The Safe Bayesian Algorithm

• First idea (which does not yet work): find     maximizing

• This is like empirical Bayes. Similarly might try to put a prior on  

and integrate it out (as a real Bayesian would do). That also 
doesn’t work...

log pBayes(Y
n | η) =

n∑

i=1

log pBayes(Yi | Y i−1, η)

η

=
n∑

i=1

log
∑

p
p(Yi)π(p | Y i−1, η)

=
n∑

i=1

logEp∼Π|Y i−1,ηp(Yi)

η

The Safe Bayesian Algorithm

• First idea (which does not yet work): find     maximizing

• Instead we maximize

log pBayes(Y
n | η) =

n∑

i=1

log pBayes(Yi | Y i−1, η)

η

=
n∑

i=1

log
∑

p
p(Yi)π(p | Y i−1, η)

=
n∑

i=1

logEp∼Π|Y i−1,ηp(Yi)

n∑

i=1

Ep∼Π|Y i−1,η log p(Yi)
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The Safe Bayesian Algorithm

• Want to do Bayesian inference for 

• But of course we don’t know               ....  

• Instead we pick                                 which maximizes 
posterior-expected log-likelihood according to 
sequentially randomized Bayes predictive distr.

– (cf.  Freund & Shapire’s “Hedge” algorithm!)   

• We then use the corresponding randomized 
predictive distribution as a (randomized) “estimator” 
/predictor of

• This (almost) works! 

ηcrit

η̂(Y n) ∈ [1/
√
n,1]

η ≈ ηcrit

Preparing Main Result

• Let      be a set of conditional distributions          ,   
and let      be a prior on

• Let      be a distribution on

• Let                                                     be i.i.d.

• Let Q achieve 

• Let

• Proposition:

– if model correct (            ) or convex then

– if then 

ηcrit = sup

{

η : sup
p∈P

EP ∗

(
p(Y | X)

q(Y | X)

)η
≤ 1+

1

n

}

ηcrit ≥ 1

inf
P∈〈P〉

D(P ∗‖P )

Q ∈ 〈P〉
ess supP,P ′∈P

p(Y | X)

p′(Y | X)
≤ V

ηcrit ≥
C

logV · √n

Main Result

EZn∼P ∗ [D(Q‖ random draw from posterior at η̂(Zn))] ≤

1

n
· 1
η
(complexity term, sublinear in n)

Let               .  We (almost!) have η < ηcrit

where in case model is correct, the complexity term 
is within a constant factor of the minimax optimal 
rates that can be obtained in such cases

Main Result

1

n
· 1
η
(complexity term, sublinear in n)

Let               .  We have η < ηcrit

where in case model is correct, the complexity term 
is constant if model is countable,                if model 
parametric, and          for general nonparametric 
models  

EZn∼P ∗EP∼ΠCes|Zn,η̂(Zn)
[
D∗(Q‖P)] ≤

ΠCes | Zn, η := n−1
n∑

i=1

Π | Zi−1, η

O(logn)

O(nγ)

Note: D behaves like square of most common 

distances

Main Result (Oracle Bound)

EZn∼P ∗EP∼ΠCes|Zn,η̂(Zn)
[
D∗(Q‖P)] ≤

Cη

n
EZn∼P ∗

[

− log
pBayes(Y

n | Xn, η)

q(Y n | Xn)
+O

(
log logn

η

)]

Let               .  We have η < ηcrit

Cηcrit/2 ≤ 2+ ηcrit logVwhere      decreasing in    and ηCη

Main Result

EZn∼P ∗EP∼ΠCes|Zn,η̂(Zn)
[
D∗(Q‖P)] ≤

Cη

n
EZn∼P ∗

[

− log
pBayes(Y

n | Xn, η)

q(Y n | Xn)
+O

(
log logn

η

)]

Let               .  We have η < ηcrit

≤ Cη ·
− logπ(q)

nη

≤ Cη · inf
ε≥0

(

ε+
− logΠ(p : D∗(q‖p) ≤ ε)

nη

)

“resolvability”
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Main Result

EZn∼P ∗EP∼ΠCes|Zn,η̂(Zn)
[
D∗(Q‖P)] ≤

Cη

n
EZn∼P ∗

[

− log
pBayes(Y

n | Xn, η)

q(Y n | Xn)
+O

(
log logn

η

)]

Let               .  We have η < ηcrit

• If model correct and     finite, this is as good as bounds for 
standard Bayes up to constant factor – leading to optimal 
rates by suitable choice of prior (see Barron ‘98)

• If model incorrect, we still have “consistency”, and we get 
optimal rates in classification under Tsybakov conditions

Cηcrit/2 ≤ 2+ ηcrit logVwhere      decreasing in    and 

Cη

ηCη

PAC-Bayes: beyond Log-Loss

• Let                                           be arbitrary loss fn.

• Define generalized posterior on set of predictors 
as

• With log-loss this reduces to original generalized 
posterior 

loss : Y ×A → [0,∞]

π(h | Zn, η) = π(dh)e−η
∑n

i=1 loss(Yi,h(Xi))

∫
h′∈H π(dh′)e−η

∑n
i=1 loss(Yi,h

′(Xi))

H

McAllester ’02, Audibert ’04, Zhang ’06, Catoni ’07

Main Result, general loss fns.

EZn∼P ∗Eh∼ΠCes|Zn,η̂(Zn)
[
D∗(h̃‖h)

]
≤ Cη·

(
1

n
EZn∼P ∗

[
− log pBayes(Y

n | Xn, η)
]
− R(h̃) +O

(
log logn

n · η

))

Let               .  We have η < ηcrit

= R(h)−R(h̃) =

EP ∗[L(Y, h(X))− L(Y, h̃(X))]

R(h̃) = inf
h∈H

R(h)

Main Result, general loss fns.

EZn∼P ∗Eh∼ΠCes|Zn,η̂(Zn)
[
D∗(h̃‖h)

]
≤ Cη·

(
1

n
EZn∼P ∗

[
− log pBayes(Y

n | Xn, η)
]
− R(h̃) +O

(
log logn

n · η

))

Let               .  We have η < ηcrit

= R(h)− R(h̃)

≤ inf
ε≥0

(

ε+
− logΠ(h : D∗(h̃‖h) ≤ ε)

nη

)

Main Result  - Oracle Bound

EZn∼P ∗Eh∼ΠCes|Zn,η̂(Zn)
[
D∗(h̃‖h)

]
≤ Cη·

(

inf
ε≥0

(

ε+
− logΠ(h : D∗(h̃‖h) ≤ ε)

nη

)

+O

(
log logn

n · η

))

Let               .  We have η < ηcrit

• RHS corresponds to best rates obtainable if         known , 
at least in many cases (Zhang 06a,06b)

• Thus result implies convergence of ‘randomized safe 
Bayesian estimator’ at optimal rates in such cases

ηcrit

Main Result  - Oracle Bound

EZn∼P ∗Eh∼ΠCes|Zn,η̂(Zn)
[
D∗(h̃‖h)

]
≤ Cη·

(

inf
ε≥0

(

ε+
− logΠ(h : D∗(h̃‖h) ≤ ε)

nη

)

+O

(
log logn

n · η

))

Let               .  We have η < ηcrit

• If loss fn. is    - mixable, then                (!) and for ‘simple’         
we get rates up to                [Van Erven, G. et at., subm.] 

• For 0/1-loss, if               satisfies a (generalized) Tsybakov 
margin condition with parameter                   , then we get 
rates up to                           - which are the minimax rates 

η ηcrit ≥ η H
O(1/n)

(P ∗,H)
κ ∈ [1,∞]

O(n−κ/(2κ−1))

note that we can do “model aggregation”
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The Bayesian Belief in Concentration

• Under very weak conditions on prior, a Bayesian will 
believe that her posterior will concentrate, i.e. 
prediction by randomization not much worse than 
prediction by mixing:

• Can view our work as a test (posterior predictive 
check!?!?) of Bayesian assumption. If test fails, we 
modify our model (not to make it true – that would be 

too ambitious – but to make Bayes predict well!) 

Π

{

Ep∼Π|Y i

[

− log
p(Yi+1)

q(Yi+1)

]

→ C ×
(

− logEp∼Π|Y i

[
p(Yi+1)

q(Yi+1)

])}

= 1

Thank you 
for your attention!

“If a subjective distribution P attaches probability zero to a non-ignorable 

event, and if this event happens, then P must be treated with suspicion, 

and modified or replaced'' 

- A. P. Dawid in The Well-Calibrated Bayesian, JASA 1982

• Preliminary version of work appears in ALT 2012

• Related work in worst-case setting: 
Van Erven, G., De Rooij, Koolen: Adaptive Hedge, NIPS ‘11

• See also Larry Wasserman’s blog “normal deviate” under 
“self-repairing Bayesian inference”


