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For the sake of presentation some of the contents were edited to fit the talk

(without asking my co-authors)
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Bayesian nonparametric inference
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We model a function or surface by a prior on a function space. We visualize this

by some draws.
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We model a function or surface by a prior on a function space. We visualize this
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Does this give good reconstructions?

Does the posterior distribution give a correct sense of remaining uncertainty?



Gaussian priors
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We model a function or surface a-priori as the sample path of a Gaussian

process. We visualize this by some draws.

By the usual Bayesian machine we combine this with the likelihood to produce

a posterior distribution for the function given the data. We visualize this by

some draws.
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Does this give good reconstructions?

Does the posterior distribution give a correct sense of remaining uncertainty?



Example: Logistic regression
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Bayesian model:

{

θ ∼ scaled integrated Brownian motion,

(X1, Y1), . . . , (Xn, Yn)| θ ∼ i.i.d.: P(Yi = 1|Xi = x) = 1/(1 + e−θ(x)).

The posterior distribution is the law of θ given (X1, Y1), . . . , (Xn, Yn).

Simulation experiment (n = 250). Two realisations of the posterior mode (black, solid) and 95 % posterior credible bands (blue, dotted),
overlaid with true curve θ0 (red, dashed). Two different scalings of IBM. Computations by the INLA package.



Example: heat equation
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For given θ: [0, 1] → R let Kθ = u(·, 1) for u: [0, 1]× [0, 1] → R solving

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t), u(·, 0) = θ, u(0, t) = u(1, t) = 0.

Bayesian model: for (ei) eigenbasis of KTK.










θ =
∑

i θiei, θi ∼ N(0, τ2i−α−1/2) and independent,

Z ∼ Gaussian white noise, independent of θ,

data Y = Kθ + n−1/2Z.

The posterior distribution is the law of θ =
∑

i θiei given Y .

True θ0 (black), posterior mean (red), 20 realizations from the posterior (dashed black), and posterior credible bands (green). Left: n = 104

and right: n = 108 .



Example: genomics
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Nonparametric Bayesian analysis in genomics. Estimated abundance of a transcription factor as function of time: posterior mean curve and 95%
credible bands. From Gao et al. Bioinformatics, 2008, 70–75.



Example: earth science
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Travel times of surfaces waves: nonparametric Bayesian analysis in earth science. Left: posterior mean (a two-dimensional surface shown by
colour coding); right: uncertainty quantification by the posterior spread. From Bodin and Sambridge, Geophs. J. Int. 178, 2009, 1411–1436.



Notation: the Bayesian machine
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Given a prior model θ ∼ Π and a likelihood Y | θ ∼ p(y| θ), the posterior
distribution θ|Y is given by

dΠ(θ|Y ) ∝ p(Y | θ) dΠ(θ).

Two uses:

• recovery, e.g. by mode, or mean.

• expression of uncertainty, e.g. by a credible set: a set C(Y ) with

Π
(

C(Y )|Y ) = 0.95.



Notation: the Bayesian machine — asymptotics in n
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Given a prior model θ ∼ Πn and a likelihood Yn| θ ∼ pn(y| θ), the posterior
distribution θ|Yn is given by

dΠn(θ|Yn) ∝ pn(Yn| θ) dΠn(θ).

Two uses:

• recovery, e.g. by mode, or mean.

• expression of uncertainty, e.g. by a credible set: a set Cn(Yn) with

Πn

(

Cn(Yn)|Yn) = 0.95.



Frequentist Bayes
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Assume that data Yn is generated according to θ0 (‘truth’).

The rate of contraction is (at least) εn = εn(θ0) if

Eθ0Πn

(

d(θ, θ0) > εn|Yn) → 0.
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Frequentist Bayes
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Assume that data Yn is generated according to θ0 (‘truth’).

The rate of contraction is (at least) εn = εn(θ0) if

Eθ0Πn

(

d(θ, θ0) > εn|Yn) → 0.

The coverage of the credible region Cn(Yn) is

Pθ0

(

Cn(Yn) ∋ θ0
)

.

Does it tend to 95 %?

Does at least the posterior spread express remaining uncertainty?



What do the frequentists say? — rates
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Nonparametric theory is often concerned with smooth functions.

A typical nonparametric rate of estimation has the form

n−β/(2β+d).

This is the optimal rate for the root mean square error of an estimator of a

function θ0: [0, 1]
d → R that is known to be β times differentiable:

inf
T

sup
θ0∈C

β
1

Eθ0d
2
(

T (Yn), θ0
)

= O
(

n−2β/(2β+d)
)

.

As β ↑ ∞ the rate improves, to n−1/2 at β = ∞.

[Adaptive estimators can attain this rate for any β without knowing it.]



2. Gaussian Process Priors
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Gaussian process
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The law of a stochastic process W = (Wt: t ∈ T ) is a prior distribution on the

space of functions θ:T → R.

Gaussian processes have been found useful, because of their variety and

because of computational properties.

• Every Gaussian prior is reasonable in some way.

• Tuning by (random) hyperparameter is often desirable.



Integrated Brownian motion
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0, 1, 2 and 3 times integrated Brownian motion



Stationary processes
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Matérn spectral measure (3/2)



Other Gaussian processes
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Brownian sheet
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Fractional Brownian motion

θ(x) =
∑

i θiei(x), θi ∼indep N(0, λi)
Series prior



Posterior contraction rates for Gaussian priors
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Prior W is centered Gaussian map in Banach space (B, ‖ · ‖).
θ0 ∈ B true parameter.

THEOREM

If statistical distances on the model combine appropriately with the norm ‖ · ‖
of B, then the posterior rate of contraction is εn if

Π(‖W − θ0‖ < εn) ≥ e−nεn2
.

θ0-centered small ball probability determines the rate.
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Settings
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Density estimation
X1, . . . , Xn iid in [0, 1],

pθ(x) =
eθ(x)

∫ 1

0
eθ(t) dt

.

• Distance on parameter: Hellinger on
pθ .

• Norm on W : uniform.

Classification
(X1, Y1), . . . , (Xn, Yn) iid in
[0, 1]× {0, 1}

Pθ(Y = 1|X = x) =
1

1 + e−θ(x)
.

• Distance on parameter: L2(G) on
Pθ. (G marginal of Xi.)

• Norm on W : L2(G).

Regression
Y1, . . . , Yn independent N(θ(xi), σ

2), for
fixed design points x1, . . . , xn.

• Distance on parameter: empirical
L2-distance on θ.

• Norm on W : empirical L2-distance.

Ergodic diffusions
(Xt: t ∈ [0, n]), ergodic, recurrent:

dXt = θ(Xt) dt+ σ(Xt) dBt.

• Distance on parameter: random
Hellinger hn (≈ ‖ · /σ‖µ0,2).

• Norm on W : L2(µ0).
(µ0 stationary measure.)



Settings (2)
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For inverse problems the rate equation is different.

(Only special cases understood.)



Posterior contraction rates for Gaussian priors (2)
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Prior W is centered Gaussian map in Banach space (B, ‖ · ‖) with RKHS

(H, ‖ · ‖H) and small ball exponent

φ0(ε) = − log Π(‖W‖ < ε).

THEOREM

If statistical distances on the model combine appropriately with the norm ‖ · ‖
of B, then the posterior rate is εn if

φ0(εn) ≤ nεn
2 AND inf

h∈H:‖h−θ0‖<εn
‖h‖2

H
≤ nεn

2.
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Prior W is centered Gaussian map in Banach space (B, ‖ · ‖) with RKHS

(H, ‖ · ‖H) and small ball exponent

φ0(ε) = − log Π(‖W‖ < ε).

THEOREM

If statistical distances on the model combine appropriately with the norm ‖ · ‖
of B, then the posterior rate is εn if

φ0(εn) ≤ nεn
2 AND inf

h∈H:‖h−θ0‖<εn
‖h‖2

H
≤ nεn

2.

Both inequalities give lower bound on εn.

The first depends on W and not on θ0.

If θ0 ∈ H, then second inequality is satisfied for εn & 1/
√
n.



Brownian Motion
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THEOREM

If θ0 ∈ Cβ[0, 1], then the rate for Brownian motion is: n−1/4 if β ≥ 1/2;
n−β/2 if

β ≤ 1/2.

The rate is minimax iff β = 1/2.

The small ball exponent of Brownian motion is φ0(ε) ≍ (1/ε)2 as ε ↓ 0. This gives

the n−1/4-rate, even for very smooth truths.



Integrated Brownian Motion
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THEOREM

If θ0 ∈ Cβ[0, 1], then the rate for (α− 1/2)-times integrated Brownian is
n−(α∧β)/(2α+d) .

The rate is minimax iff β = α.



Stationary processes
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A stationary Gaussian field (Wt: t ∈ R
d) is characterized through a spectral

measure µ, by

cov(Ws,Wt) =

∫

eiλ
T (s−t) dµ(λ).



Stationary processes — radial basis
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Stationary Gaussian field (Wt: t ∈ R
d) characterized through

cov(Ws,Wt) =

∫

eiλ
T (s−t) e−λ2

dλ.
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THEOREM

Let θ̂0 be the Fourier transform of the true parameter θ0: [0, 1]
d → R.

• If
∫

e‖λ‖|θ̂0(λ)|2 dλ < ∞, then rate of contraction is near 1/
√
n.

• If |θ̂0(λ)| & (1 + ‖λ‖2)−β , then rate is power of 1/ logn.

Excellent if truth is supersmooth; disastrous otherwise.



Stationary processes — Mat érn
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Stationary Gaussian field (Wt: t ∈ R
d) characterized through

cov(Ws,Wt) =

∫

eiλ
T (s−t) 1

(1 + ‖λ‖2)(α+d/2)
dλ.
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THEOREM

• If θ0 ∈ Cβ[0, 1]d, then rate of contraction is n−(α∧β)/(2α+d).

The rate is minimax iff α = β.



Time-scaling Gaussian processes
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Sample paths can be smoothed by stretching
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Sample paths can be smoothed by stretching
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or roughened by shrinking
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Time-scaling integrated Brownian motion
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G = (Gt: t > 0) the k-fold integral of Brownian motion “released at zero” and

cn ∼ n(β−k−1/2)/(2β+1)(k+1/2).

THEOREM

The prior W = (Gt/cn : 0 ≤ t ≤ 1) gives optimal rate for θ0 ∈ Cβ[0, 1],
β ∈ (0, k + 1].
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G = (Gt: t > 0) the k-fold integral of Brownian motion “released at zero” and

cn ∼ n(β−k−1/2)/(2β+1)(k+1/2).

THEOREM

The prior W = (Gt/cn : 0 ≤ t ≤ 1) gives optimal rate for θ0 ∈ Cβ[0, 1],
β ∈ (0, k + 1].

• β < k + 1/2: cn → 0 (shrink).

• β ∈ (k + 1/2, k + 1]: cn → ∞ (stretch).

Stretching helps a little, shrinking helps a lot.

[By self-similarity time-scaling Gt/c is equivalent to space-scaling ck+1/2Gt.]



Time-scaling smooth stationary process
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G = (Gt: t ∈ R
d) the stationary Gaussian field with Gaussian spectral

measure and
cn ∼ n−1/(2β+d).
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THEOREM

The prior Wt = Gt/cn gives nearly optimal rate for θ0 ∈ Cβ[0, 1], any β > 0.

Shrinking can adapt supersmooth prior to everything.



Adaptation

33 / 64

Every Gaussian prior is good for some regularity class, but may be

very bad for another.

This can be alleviated by adapting the prior to the data by

• hierarchical Bayes: putting a prior on the regularity, or on a scaling.

• empirical Bayes: using a regularity or scaling determined by maximum

likelihood on the marginal distribution of the data.

The first is known to work in some generality.

For the second there are some, but not many results.



Adaptation by random scaling — example
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• Choose Ad from a Gamma distribution.

• Choose (Gt: t > 0) centered stationary Gaussian with Gaussian
spectral measure.

• Set Wt ∼ GAt.

THEOREM

• if θ0 ∈ Cβ [0, 1]d, then the rate of contraction is nearly n−β/(2β+d).

• if θ0 is supersmooth, then the rate is nearly n−1/2.
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Full Bayes solves the bandwidth problem.



Recovery: summary

35 / 64

• Recovery is best if prior ‘matches’ truth.

• Mismatch slows down, but does not prevent, recovery.

• Mismatch can be prevented by using hyperparameters.



3. Credible Sets
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Notation: the Bayesian machine
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Given a prior model θ ∼ Πn and a likelihood Yn| θ ∼ pn(y| θ), the posterior
distribution θ|Yn is given by

dΠn(θ|Yn) ∝ pn(Yn| θ) dΠn(θ).

Two uses:

• recovery, e.g. by mode, or mean.

• expression of uncertainty, e.g. by a credible set: a set Cn(Yn) with

Πn

(

Cn(Yn)|Yn) = 0.95.



Frequentist Bayes
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Assume that data Yn is generated according to θ0.

The coverage of the credible region Cn(Yn) is

Pθ0

(

Cn(Yn) ∋ θ0
)

.

Does it tend to 95 %?

Does at least the posterior spread express remaining uncertainty?



Uncertainty quantification: an early answer
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“Non-Bayesians often find such Bayesian procedures attractive because as n → ∞, the frequentist coverage probability of the Bayesian

regions tends to the posterior coverage probability in “typical” cases. It was my hope that this would also hold in the nonparametric setting [· · · ]

Unfortunately, the hoped for result is false in about the worst possible way, viz.,”

lim inf
n→∞

Pθ0

(

Cn(Yn) ∋ θ0
)

= 0, for Π-a.e. θ0.



Linear Gaussian inverse problems
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The model of Cox (1993) can be cast in sequence form by representing

functions θ on a suitable basis e1, e2, . . . as

θ(x) =
∞
∑

i=1

θiei(x).

DATA: independent Yn,1, Yn,2, . . . with Yn,i| θi ∼ N(κiθi, n
−1) for known κi.

PRIOR: independent θi ∼ N(0, λi).
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The model of Cox (1993) can be cast in sequence form by representing

functions θ on a suitable basis e1, e2, . . . as

θ(x) =
∞
∑

i=1

θiei(x).

DATA: Yn| θ ∼ N∞(Kθ, n−1I) for known K.

PRIOR: θ ∼ N∞(0,Λ).

POSTERIOR: θ|Yn ∼ N∞

(

AYn, S
)

, for

A = ΛKT
( 1

n
I +KΛKT

)−1
, S = Λ−A(n−1I +KΛKT )AT .

CREDIBLE SET: ball(AYn, r), for r with N∞(0, S)(ball(0, r)) = 0.95.



Sobolev models and priors
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TRUTH: θ0 ∈ Sβ , for

Sβ =
{

∑

i

θiei:
∑

i

i2βθ2i < ∞
}

.

PRIOR: θ1, θ2, . . . independent with θi ∼ N(0, λi), for

λi ≍
1

i2α+1
.

Interpretation:
α = β: prior and truth match.

α > β: prior oversmoothes.

α < β: prior undersmoothes.
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TRUTH: θ0 ∈ Sβ , for

Sβ =
{

∑

i

θiei:
∑

i

i2βθ2i < ∞
}

.

PRIOR: θ1, θ2, . . . independent with θi ∼ N(0, λi), for

λi ≍
1

i2α+1
.

Interpretation:
α = β: prior and truth match.

α > β: prior oversmoothes.

α < β: prior undersmoothes.

[Alternative definition Sβ : use supi |i
2βθ2i | instead of

∑
i i

2βθ2i .]



Linear Gaussian inverse problem — rate of contraction
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DATA: Yn| θ ∼ N∞(Kθ, n−1I) for κi ∼ i−p.

PRIOR: θ ∼ N∞(0,Λ).

THEOREM
For an α-smooth prior and β-smooth truth, the posterior rate of contraction is

( 1

n

)
α∧β

2α+2p+1
.

This is as usual:

• contraction for any combination of truth and prior (β and α).

• minimax rate of contraction iff prior and truth match (α = β).



Example: reconstruct derivative
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The Volterra operator K:L2[0, 1] → L2[0, 1] is given by

Kθ(x) =

∫ x

0
θ(s) ds.

The observation is
(

Yn(x):x ∈ [0, 1]
)

, for Z Gaussian white noise,

Ẏn(x) =

∫ x

0
θ(s) ds+

1√
n
Z(x), x ∈ [0, 1].
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The Volterra operator K:L2[0, 1] → L2[0, 1] is given by

Kθ(x) =

∫ x

0
θ(s) ds.

The observation is
(

Yn(x):x ∈ [0, 1]
)

, for Z Gaussian white noise,

Ẏn(x) =

∫ x

0
θ(s) ds+

1√
n
Z(x), x ∈ [0, 1].

mildly inverse problem: Yn,i| θi ∼ N(κiθi, n
−1) for

κi =
1

(i− 1/2)π
ei(x) =

√
2 cos

(

(i− 1/2)πx
)

,

(i = 0, 1, 2, . . .).



Example: reconstruct derivative (n=100)
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True θ0 (black), posterior mean (red), and 20 realizations from the posterior, repeated 5 times for a rough prior (left) and a smooth prior (right).



Example: reconstruct derivative (n=100 000)
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True θ0 (black), posterior mean (red), and 20 realizations from the posterior, repeated 5 times for a rough prior (left) and a smooth prior (right).



Linear Gaussian inverse problem — credible balls
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POSTERIOR: θ|Yn ∼ N∞

(

AYn, S
)

.

CREDIBLE SET: ball(AYn, r), for r with N∞(0, S)(ball(0, r)) = 0.95.

THEOREM
For α-smooth prior and β-smooth truth:

• If α < β, then asymptotic coverage is 1 (uniformly).

• If α = β, then any asymptotic coverage c ∈ (0, 1) occurs along some

sequence in Sβ .

• If α > β, then for some θ ∈ Sβ asymptotic coverage is 0.

The credible ball has the correct order of magnitude iff α ≤ β.

If α > β, then the prior oversmoothes and creates bias.

If α < β, then credible balls are conservative, but OK as a rough

indication of statistical uncertainty.
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POSTERIOR: θ|Yn ∼ N∞

(

AYn, S
)

.

CREDIBLE SET: ball(AYn, r), for r with N∞(0, S)(ball(0, r)) = 0.95.

THEOREM
For α-smooth prior and β-smooth truth:

• If α < β, then asymptotic coverage is 1 (uniformly).

• If α = β, then any asymptotic coverage c ∈ (0, 1) occurs along some

sequence in Sβ .

• If α > β, then for some θ ∈ Sβ asymptotic coverage is 0.

The credible ball has the correct order of magnitude iff α ≤ β.

If α > β, then the prior oversmoothes and creates bias.

If α < β, then credible balls are conservative, but OK as a rough

indication of statistical uncertainty.

Cox’s result: truths θ0 generated from an α-smooth prior belong with probability one to

Sβ for any β < α, but not to Sα. Their coverage is 0.



Linear Gaussian inverse problem — scaling the prior
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DATA: Yn| θ ∼ N∞(Kθ, n−1I) for κi ∼ i−p.

PRIOR: θ ∼ N∞(0, τ2nΛ) for λi = i−1−2α.

THEOREM
For θ0 ∈ Sβ the best rescaling rate is τ̃n = n(α−β̃)/(2β̃+2p+1), for

β̃ = β ∧ (1 + 2α+ 2p) .

• If τn ≫ τ̃n, then the asympotic coverage is 1.

• If τn ≍ τ̃n, then any asymptotic coverage occurs.

• If τn ≪ τ̃n, then the asymptotic coverage is 0.

In the first two cases the size of the credible sets has the correct order.

Appropriate scaling solves the problem.

[The contraction rate is minimax iff β ≤ 2α+ 2p+ 1. Can scale a smooth prior to

become rougher, but not conversely.]



Example: reconstruct derivative (n=1000)
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True θ0 (black), posterior mean (red), and 20 realizations from the posterior, repeated 5 times for a rescaled rough prior (left)

and an optimally rescaled smooth prior (right).



Credible sets: first summary
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In a nonparametric set-up the prior is not washed out by the data.

Recovery: the prior influences the posterior contraction rate (although
“consistency” occurs for most priors).

Uncertainty quantification: the prior makes it felt strongly: if it mistakes the truth

for being more regular than it is, the posterior will:

• be too concentrated (leave too little uncertainty).

• centre far away from the truth (oversmooth).

Together these may make for disastrous credible sets.

A solution:
• Undersmooth! Make the prior at least as rough as the truth

(Undersmoothing gives coverage).

• but not too much! (Undersmoothing deteriorates recovery).

[Much work to be done. Results available only for the linear Gaussian inverse problem

and Gaussian regression.]



Example: heat equation (n=10 000, n=100 000 000)
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True θ0 (black), posterior mean (red), 20 realizations from the posterior (dashed black), and posterior credible bands (green).

In all ten panels β = 2.5. Left: n = 104 and α = 0.5, 1, 2, 5, 10 (top to bottom); right: n = 108 and α = 0.5, 1, 2, 5, 10 (top to bottom).



4. Adaptive Credible Sets
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Adaptation
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For recovery it can be useful to make a prior depend on a hyperparameter, in a

hierarchical or empirical Bayes set-up.

How does this work for credible sets?



Linear Gaussian inverse problem — random smoothness
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DATA: Yn| θ ∼ N∞(Kθ, n−1I) for κi ∼ i−p.

PRIOR: θ ∼ N∞(0,Λα) for λi = i−1−2α.

POSTERIOR: θ|Yn ∼ N∞

(

AαYn, Sα

)

.

CREDIBLE SET: ball(AαYn, rα), for rα with

N∞(0, Sα)(ball(0, rα)) = 0.95.

The empirical Bayes method uses the MLE α̂ for the marginal model

Yn ∼ N∞(0,KΛαK
T + n−1I):

α̂ = argmax
α

∞
∑

i=1

(

n2

i1+2α+2p + n
Y 2
n,i − log

(

1 +
n

i1+2α+2p

)

)

.
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DATA: Yn| θ ∼ N∞(Kθ, n−1I) for κi ∼ i−p.

PRIOR: θ ∼ N∞(0,Λα) for λi = i−1−2α.

POSTERIOR: θ|Yn ∼ N∞

(

AαYn, Sα

)

.

CREDIBLE SET: ball(AαYn, rα), for rα with

N∞(0, Sα)(ball(0, rα)) = 0.95.

The empirical Bayes method uses the MLE α̂ for the marginal model

Yn ∼ N∞(0,KΛαK
T + n−1I):

α̂ = argmax
α

∞
∑

i=1

(

n2

i1+2α+2p + n
Y 2
n,i − log

(

1 +
n

i1+2α+2p

)

)

.

This works for recovery.

Does it also work for uncertainty quantification?

Does ball(Aα̂Yn, rα̂) cover?

[Hierarchical Bayes, with prior on α, probably works similarly.]



Example: reconstructing a derivative
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Credible sets determined by empirical Bayes can be terribly wrong.

n = 103 n = 104 n = 106 n = 108

True θ0 (black), posterior mean (blue) and 95 % realizations (out of 2000) that are closest to the posterior mean.

Same truth, different n, prior smoothness determined by empirical Bayes.

This is a counterexample of a truth. For some truths the results are good.



What do the frequentists say? — Honesty
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A set Cn(Yn) is an honest confidence set if

Pθ0

(

Cn(Yn) ∋ θ0
)

≥ 0.95, for all θ0 ∈ Θ0.

Θ0 contains ‘all possible truths’, e.g. Θ0 = Sβ
1 , Sobolev ball of regularity β.

THEOREM

For given β there exist Cn(Yn) of diameter of the order OP (n
−β/(1+2β)) that

are honest over Sβ
1 .
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A set Cn(Yn) is an honest confidence set if

Pθ0

(

Cn(Yn) ∋ θ0
)

≥ 0.95, for all θ0 ∈ Θ0.

Θ0 contains ‘all possible truths’, e.g. Θ0 = Sβ
1 , Sobolev ball of regularity β.

THEOREM

For given β there exist Cn(Yn) of diameter of the order OP (n
−β/(1+2β)) that

are honest over Sβ
1 .

THEOREM [Low, Robins+vdV, Juditzky+Lacroix.]

If Cn(Yn) is honest over ∪β≥β0S
β
1 , then its diameter is of the uniform order

OP (n
−β0/(1/2+2β0)) over Sβ for β ≥ 2β0.

The diameter is determined by the biggest model (smallest β).

[One should also consider adaptation to the radius of the Sobolev balls.

For credible bands the diameter is of the order n−β0/(1+2β0) for β ≥ β0.]



What do the frequentists say? — Discrepancy between esti-
mation and uncertainty quantification

56 / 64

Adaptive estimation: [1990s]

• A more regular true function is easier to estimate.

• Estimators can be simultaneously optimal for multiple regularities (e.g.

wavelet shrinkage).

• Bayesian estimators can achieve this by a prior on a ‘bandwidth

parameter’.

Uncertainty quantification: [2000s]
• Honest uncertainty quantification must argue from the worst case

scenario: the smallest possible regularity level.

• The size of an honest confidence set cannot adapt (much) to unknown

regularity.



What do the frequentists say? — Discrepancy between esti-
mation and uncertainty quantification

56 / 64

Adaptive estimation: [1990s]

• A more regular true function is easier to estimate.

• Estimators can be simultaneously optimal for multiple regularities (e.g.

wavelet shrinkage).

• Bayesian estimators can achieve this by a prior on a ‘bandwidth

parameter’.

Uncertainty quantification: [2000s]
• Honest uncertainty quantification must argue from the worst case

scenario: the smallest possible regularity level.

• The size of an honest confidence set cannot adapt (much) to unknown

regularity.

“Adaptive estimators [..] do the best that is possible in view of the properties
(smoothness or complexity) of the underlying function to be estimated. [...] This is quite
satisfactory but [..] the estimator does not tell you how well it does [...] you have no idea
about the order of magnitude of the distance between your estimator and the truth [...].”

[Lucien Birgé, 2002, discussion of a paper by Hoffmann+Lepski.]



What do the frequentists say? — Self-similarity
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A sequence (θ1, θ2, . . .) ∈ Sβ is self-similar if, for all I = 1, 2, . . .,

1000I
∑

i=I

i2βθ2i ≥ 1

1000
sup
i

i2βθ2i .

THEOREM [Bull and Nickl, 2012]

There exist Cn(Yn) that are honest over the set of all self-similar θ0 ∈ ∪βS
β
1

such that the radius is of the order OP (n
−β/(1+2β)) whenever θ0 ∈ Sβ .

Interpretation of self-similarity: (θ1, θ2, . . .) has the same character

at any resolution level (i → ∞).
A noisy data set Yn can infer this character from the estimated se-

quence (θ̂1, . . . , θ̂N̂ ) for N̂ the ‘effective’ dimension.



Linear Gaussian inverse problems — Credible sets are hon-
est over self-similar functions
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DATA: Yn| θ ∼ N∞(Kθ, n−1I) for κi ∼ i−p

PRIOR: θ ∼ N∞(0,Λ) for λi = i−1−2α.

CREDIBLE SET: ball(AαYn, rα), for rα with

N∞(0, Sα)(ball(0, rα)) = 0.95.

THEOREM

If α̂ is the MLE for the marginal law of Yn, then credible ball ball(Aα̂Yn, r̂α̂) is

nearly honest over the set of all self-similar θ0 ∈ ∪βS
β
1 , and has radius nearly

of the order OP (n
−β/(1+2β)) whenever θ0 ∈ Sβ .

Empirical Bayes works for self-similar truths.



Example: reconstruct derivative (n=1000)
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True θ0 (black), posterior mean (red), and 20 realizations from the posterior, repeated 5 times for a rescaled rough prior (left)

and a rescaled smooth prior (right).



Credible sets are honest over prior sets?
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“Non-Bayesians often find such Bayesian procedures attractive because as n → ∞, the frequentist coverage probability of the Bayesian

regions tends to the posterior coverage probability in “typical” cases. It was my hope that this would also hold in the nonparametric setting [· · · ]

Unfortunately, the hoped for result is false in about the worst possible way, viz.,”

lim inf
n→∞

Pθ0

(

ball(AαYn, rα) ∋ θ0
)

= 0, for Π-a.e. θ0.
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“Non-Bayesians often find such Bayesian procedures attractive because as n → ∞, the frequentist coverage probability of the Bayesian

regions tends to the posterior coverage probability in “typical” cases. It was my hope that this would also hold in the nonparametric setting [· · · ]

Unfortunately, the hoped for result is false in about the worst possible way, viz.,”

lim inf
n→∞

Pθ0

(

ball
(

AαYn, (logn)rα
)

∋ θ0
)

= 1, for Π-a.e. θ0.



Credible sets are honest over prior sets? (2)
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CONJECTURE

For α̂ determined by empirical Bayes in the linear inverse problem:

lim inf
n→∞

Pθ0

(

ball
(

Âα̂Yn, (logn)r̂α̂
)

∋ θ0
)

= 1, for Πα-a.e. θ0, for every α.

[Honesty is questionable.]



Example: reconstructing a derivative
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Credible sets determined by empirical Bayes can be terribly wrong.

n = 103 n = 104 n = 106 n = 108

True θ0 (black), posterior mean (blue) and 95 % realizations (out of 2000) that are closest to the posterior mean.

Same truth, different n, prior smoothness determined by empirical Bayes.

Same truth, different n, prior smoothness determined by empirical Bayes.

WHAT CAUSES THIS BAD BEHAVIOUR?

In this example the truth is very smooth, unlike any function that is

generated from a prior.

[More fancy counterexamples exist.]
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Nonparametric credible regions are never “correct” frequentist confidence
regions.

Priors that undersmooth the truth give a reasonable idea of the uncertainty in

the posterior mean.

If the prior oversmoothes the truth, then the spread in the posterior is very

misleading about the remaining uncertainty.

This effect may disappear if the prior is scaled, for instance by an hierarchical

or empirical Bayesian method, but only for truths that resemble the prior ???
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It seems we must either undersmooth or believe the fine details of

our prior.

Is that possible in nonparametrics?
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