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Data Examples: Norwegian spruces & Danish barrows

Spruces
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Barrows

Note: specification of observation window very important –
information about where points do not occur is just as
important as information about where the points do occur.
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Other examples of data

� One-dimensional point patterns:
Positions of car accidents on a highway during a month
Times of earthquakes in Japan

� Two-dimensional point patterns:
Positions of cities on a map
Positions of farms with mad cow disease in UK
Positions of broken wires in an electrical network

� Three-dimensional point patterns:
Positions of stars in the visible part of the universe
Positions of copper deposits underground
Times and positions and earthquakes in Japan

Note: Observation within a bounded window, i.e. a bounded
subset of Rn - usually an interval/rectangle/box - and
sometimes a more complicated shape. Need to account for
boundary effects...
n = 1: ‘The time axis’ is directional; temporal point processes!
n ≥ 2: We focus on spatial point processes (no time). No
natural direction! 4 / 91
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Spatial point pattern data

� agricultural research
� archeology
� computer science
� communication technology
� ecology
� forestry
� geography
� material science
� medical image analysis
� seismology
� spatial epidemiology
� statistical mechanics
� ...

Two further examples of two-dimensional point patterns from
plant and animal ecology illustrating important features of
spatial point pattern data... 5 / 91
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Tropical rain forests trees

Beilschmiedia
� observation window

= 1000 m × 500 m

� seed dispersal ⇒ clustering

� covariates ⇒
inhomogeneity
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Ants nests

Observation window = polygon

Multitype point pattern: Messor (∆) and Cataglyphis (◦)

Cataglyphis ants feed on dead Messors ⇒ interaction
(hierarchical model)
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Statistical inference for spatial point patterns

� Objective is to infer structure in spatial distribution of
points:

interaction between points: inhibition/regularity or
attraction/aggregation/clustering
inhomogeneity linked to covariates

� Spatial point processes are stochastic models for spatial
point patterns.

Clustered Regular Inhomogeneous
8 / 91
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What is a spatial point process?

� Definitions:

1 a random counting measure N on R
d

2 a locally finite random subset X of Rd

� Counting measure: N(A) counts the number of points from
X falling in any bounded Borel set A ⊂ R

d.

� Locally finite: #(X ∩A) finite for all bounded Borel sets
A ⊂ R

d.

� Equivalent if simple point process (i.e. no multiple points):
N(A) = #(X ∩A).
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A bit of measure theory

We restrict attention to

locally finite simple point processes X defined on R
d

(extensions to other settings including non-simple point
processes, marked point processes, multiple point processes, and
lattice processes are rather straightforward).
Then

� measurability means that N(A) is a random variable for
any bounded Borel set A ⊂ R

d;

� the distribution of X is uniquely determined by the void
probabilities

v(A) = P (N(A) = 0), A ⊂ R
d compact.
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Simple example of point process: Binomial point process

� Suppose f is a probability density on a Borel set S ⊆ R
d

(usually bounded). Then X is a binomial point process with
n points if X = {x1, . . . , xn} consists of n iid points xi ∼ f .

� ‘Binomial’ since N(A) ∼ b(n, p) with p =
∫

A f(x)dx and
A ⊆ S.

Example with S = [0, 1] × [0, 1], n = 100 and f(x) = 1.
11 / 91
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Fundamental model: The Poisson process

� Assume µ locally finite measure on a Borel set S ⊆ R
d with

µ(B) =
∫

B ρ(u)du for all Borel sets B ⊆ S.
� X is a Poisson process on S with intensity measure µ and

intensity (function) ρ if for any bounded Borel set B ⊆ S
with µ(B) > 0:

1 N(B) ∼ po(µ(B))
2 Given N(B), points in X ∩B i.i.d. with density ∝ ρ(u),
u ∈ B (i.e. given N(B), X ∩B is a binomial point process).

� Examples on S = [0, 1] × [0, 1]:

Homogeneous: ρ = 100. Inhomogeneous: ρ(x, y) ∝ 200x.12 / 91
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Classical assumptions: Stationarity and isotropy

� X on R
d is stationary if distribution invariant under

translations:

X ∼ X+ s := {s+ u|u ∈ X}, s ∈ R
d.

� X on R
d is isotropic if distribution invariant under

rotations:

X ∼ RX := {Ru|u ∈ X}, R rotation around the origin.

� Poisson process on R
d with constant intensity ρ:

both stationary and isotropic.

� Many recent papers deal with non-stationary and
anisotropic spatial point process models
(see references at the end).
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Some notation and conventions

� Whenever we consider sets S,B, . . . ⊆ R
d, they are

assumed to be Borel sets.

� |S| denotes Lebesgue measure (length/area/volume/...).

� For a point process X on S ⊆ R
d and a subset B ⊆ S,

XB = X ∩B is the restriction of X to B
n(XB) is the number of points in XB

N(B) is generic notation for n(XB)
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Summary statistics

� Summary statistics are numbers or functions describing
characteristics of point processes, for example:

The mean number of points in a set B.
The covariance of the number of points in sets A and B.
The mean number of points within distance r > 0 of an
‘arbitrary point of the process’.
The probability that there are no points within distance R
of an ‘arbitrary point of the process’.

� They are useful for:
Preliminary analysis
Model fitting (minimum contrast estimation, maximum
composite likelihood estimation, ... (non-Bayesian!)).
Model checking (incl. Bayesian inference!)

Another useful tool: residuals. See
Baddeley, Turner, Møller and Hazelton (2005), JRSS B;
Baddeley, Møller and Pakes (2008), AISM;
Baddeley, Rubak and Møller (2011), Statistical Science.
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First order moments

� Intensity measure µ:

µ(A) = EN(A), A ⊆ R
d.

� Intensity function ρ:

µ(A) =

∫

A
ρ(u)du.

� Infinitesimal interpretation: when A very small,
N(A) ≈ binary variable (presence or absence of point in
A). Hence if A has area/volume/... |A| = du,

ρ(u)du ≈ EN(A) ≈ P (X has a point in A).

� Note: if ρ(u) is constant, we say X is homogeneous;
otherwise it is inhomogeneous.
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Second order moments

� Second order factorial moment measure α(2):

α(2)(A×B) = E

6=
∑

u,v∈X

1[u ∈ A, v ∈ B], A,B ⊆ R
d.

� Second order product density ρ(2):

α(2)(A×B) =

∫

A

∫

B
ρ(2)(u, v) dudv.

� Infinitesimal interpretation of ρ(2):

ρ(2)(u, v)dudv ≈ P (X has a point in each of A and B)

(u ∈ A, |A| = du, v ∈ B, |B| = dv, A ∩B = ∅)

� Note that covariances can be expressed using these:

Cov[N(A), N(B)] = α(2)(A×B) + µ(A ∩B)− µ(A)µ(B).

17 / 91



Introduction to spatial point pattern analysis Bayesian inference for the Poisson process Bayesian

Second order product density for a Poisson process

� If X is a Poisson process with intensity function ρ(u), then
its second order product density is given by

ρ(2)(u, v) = ρ(u)ρ(v).
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Pair correlation function

� Pair correlation:

g(u, v) =
ρ(2)(u, v)

ρ(u)ρ(v)

(here a/0 = 0 for all a).

� Interpretation of pair correlation function:

Poisson process: g(u, v) = 1.
If g(u, v) > 1, then attraction/aggregation/clustering.
If g(u, v) < 1, then repulsion/regularity.

� If X is stationary, then g(u, v) = g(u− v);
if X is also isotropic, then g(u, v) = g(‖u − v‖) = g(r).
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Non-parametric estimation of ρ (homogeneous case)

� Suppose that XW is observed, where W ⊂ R
d is a bounded

observation window.

� Estimate of ρ in the homogeneous case:

ρ̂ = n(XW )/|W |.

� Eρ̂ = ρ.

� Poisson process: ρ̂ =MLE.
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Non-parametric estimation of ρ (inhomogeneous case)

� Estimate of ρ(u) in the inhomogeneous case (Diggle, 1985):

ρ̂(u) =
∑

v∈XW

k(u− v)/cW (v), u ∈W.

� Kernel: k(u) is a probability density function.

� Edge-correction factor: cW (v) =
∫

W k(u− v)du.

�

∫

W ρ̂(u)du is an unbiased estimate of µ(W ).

� Sensitive to the choice of ‘bandwidth’...
(if covariate information is available, a parametric model
for ρ may be preferred).
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K (Ripley, 1977) and L-function (Besag, 1977)

� Assume X stationary with intensity ρ > 0 and pair
correlation function g(u, v) = g(u − v).

� Ripley’s K-function: K(r) =
∫

‖u‖≤r g(u)du, or

ρK(r) = E
1

ρ|A|

∑

u∈XA

∑

v∈X\{u}

1[‖u− v‖ ≤ r], r > 0.

� Interpretation: ρK(r) is the expected number of points
within distance r of an arbitrary point of X.

� (Besag’s) L-function (variance stabilizing transformation):

L(r) = (K(r)/ωd)
1/d

(ωd = |unit ball in R
d| = πd/2/Γ(1 + d/2)).

� L(r)− r is often plotted instead of K(r):
Poisson process: L(r)− r = 0.
If L(r)− r > 0 (L(r)− r < 0), then
attraction/aggregation/clustering (repulsion/regularity).
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Inhomogeneous K and L-functions (Baddeley, Møller &

Waagepetersen, 2000)

Def.: X is second-order intensity reweighted stationary
(s.o.i.r.s.) if g(u, v) = g(u− v). Then we still define
K(r) =

∫

‖u‖≤r g(u)du and L(r) = (K(r)/ωd)
1/d.

� s.o.i.r.s. is satisfied for any Poisson process, for many Cox
process models (see later), and for an independent thinning
of any stationary point process.

� Poisson case: L(r)− r = 0.

� If X is s.o.i.r.s. and Wu = {u+ v : v ∈W}, then

K̂(r) =

6=
∑

u,v∈x

1[‖v − u‖ ≤ r]

ρ(u)ρ(v)|W ∩Wv−u|

is unbiased, but in practice an estimate for ρ(u) is plugged
in.
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Model check using summary statistics: envelopes

� Compare (theoretical) summary statistic T (r) from model
with (non-parametric) estimate T̂0(r) obtained from data.

� If T (r) is intractable, it may be approximated using
simulations, i.e. simulate n new point patterns and
calculate estimates T̂1(r), . . . , T̂n(r).

� If T̂(1)(r), . . . , T̂(n)(r) are the ordered simulated statistics,
then e.g.

P (T̂0(r) ≤ T̂(1)(r) or T̂0(r) ≥ T̂(n)(r)) = 2/(n + 1)

(if no ties). For n = 39, we have 2/(n + 1) = 0.05.
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Point processes in R

� R-packages for dealing with point processes:

Spatial point processes: spatstat
(Temporal point processes: PtProcess)

� Manuals:

www.spatstat.org/spatstat/doc/spatstatJSSpaper.pdf

(cran.at.r-project.org/web/packages/PtProcess/
PtProcess.pdf)

� Many algorithms implemented for

Parameter estimation
Simulation
Model checking
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Bayesian inference for the Poisson process

� Aim: estimate the intensity function ρ of a Poisson process,
imposing a parametric or ’non-paramteric’ prior model;
investigate the dependence of covariates...

� References to various contributions can be found at the
end.

� We focus on some examples... and start with a short
summary on Poisson processes (further reading: Møller &
Waagepetersen (2004); Kingman (1993)!!)
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Definition of the Poisson process

� Assume µ locally finite measure on a (Borel) set S ⊆ R
d

with µ(B) =
∫

B ρ(u)du for all (Borel) sets B ⊆ S.

� X is a Poisson process on S with intensity measure µ and
intensity (function) ρ if for any bounded region B with
µ(B) > 0:

1 N(B) ∼ po(µ(B))
2 Given N(B), points in XB are i.i.d. with density ∝ ρ(u),
u ∈ B.

[[Verifying the existence: consider a subdivision R
d = ∪iBi

(disjoint);
construct XBi

and thereby X = ∪iXBi
;

easy to show that P (N(A) = 0) = exp(−µ(A)), the void
probability for the Poisson process.]]
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Some properties: Independent scattering

� Suppose X is a Poisson process on S and B1, B2, . . . are
disjoint subsets of S.

� Then XB1
,XB2

, . . . are independent Poisson processes.

Proof: Calculate void probabilities!
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Some properties: Superpositioning

� Suppose Xi ∼ Poisson(S, ρi), i = 1, 2, . . . are independent
Poisson processes and that ρ =

∑

i ρi is locally integrable.

� Then X = ∪∞
i=1Xi is a disjoint union with probability one,

and X = ∪∞
i=1Xi is Poisson(S, ρ).

Proof: Calculate void probabilities!
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Some properties: Independent thinning

� Suppose we obtain Xthin by independently either keeping
or deleting points u ∈ X according to probabilities p(u):

Xthin = {u ∈ X|Ru ≤ p(u)}

where the Ru are independent uniform variables on [0, 1]
independent of X.

� Then Xthin is an independent thinning of X.

� Result: Xthin and X \Xthin are independent Poisson
processes with intensity functions p(u)ρ(u) and
(1− p(u))ρ(u).

Proof: Calculate void probabilities!
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Simulation of Poisson processes on a bounded set

S ⊂ R
d

Homogeneous case, intensity ρ > 0:

� Generate n ∼ po(ρ|S|).

� For i = 1, . . . , n, generate ui ∼ unif(S).

Inhomogeneous case, intensity ρ(u) ≤ ρmax, for some ρmax > 0:

� Generate X as a homogeneous Poisson process with
intensity ρmax.

� For i = 1, . . . , n, keep ui with probability ρ(ui)/ρmax.
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Densities for Poisson processes

� Recall that X1 is absolutely continuous wrt. X2 if
P (X2 ∈ F ) = 0 ⇒ P (X1 ∈ F ) = 0.

� 1 For any numbers ρ1 > 0 and ρ2 > 0, Poisson(Rd, ρ1) is
absolutely continuous wrt. Poisson(Rd, ρ2) if and only if
ρ1 = ρ2.

2 Suppose ρ1(·) and ρ2(·) are intensity functions so that
µ1(S) and µ2(S) are finite and that ρ1(u) > 0 ⇒ ρ2(u) > 0.
Then Poisson(S, ρ2) has density

f(x) = exp(µ1(S)− µ2(S))
∏

u∈x

ρ2(u)

ρ1(u)

wrt. Poisson(S, ρ1).

� Example: for bounded S, Poisson(S, ρ) has density

f(x) = exp(|S| − µ(S))
∏

u∈x ρ(u)

wrt. standard (unit-rate) Poisson process Poisson(S, 1).
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Example of a Bayesian analysis of a parametric model

J.B. Illian, J. Møller and R.P. Waagepetersen (2009).
Hierarchical spatial point process analysis for a plant
community with high biodiversity. Environmental and
Ecological Statistics, 16, 389-405.

� Discusses a multivariate Poisson point process model for
spatial point patterns formed by a natural plant
community with a high degree of biodiversity (22× 22 m
plot at Cataby in the Mediterranean type shrub- and
heathland of the South-Western area of Western Australia).

� Next figures: point patterns of the 5 most abundant species
of ’seeders’ and the 19 most dominant (influential) species
of ’resprouters’ (have been at the exactly same location for
a very long time).
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5 most abundant species of seeders:
seeder  1

 

 

seeder  2

 

 

seeder  3

 

 

seeder  4

 

 

seeder  5
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19 most influential species of resprouters (the 12 first):
resprouter 1

 

 

resprouter 2

 

 

resprouter 3

 

 

resprouter 4

 

 

resprouter 5

 

 

resprouter 6

 

 

resprouter 7

 

 

resprouter 8
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19 most influential species of resprouters (the next 7):
resprouter 13

 

 

resprouter 14

 

 

resprouter 15

 

 

resprouter 16

 

 

resprouter 17

 

 

resprouter 18

 

 

resprouter 19
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Likelihood for the seeders conditional on the resprouters

Our likelihood resembles approaches derived from ecological
field theory...: We assume that the 5 seeders Y1, . . . ,Y5

conditional on the 19 resprouters X1, . . . ,X19 are independent
Poisson processes with intensity functions

λ(ξ|x,θi) = exp
(

θis(ξ|x)
⊤
)

, ξ ∈W, i = 1, . . . , 5,

where
x = (x1, . . . ,x19) is the collection of all 19 resprouter patterns;
θi = (θi0, . . . , θi19) is a vector of parameters;
s(ξ|x) = (1, t(ξ|x1), . . . , t(ξ|x19)) with

t(ξ|xj) =
∑

η∈xj

hη(‖ξ − η‖), j = 1, . . . , 19,

describing the dependence of xj.
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Here ‖ · ‖ denotes Euclidean distance, and we have chosen a
simple smooth interaction function

hη(r) =

{
(

1− (r/Rη)
2
)2

if 0 < r ≤ Rη
0 else

for r ≥ 0, where Rη ≥ 0 defines the radii of interaction of a
given resprouter at location η.
So

log λ(ξ|x) = θi0 +

19
∑

j=1

θij
∑

η∈xj

hη(‖ξ − η‖)

where θi0 ∈ R is an intercept and for j = 1, . . . , 19, θij ∈ R

controls the influence of the jth resprouter on the ith seeder:
θij > 0 means a positive/attractive association;
θij < 0 means a negative/repulsive association.
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Hence the conditional log likelihood function based on the 5
seeder point patterns y = (y1, . . . ,y5) is

l(θ,R;y|x) =
5
∑

i=1

[

θi

∑

ξ∈yi

s(ξ|x)⊤ −

∫

W
exp

(

θis(ξ|x)
⊤
)

dξ
]

where θ = (θ1, . . . ,θ5) is the vector of all 100 parameters θij
and R is the vector of all 3168 radii Rη, η ∈ xj , j = 1, . . . , 19.
In comparison, there are N1 + · · ·+N5 = 1954 seeders.
MLE: ’hopeless’ unless we assume known and equal interaction
radii for resprouters of the same type—but this assumption is
highly unrealistic, since the plants vary in size. Also results
based on summary statistics indicate that a more appropriate
model would have to take intra-specific interaction into account.
A Bayesian setting seems needed...

40 / 91



Introduction to spatial point pattern analysis Bayesian inference for the Poisson process Bayesian

Estimated inhomogeneous (L(r)− r)-functions for seeders 1-5
with 95% envelopes simulated from the model with known
interaction radii for resprouters and fited by maximum
likelihood. Distance r > 0 is in cm.
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Prior information

After extensive and detailed discussions with the scientist who
collected the data, we used his knowledge to elicit informative
priors on the interaction radii.
Range of zone of influence (in cm) for resprouters:
1. 10-40 11. 20-30
2. 5-15 12. 25-75
3. 15-60 13. 30-50
4. 25-75 14. 50-130
5. 10-25 15. 150-400
6. 10-20 16. 50-200
7. 10-25 17. 50-200
8. 10-25 18. 50-250
9. 2-10 19. 10-250
10. 20-100
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Prior assumptions

� The interaction radii Rη are independent;

� for each η ∈ xj , Rη ∼ N(µj , σ
2
j ) restricted to [0,∞), where

(µj , σ
2
j ) is chosen so that under the unrestricted N(µj , σ

2
j ),

the range of the zone of influence in the table is a central
95% interval;

� given the Rη, the θij are i.i.d., following a relatively
non-informative N(0, σ2)-distribution (the specification of σ
is discussed in the paper).

These a priori independence assumptions are essentially made,
since we have no prior knowledge on how to specify a
correlation structure for all the Rη and all the θij. For the same
reason, (θ,R) and X are assumed to be independent.
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Posterior

Hence the posterior density for (θ,R) is

π(θ,R|x,y) ∝

exp
(

−
5
∑

i=1

[

θ2i0/(2σ
2)−

19
∑

j=1

θ2ij/(2σ
2)
]

−
19
∑

j=1

∑

η∈xj

(Rη−µj)
2/(2σ2j )

)

×exp
(

5
∑

i=1

[

θi

∑

ξ∈yi

s(ξ|x)⊤−

∫

W
exp(θis(ξ|x)

⊤)dξ
])

, θij ∈ R, Rη ≥ 0.

((Hybrid Markov chain Monte Carlo algorithm/Metropolis
within Gibbs, using random walk Metropolis updates))
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(((...The proposal distributions for these random walk updates
are multivariate normal with diagonal covariance matrices. The
vector of proposal standard deviations for θi is given by kσ̂i|y,
where k is a user specified parameter and σ̂i|y is an estimate of
the vector of posterior standard deviations for θi obtained from
a pilot run. The value of k was chosen to give acceptance rates
around 25 %. The vector of proposal standard deviations for R
is given by the vector of prior standard deviations divided by
2...)))
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Posterior results

� Next figure: the lower plot shows a grey scale plot of
posterior probabilities P (θij > 0|y). The starred fields are
those for which 0 is outside the central 95 % posterior
interval for θij. (The upper plot concerns MLE-results
which are mostly ignored for this talk.)

� E.g. resprouter 1 seems to have a clear repulsive effect on
seeders, while resprouters 15 and 18 have a distinct
attractive effect on seeders.

� The Bayesian approach yields more clear-cut results than
the maximum likelihood inference, since the intermediate
grey scales are less frequent in the lower plot: more θij’s
have strong evidence for being different from zero (if ‘strong
evidence’ is interpreted as being significant at the 95% level
or being outside the 95% posterior interval, respectively).
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Model assessment

We follow the idea of posterior predictive model assessment
(Gelman et al., 1996) and compare various summary statistics
with their posterior predictive distributions, depending possibly
both on the points Y and the parameters θ and R. Any
posterior predictive distribution is obtained from simulations:

� we generate a posterior sample (θi,1,R1), . . . , (θi,m,Rm),
and for each (θi,k,Rk) new data yi,k from the conditional
distribution of Yi given (θi,k,Rk);

� we use m = 100 (approximately) independent simulations
obtained by subsampling a Markov chain of length 200, 000.
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Next figure: ‘residual’ plots based on quadrat counts.

� W is divided into 100 equally sized quadrats. For each
seeder we count the number of plants within each quadrat.

� The grey scales reflect the probabilities that counts drawn
from the posterior predictive distribution are less or equal
to the observed quadrat counts where dark means high
probability.

� The posterior predictive distribution of the quadrat counts
is obtained from posterior predictive samples yi,k,
k = 1, . . . , 100, as mentioned above.

� The stars mark quadrats where the observed counts are
‘extreme’ in the sense of being either below the 2.5%
quantile or above the 97.5% quantile of the posterior
predictive distribution.
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� The plot for seeder 1 indicate a lack of fit due to many
‘extreme’ counts. However, a ‘systematic’ discrepancy from
the assumed model for the intensity is not obvious and the
lack of fit could be caused by clustering due to seed
dispersal around parent plants.

� The residual plots for the other seeders do not provide
obvious evidence against our model except perhaps for a
small group of adjacent ‘extreme’ counts for seeder 5.
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Next figure:

� Denote by L̂(r;Yi,θ,R) the estimate of the L function
obtained from the point process Yi and the intensity
function corresponding to the interaction parameter vector
θ and interaction radii R.

� Consider the posterior predictive distribution of the
differences ∆i(r) = L̂(r;yi,θi,R) − L̂(r;Yi,θi,R), r > 0,
i = 1, . . . , 5 (the 5 seeder species), i.e. the distribution
obtained when we generate (Yi,θi,R) under the posterior
predictive distribution given the data y.

� If zero is an extreme value in the posterior predictive
distribution of ∆i(r) for a range of distances r, we may
question the fit of our model.

� As for the quadrat counts, the posterior predictive
distribution is computed from a posterior predictive sample
L̂(r;yi,θi,k,Rk)− L̂(r;yi,k,θi,k,Rk), k = 1, . . . , 100.
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� The figure presents estimated upper and lower boundaries
of the 95 % posterior envelopes for the posterior predictive
distributions of ∆i(r), r > 0, for the 5 seeder species.

� The wide envelopes probably arise because of the posterior
uncertainty regarding the interaction radii; the intensity
function at a seeder location may a posteriori be very
variable if it is highly uncertain whether the seeder location
falls within a resprouter influence zone or not.

� There is evidence of clustering for seeder 1 and perhaps
also for seeders 2, 3, 5. This may be explained by offspring
clustering around locations of parent plants.

� To look for interactions between the seeder species, we
finally considered cross L functions for the 10 pairs of
seeders. The lower right posterior predictive plot for seeder
2 vs. seeder 3 in the figure indicates repulsion at small
distances and otherwise positive association between these
seeders. The remaining plots (not shown) do not contradict
the assumptions of independence between the seeders.
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Concluding remarks

� Our analysis shows the difficulty of modelling spatial
interactions in a plant community which requires very
complex models with a large number of parameters.

� The Bayesian approach is more useful than the frequentist
approach as it allowed a more flexible and realistic model.

� Taking biological background information into account in
our analysis naturally lead to a hierarchical Bayesian
model.

� The model does not sufficiently capture all interactions
that may be present in the dataset: It does not consider an
intra-species interaction for each seeder type and, similarly,
assumes that the seeder species are independent given the
resprouters.
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� Incorporating all these aspects into a single model, though,
is computationally very hard.

� Note that ignoring intra-species interaction does not
necessarily invalidate estimates of intensity function
parameters (cf. work by Schoenberg (2005) and
Waagepetersen (2006)).

� However, it is clear that ignoring clustering leads to too
narrow posterior credibility intervals. Hence the results
regarding significant parameters should be taken with a
pinch of salt.

� From an ecological perspective, we were able both to
confirm existing knowledge on species’ interactions and to
generate new biological questions and hypotheses on
species’ interactions.
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1 Introduction to spatial point pattern analysis

2 Bayesian inference for the Poisson process

3 Bayesian inference for Cox and Poisson cluster processes

4 Bayesian inference for Gibbs point processes

5 Bayesian inference for determinantal point processes(??)
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Cox processes

� X is a Cox process driven by a random intensity function ρ
if X conditional on ρ is a Poisson process with intensity
function ρ.
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� Thus any Bayesian model for a Poisson process is a Cox
process...

� Includes the previous analysis of the parametric model for
the seeders conditional on the resprouters.

� Log Gaussian Cox processes (LGCP) and shot noise Cox
process (SNCP) are the two most popular model classes.
Used for spatial as well as space-time point process
modelling of aggregated/clustered point patterns.
References: See my homepage
(http://people.math.aau.dk/∼jm/)
and Peter Diggle’s homepage
(http://www.lancs.ac.uk/∼diggle/).
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Log Gaussian Cox processes

� Definition: X is a LGCP if log ρ is a Gaussian process
(Møller et al. (1998)).

� Moment expressions are very tractable. E.g. g = exp(c)
where c is the covariance function of the Gaussian process.

� Earlier discretizations of the Gaussian process and the use
of time-consuming MCMC algorithms (Langevin-Hastings)
were used.

� Today software based on INLA (Rue, Martino & Chopin
(2009)) provides a very fast way of calculating posterior
results for log ρ and parameters of the Gaussian process
(without MCMC!).
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Shot noise Cox processes

� Definition: X is a SNCP if

ρ(u) =
∑

(c,γ)∈Φ

γk(c, u)

where k(c, ·) is a kernel and Φ ∼ Poisson(Rd×]0,∞[, ζ)
(Møller (2003) and the references therein).

� Then X can be viewed as a Poisson cluster process:

X ∼ ∪(c,γ)∈ΦX(c,γ)

where conditional on Φ, the X(c,γ) ∼Poisson(Rd, γk(c, ·))
are independent ’clusters’.

� Matérn cluster process: all γ = α (a single parameter),
ζ is Lebesgue measure on R

d times κδ(γ − α) on ]0,∞[
where κ > 0, and k(c, ·) is the uniform density on ball(c, r).
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Matérn cluster process: cluster centres ∼ Poisson(R2, κ);
cluster associated to centre c ∼ Poisson(ball(0, r),α).

κ = 10, r = 0.05, α = 5 κ = 10, r = 0.1, α = 5
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� Conjugated prior if k(c, ·) = δ(c = ·) is degenerated and Φ

is a Poisson-gamma process, but usually we don’t want the
kernel to be degenerated (Wolpert and Ickstadt...)

� MCMC: If we don’t aim at identifying the clusters, it is
most convenient to include Φ in the posterior and use a
hybrid MCMC algorithm, where Φ is updated by a
Metropolis-Hastings birth-death algorithm (Geyer & Møller
(1994)), and using e.g. random walk Metropolis updates of
the parameters for the (hyper-)prior model of Φ.
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1 Introduction to spatial point pattern analysis

2 Bayesian inference for the Poisson process

3 Bayesian inference for Cox and Poisson cluster processes

4 Bayesian inference for Gibbs point processes

5 Bayesian inference for determinantal point processes(??)
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Finite point processes specified by a density

� Assume S ⊂ R
d is bounded and f is a density for a point

process X on S wrt. to the unit rate Poisson process on S,
i.e.

P (X ∈ F ) =

∞
∑

n=0

e−|S|

n!

∫

Sn

1[{x1, x2, . . . , xn} ∈ F ]

f({x1, . . . , xn})dx1 . . . dxn.

� Often specified by an unnormalized density:

h(x) = c f(x), x ⊂ S finite.

� Problem: calculation of the normalising constant

c =

∞
∑

n=0

e−|S|

n!

∫

Sn

h({x1, . . . , xn})dx1 . . . dxn.
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Stability conditions and existence

� Integrability (= existence): c <∞ (c > 0 usually trivial)

� Suppose c∗ =
∫

SK(u)du <∞ for some K : S → [0,∞).

� Local stability: h(x ∪ u) ≤ K(u)h(x)
(where x ∪ u = x ∪ {u}).

� Ruelle stability: h(x) ≤ α
∏

u∈X K(u) for some α <∞.

� Proposition:
Local stability ⇒ Ruelle stability ⇒ integrability.
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Hereditary condition and Papangelou conditional

intensity

� Hereditary density: f (or h) is hereditary if
f(y) > 0 ⇒ f(x) > 0 whenever x ⊂ y.

� Papangelou conditional intensity:

λ(x, u) =
f(x ∪ u)

f(x)
=
h(x ∪ u)

h(x)
, u 6∈ x,

where a/0 = 0 for all a. (NB: does not depend on c !!)

� Interpretation: λ(x, u)du is the probability of having a
point in an infinitesimal region around u given the rest of
X is x.

� For the Poisson process with intensity ρ(u),

λ(x, u) = ρ(u).
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Example: Strauss (1975) process

� Density: f(x) = 1
cβ

n(x)γs(x), where β, γ ≥ 0, and s(x) is
the number of pairs of points within distance R.

� λ(x, u) = βγs(x,u) where s(x, u) is the number of R-close
points in x to u. So X exists and is repulsive if γ ≤ 1.
(Non-existence if γ ≤ 1, cf. Kelly & Ripley (1976)).

S = [0, 1] × [0, 1], β = 100, γ = 0, R = 0.1.
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Pairwise interaction process

� A pairwise interaction density is of the form

f(x) ∝
∏

u∈x

ϕ(u)
∏

{u,v}⊆x

ϕ({u, v}), ϕ(·) ≥ 0.

� This is hereditary and

λ(x, u) = ϕ(u)
∏

v∈x

ϕ({u, v}).

� (((Markov w.r.t. u ∼ v iff ϕ({u, v}) 6= 1)))

� If ϕ({u, v}) ≤ 1, then locally stable and X is repulsive.

� If ϕ({u, v}) ≥ 1, then usually X does not exist.

� Simple example of a finite Gibbs point process. By
including higher order interaction terms, we obtain a
general finite Gibbs point process. In turn this can be
extended to infinite Gibbs point processes... In most cases
these are also models for repulsive/regular point patterns.
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Simulation of finite Gibbs point processes

Usually of birth-death types (add/delete one point) and based
on λ(x, u) only.

� Geyer & Møller (1994): Metropolis-Hastings birth-death
algorithm. (Special case of Green’s reversible jump
MCMC.)

� Kendall & Møller (2000): Spatial birth-death processes and
dominating coupling from the past → perfect simulation
algorithm.
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Likelihoods with “unknown” normalizing constants

Consider a parametric model with likelihood

l(θ|y) = fθ(y) =
1

Zθ
qθ(y)

where

� qθ(y) is a known unnormalized density,

� Zθ is an intractable normalizing constant.

Examples:

� Finite Gibbs point processes.

� (((Finite Gibbs/Markov random fields.)))
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Posterior

� Impose a prior π(θ).

� Posterior
π(θ|y) ∝ π(θ)qθ(y)/Zθ

depends on Zθ; and conventional Metropolis-Hastings
algorithms for simulation from the posterior depends on
ratios of normalizing constants!?.
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Auxiliary variable technique

Møller et al. (2004, 2006): First truly “exact”/”pure” MCMC
algorithm for performing Bayesian inference for models with
intractable normalising constants.

Murray et al. (2006): Exchange algorithm—sligthly simpler and
more efficient.

� Both algorithms are based on perfect simulation of an
auxiliary variable x generated from the observation
model—or runnung an MCMC algorithm for long enough...

� They don’t depend on the intractable normalizing constant.
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Example of Bayesian inference for a pairwise interaction

point process

K.K. Berthelsen and J. Møller (2008). Non-parametric Bayesian
inference for inhomogeneous Markov point processes. Australian
and New Zealand Journal of Statistics, 50, 627-649.
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Data
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Left: Locations of 617 cells in a 2D section of the mocous
membrane of the stomach of a healthy rat (LHS: stomach cavity
begins; RHS: muscle tissue begins).
Centre: Non-parametric estimate ĝ and 95%-envelopes
calculated from 200 simulations of a fitted inhomogeneous
Poisson process.
Right: ĝ and 95%-envelopes calculated from 200 simulations of
the model fitted by Nielsen (2000) (non-Bayesian; to obtain
inhomogeneity, she considered a transformation of a Strauss
point process...).
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Inhomogeneous pairwise interaction point process

Suppose the likelihood is given by the density

fβ,ϕ(y) =
1

Zβ,ϕ

∏

i

β(yi)
∏

i<j

ϕ(‖yi − yj‖)

w.r.t. Poisson(W, 1) where

� W = [0, a]× [0, b] is the observation window;

� β(u1, u2) = β(u1) ≥ 0 models the horizontal inhomogeneity;

� 0 ≤ ϕ(·) ≤ 1 is a non-decreasing pairwise interaction
function.
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Prior for β(u1, u2) = β(u1)

Shot noise process

β(u1) = γ
∑

j

ϕ

(

u1 − cj
σ1

)

/σ1

where ϕ is the N(0, 1)-density;
ψ = {cj} ∼Poisson([−∆, a+∆], κ1),
and independently of ψ, we impose a Gamma prior for γ > 0.

� The higher κ1, the more kernels and more felexibilty.

� On the other hand, a high value of κ1 leads to slow mixing
in our MCMC algorithm for the posterior.

� Detailed discussion in the paper on the choice of ∆ > 0,
κ1 > 0, σ1 > 0, and the Gamma prior for γ > 0.
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Examples of prior realizations
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Left panel: Five independent realisations of β under its prior
distribution.
Right panel: Ten independent realisations of ϕ under its prior
distribution.
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Prior for ϕ

A first prior for ϕ:

ϕ(r) = 1[r > rp]+

p
∑

i=1

1[ri−1 < r ≤ ri]

(

r − ri−1

ri − ri−1
(γi+1 − γi) + γi

)

where

� r1 < . . . < rp follow Poisson([0, rmax], κ2);

� 0 < γ1 < . . . < γp < γp+1 = 1 and setting
γ0 = 0, δi = γi − γi−1,,
(ζ1, . . . , ζp) = (ln(δ2/δ1), . . . , ln(δp+1/δp)), then
conditionally on (r1, . . . , rp),
ζp, . . . , ζ1 is a Markov chain (random walk) with
ζp ∼ N(0, σ22) and ζi|ζi+1 ∼ N(ζi+1, σ

2
2), i = p− 1, . . . , 1.

� E.g. rmax = 0.02. See the paper for the choice of
hyperparameters κ2 > 0 and σ2 > 0.
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Posterior

Recall that β is specified by the Poisson process ψ and the
Gamma variate γ, and ϕ by the marked Poisson process
χ = {(r1, γ1), . . . , (rp, γp)}.
The posterior density for θ = (ψ, γ, χ)

π(θ|y) ∝ κ
n(ψ)
1 γα1−1e−γ/α2κp21[0 < γ1 < . . . < γp < 1]/(δ1 × · · · × δp+1)

×
(

2πσ22
)−p/2

exp

(

−

p
∑

i=1

(

ζi − ζi+1

)2
/
(

2σ22
)

)

×
1

Zθ

∏

i

βψ,γ(yi)
∏

i<j

ϕχ(‖yi − yj‖)

depends on Zθ. So we apply the auxiliary variable algorithm...
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Second prior for ϕ

A first Bayesian analysis indicated the need for including a hard
core parameter h ∼Uniform[0, rmax]:

ϕnew(r;h, χ) =











0 if r < h

ϕold

( (r−h)rmax

rmax−h
;χ
)

if h ≤ r ≤ rmax

1 if h > rmax
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Some final posterior results
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Solid line: Posterior mean for β (left) and ϕ (right).
Dotted lines: Pointwise 95% central posterior intervals.
Dashed line (left): β estimated by Nielsen (2000).
Dot-dashed line (left): Non-parametric estimate of β.
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Some results for model checking

Consider the posterior predictive distribution.
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Observed value (dashed line) and posterior predictive
distribution of minimum inter-point distance (left panel) and
number of points (right panel).
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Left and centre panels: Observed (solid lines) non-parametric
estimates ρ̂(u1) (left panel) and ĝ(r) (middle panel) together
with pointwise 95% central posterior predictive intervals
(dashed lines).
Right panel: Ignored in this talk.
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Summary on Bayesian statistics for spatial point

processes

� Poisson point processes: likelihood term is tractable, so
rather straightforward (using MCMC or possibly even
simpler methods).

� Cox processes: Include the unobserved random intensity
into the posterior...

For a LGCP, as the Gaussian process on the observation
window is not observed include this (approximated on a
grid) into the posterior and use INLA in a hybrid MCMC
algorithm.
For a SNCP, as the centre process is not observed, include
this into the posterior and use for this the
Metropolis-Hastings birth-death algorithm in a hybrid
MCMC algorithm.

� Gibbs point processes: Here the problem is the intractable
normalizing constant of the likelihood which also enters in
the posterior. Use the auxiliary variable method.
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Some literature (most material is non-Bayesian!)

� P.J. Diggle (2003). Statistical Analysis of Spatial Point
Patterns. Arnold, London. (Second edition.)

� J. Møller and R.P. Waagepetersen (2004). Statistical
Inference and Simulation for Spatial Point Processes.
Chapman and Hall/CRC, Boca Raton.

� J. Møller and R.P. Waagepetersen (2007). Modern
statistics for spatial point processes (with discussion).
Scandinavian Journal of Statistics, 34, 643-711.

� J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan (2008).
Statistical Analysis and Modelling of Spatial Point
Patterns. John Wiley and Sons, Chichester.

� A.E. Gelfand, P. Diggle, M. Fuentes, and P. Guttorp
(2010). A Handbook of Spatial Statistics. Chapman and
Hall/CRC. (Chapter 4)

� W.S. Kendall and I. Molchanov (eds.) (2010). New
Perspectives in Stochastic Geometry. Oxford University
Press, Oxford. 86 / 91
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Some literature on Bayesian statistics (own work plus

paper by Guttorp and Thorarinsdottir)

� P.G. Blackwell and J. Møller (2003). Bayesian analysis of
deformed tessellation models. Advances in Applied
Probability, 35, 4-26.

� Ø. Skare, J. Møller and E.B.V. Jensen (2007). Bayesian
analysis of spatial point processes in the neighbourhood of
Voronoi networks. Statistics and Computing, 17, 369-379.

� V. Benes, K. Bodlak, J. Møller and R.P. Waagepetersen
(2005). A case study on point process modelling in disease
mapping. Image Analysis and Stereology, 24, 159 - 168.
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