Quantum computation

in the hall of mirrors

Niel de Beaudrap (Oxford) **CVQT**, Edinburgh

Quantum computation

in the hall of mirrors

Niel de Beaudrap (Oxford) **CVQT**, Edinburgh

Quantum computation

through the looking-glass

Niel de Beaudrap (Oxford) **CVQT**, Edinburgh

The power of quantum

- It is commonly believed that quantum computation is a powerful model
- I don't disagree but:

- Three kinds of arguments:
 - Fundamental strangeness
 - Lack of known classical simulation techniques
 - Conjectures leading to "quantum advantage"

The power of quantum

- It is commonly believed that quantum computation is a powerful model
- I don't disagree but:

Why?

- Fundamental strangeness
- Lack of known classical simulation techniques
- Conjectures leading to "quantum advantage"

The power of quantum

- It is commonly believed that quantum computation is a powerful model
- I don't disagree but:

Why?

- Fundamental strangeness
 - Lack of known classical simulation techniques
 - Conjectures leading to "quantum advantage"

Quantum mechanical phenomena resist easy description in classical terms

Quantum mechanical phenomena resist easy description in classical terms

careful — this is nearly the same as "lack of known classical simulation techniques"

Quantum mechanical phenomena resist easy description in classical terms

Entanglement — or non-local correlations more generally

careful — this is nearly the same as "lack of known classical simulation techniques"

Quantum mechanical phenomena resist easy description in classical terms

Entanglement — or non-local correlations more generally

careful — this is nearly the same as "lack of known classical simulation techniques"

Contextuality — i.e., the lack of hidden-variable representations

Quantum mechanical phenomena resist easy description in classical terms

Entanglement — or non-local correlations more generally

careful — this is nearly the same as "lack of known classical simulation techniques"

Contextuality — *i.e.*, the lack of hidden-variable representations

Multiple bases which can store information

Quantum mechanical phenomena resist easy description in classical terms

Entanglement — or non-local correlations more generally

careful — this is nearly the same as "lack of known classical simulation techniques"

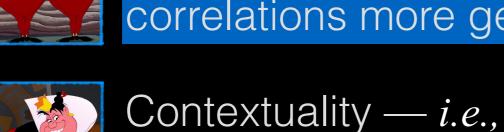
Contextuality — *i.e.*, the lack of hidden-variable representations

Multiple bases which can store information

Destructive interference of potential outcomes

 Quantum mechanical phenomena resist easy description in classical terms

Entanglement — or non-local correlations more generally



Contextuality — *i.e.*, the lack of hidden-variable representations

Multiple bases which can store information

Destructive interference of potential outcomes

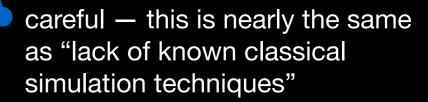
careful — this is nearly the same as "lack of known classical simulation techniques"

how is this advantageous for computation?

 Quantum mechanical phenomena resist easy description in classical terms

Entanglement — or non-local correlations more generally

Contextuality — *i.e.*, the lack of hidden-variable representations



how is this advantageous for computation?

this is exactly about the failure of a classical technique

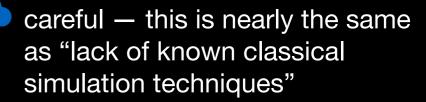
Multiple bases which can store information

Destructive interference of potential outcomes

 Quantum mechanical phenomena resist easy description in classical terms

Entanglement — or non-local correlations more generally

Contextuality — *i.e.*, the lack of hidden-variable representations



how is this advantageous for computation?

this is **exactly** about the failure of a classical technique

Multiple bases which can store information

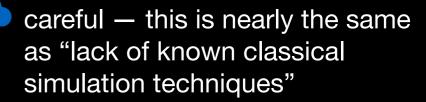
better — if a bit vague

Destructive interference of potential outcomes

 Quantum mechanical phenomena resist easy description in classical terms

Entanglement — or non-local correlations more generally

Contextuality — i.e., the lack of hidden-variable representations



how is this advantageous for computation?

this is **exactly** about the failure of a classical technique

Multiple bases which can store information

better — if a bit vague

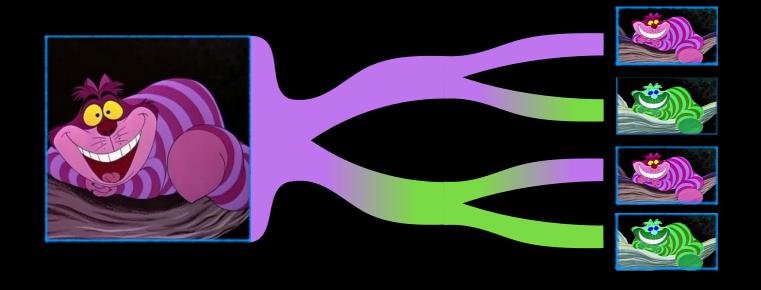
Destructive interference of potential outcomes

very promising

- ____ of wave patterns or external forces:
 - the cumulation or cancelation of deviations from some "relaxed" state
- ____ by extension, motivated by quantum computation:
 - the adding or cancelling of the propensity of a physical process to yield one of several "possible outcomes"

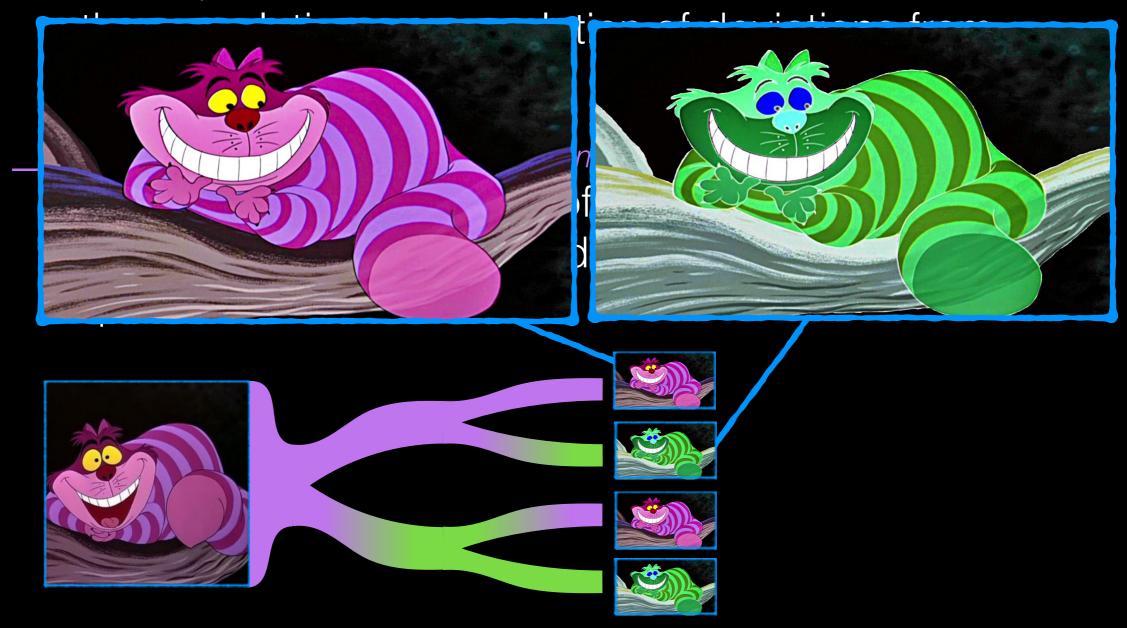
- ___ of wave patterns or external forces:
 - the cumulation or cancelation of deviations from some "relaxed" state
- by extension, motivated by quantum computation: the adding or cancelling of the propensity of a physical process to yield one of several "possible outcomes"

- ___ of wave patterns or external forces:
 the cumulation or cancelation of deviations from
 - some "relaxed" state
- by extension, motivated by quantum computation: the adding or cancelling of the propensity of a physical process to yield one of several "possible outcomes"

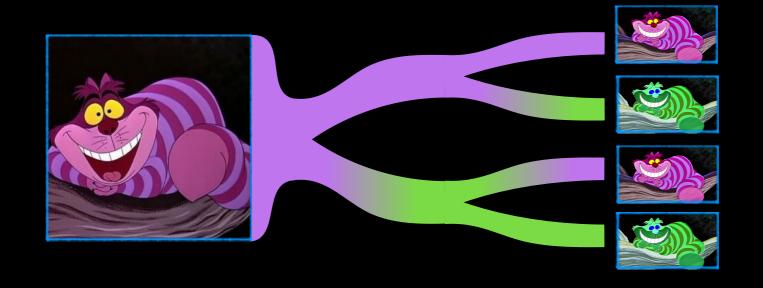


Interference

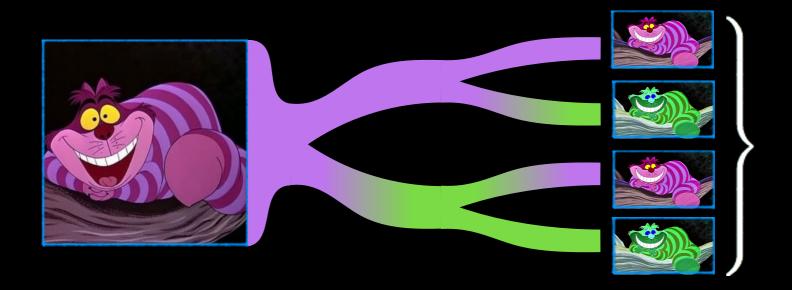
___ of wave patterns or external forces:



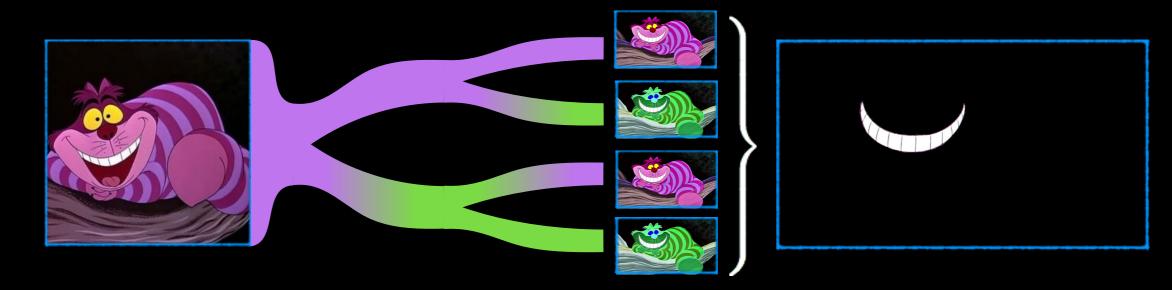
- ___ of wave patterns or external forces:
 the cumulation or cancelation of deviations from
 - some "relaxed" state
- by extension, motivated by quantum computation: the adding or cancelling of the propensity of a physical process to yield one of several "possible outcomes"



- ___ of wave patterns or external forces:
 the cumulation or cancelation of deviations from
 - some "relaxed" state
- by extension, motivated by quantum computation: the adding or cancelling of the propensity of a physical process to yield one of several "possible outcomes"



- of wave patterns or external forces:
 the cumulation or cancelation of deviations from some "relaxed" state
- by extension, motivated by quantum computation: the adding or cancelling of the propensity of a physical process to yield one of several "possible outcomes"



Questions

- Could destructive interference yield intuitions about the power of quantum computing?
- How to even explore this question, if destructive interference presumes quantum computing?

Questions

- Could destructive interference yield intuitions about the power of quantum computing?
- How to even explore this question, if destructive interference presumes quantum computing?

Results

- An approach to studying quasi-quantum models of computation — funhouse-mirror physics
- Characterisations of some quasi-quantum models, in terms of counting complexity

Preliminaries

sums over paths & counting complexity

Computational "paths" —

a (counterfactual) description of the state of the system over time, along with an amplitude for the entire path

- Computational "paths"
 - a (counterfactual) description of the state of the system over time, along with an amplitude for the entire path
 - a sequence of standard basis states for each instant
 - like a computational branch of an NTM

- Computational "paths"
 - a (counterfactual) description of the state of the system over time, along with an amplitude for the entire path
 - a sequence of standard basis states for each instant
 like a computational branch of an NTM
- Evolution given by sum of the amplitudes of each path, associated with reaching each possible endpoint a form of Huygen's principle for computation

- Computational "paths"
 - a (counterfactual) description of the state of the system over time, along with an amplitude for the entire path
 - a sequence of standard basis states for each instant
 like a computational branch of an NTM
- Evolution given by sum of the amplitudes of each path, associated with reaching each possible endpoint a form of Huygen's principle for computation
- This is the principle behind all known relations between quantum computation and counting classes

Counting complexity —

given a fixed **nondeterministic Turing Machine** (NTM) in which the branches form a complete k-ary tree with N leaves:

Counting complexity —

given a fixed **nondeterministic Turing Machine** (NTM) in which the branches form a complete k-ary tree with N leaves:

Uniformly assign weights to accepting / rejecting branches

Counting complexity —

given a fixed **nondeterministic Turing Machine** (NTM) in which the branches form a complete k-ary tree with N leaves:

- Uniformly assign weights to accepting / rejecting branches
- Sum over all branches (possibly depending on contents of the tapes)

Counting complexity —

given a fixed **nondeterministic Turing Machine** (NTM) in which the branches form a complete k-ary tree with N leaves:

- Uniformly assign weights to accepting / rejecting branches
- Sum over all branches (possibly depending on contents of the tapes)
- Ask questions about the resulting sum

Counting complexity —

given a fixed **nondeterministic Turing Machine** (NTM) in which the branches form a complete k-ary tree with N leaves:

- Uniformly assign weights to accepting / rejecting branches
- Sum over all branches (possibly depending on contents of the tapes)
- Ask questions about the resulting sum

NP — is the total zero, or is it non-zero? ($\frac{w_A > 0}{w_B = 0}$)

Counting complexity —

given a fixed **nondeterministic Turing Machine** (NTM) in which the branches form a complete k-ary tree with N leaves:

- Uniformly assign weights to accepting / rejecting branches
- Sum over all branches (possibly depending on contents of the tapes)
- Ask questions about the resulting sum

```
NP — is the total zero, or is it non-zero? ( \frac{w_A > 0}{w_R = 0} )
```

BPP — is the total
$$\leq \frac{1}{3}$$
, or is it $\geq \frac{2}{3}$? $\begin{pmatrix} w_A = 1/N \\ w_R = 0 \end{pmatrix}$

Sums over paths for NTMs

Counting complexity —

given a fixed **nondeterministic Turing Machine** (NTM) in which the branches form a complete k-ary tree with N leaves:

- Uniformly assign weights to accepting / rejecting branches
- Sum over all branches (possibly depending on contents of the tapes)
- Ask questions about the resulting sum

```
NP — is the total zero, or is it non-zero? (\begin{pmatrix} w_A > 0 \\ w_R = 0 \end{pmatrix})

BPP — is the total \leq \frac{1}{3}, or is it \geq \frac{2}{3}? (\begin{pmatrix} w_A = 1/N \\ w_R = 0 \end{pmatrix})

PP — is the total \leq \frac{1}{2}, or is it \geq \frac{1}{2}? (\begin{pmatrix} w_A = 1/N \\ w_R = -1/N \end{pmatrix})
```

Sums over paths for NTMs

Counting complexity —

given a fixed **nondeterministic Turing Machine** (NTM) in which the branches form a complete k-ary tree with N leaves:

- Uniformly assign weights to accepting / rejecting branches
- Sum over all branches (possibly depending on contents of the tapes)
- Ask questions about the resulting sum

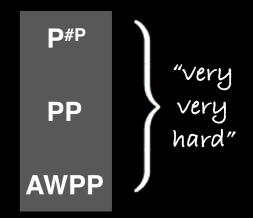
AWPP— is the $|total|^2 \le \frac{1}{3}$, or is it $\ge \frac{2}{3}$?

```
NP — is the total zero, or is it non-zero? (\begin{pmatrix} w_A > 0 \\ w_R = 0 \end{pmatrix})

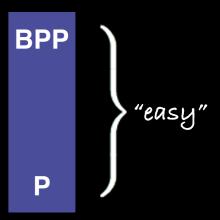
BPP — is the total \leq \frac{1}{3}, or is it \geq \frac{2}{3}? (\begin{pmatrix} w_A = 1/N \\ w_R = 0 \end{pmatrix})

PP — is the total \leq \frac{1}{2}, or is it \geq \frac{1}{2}? (\begin{pmatrix} w_A = 1/N \\ w_R = -1/N \end{pmatrix})
```

 $\begin{pmatrix} w_A = +1/h(N) \\ w_B = -1/h(N) \end{pmatrix}$

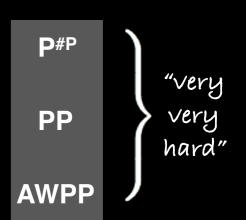


"hard" NP

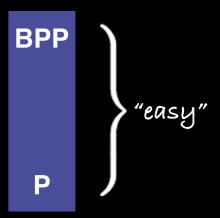


BPP: bounded error probabilistic poly-time

— problems solvable for inputs of length n, using a poly(n)-time specifiable sequence of logical operations and bit-flips, yielding a YES / NO answer which is correct except for bounded error

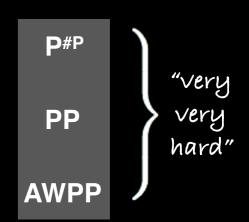


"hard" NP



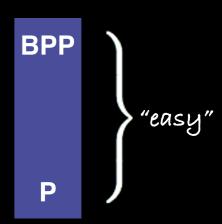
BPP: bounded error probabilistic poly-time

— problems solvable for inputs of length n, using a poly(n)-time specifiable sequence of logical operations and bit-flips, yielding a YES / NO answer which is correct except for bounded error



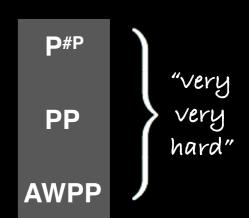
"hard" NP

ZPP: zero-error probabilistic poly-time



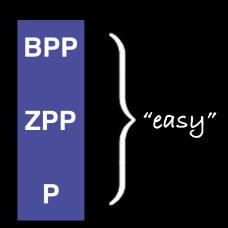
BPP: bounded error probabilistic poly-time

— problems solvable for inputs of length n, using a poly(n)-time specifiable sequence of logical operations and bit-flips, yielding a YES / NO answer which is correct except for bounded error



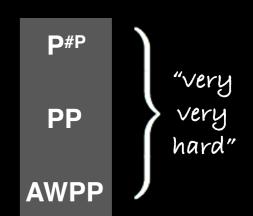
"hard" NP

ZPP: zero-error probabilistic poly-time



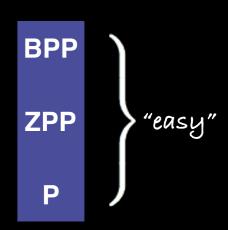
BPP: bounded error probabilistic poly-time

— problems solvable for inputs of length n, using a poly(n)-time specifiable sequence of logical operations and bit-flips, yielding a YES / NO answer which is correct except for bounded error



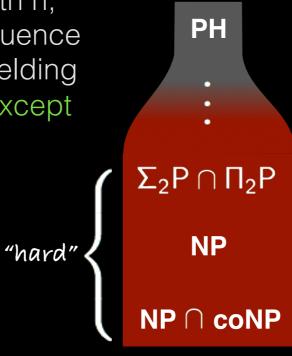
"hard" NP

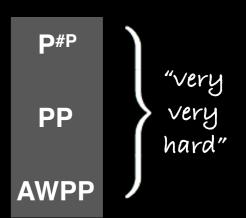
ZPP: zero-error probabilistic poly-time



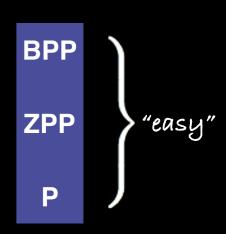
BPP: bounded error probabilistic poly-time

— problems solvable for inputs of length n, using a poly(n)-time specifiable sequence of logical operations and bit-flips, yielding a YES / NO answer which is correct except for bounded error





ZPP: zero-error probabilistic poly-time



"hard"

BPP: bounded error probabilistic poly-time

— problems solvable for inputs of length n, using a poly(n)-time specifiable sequence of logical operations and bit-flips, yielding a YES / NO answer which is correct except for bounded error

PH \vdots \vdots $NP \cap CONP$

P#P

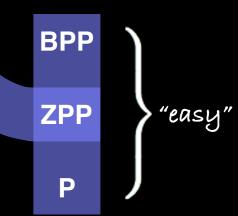
PP

wery

very

hard"

ZPP: zero-error probabilistic poly-time



"hard"

BPP: bounded error probabilistic poly-time

— problems solvable for inputs of length n, using a poly(n)-time specifiable sequence of logical operations and bit-flips, yielding a YES / NO answer which is correct except for bounded error

PH \vdots \vdots $NP \cap CONP$

ZPP: zero-error probabilistic poly-time

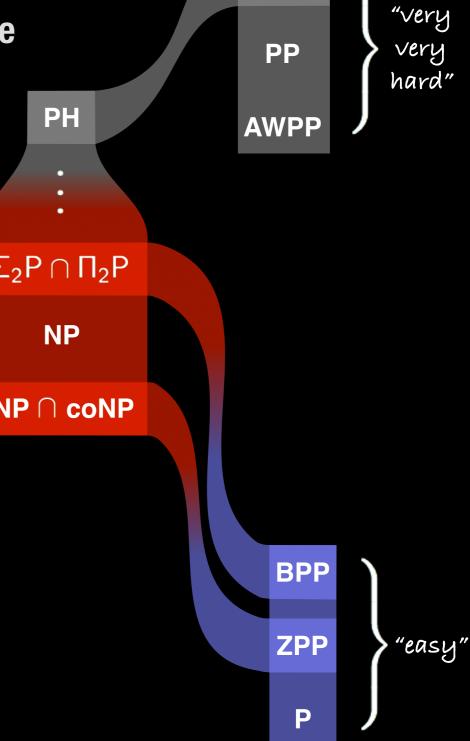
BPP: bounded error probabilistic poly-time

problems solvable for inputs of length n, using a poly(n)-time specifiable sequence of logical operations and bit-flips, yielding a YES / NO answer which is correct except for bounded error

 $\overline{\Sigma_2\mathsf{P}}\cap\overline{\mathsf{\Pi}_2}\mathsf{P}$ "hard" NP ∩ coNP

ZPP: zero-error probabilistic poly-time

problems solvable for inputs of length n, using a poly(n)-time specifiable sequence of logical operations and bit-flips, yielding a correct YES / NO answer except for a bounded failure probability



P#P

BPP: bounded error probabilistic poly-time

- problems solvable for inputs of length n, using a poly(n)-time specifiable sequence of logical operations and bit-flips, yielding a YES / NO answer which is correct except for bounded error

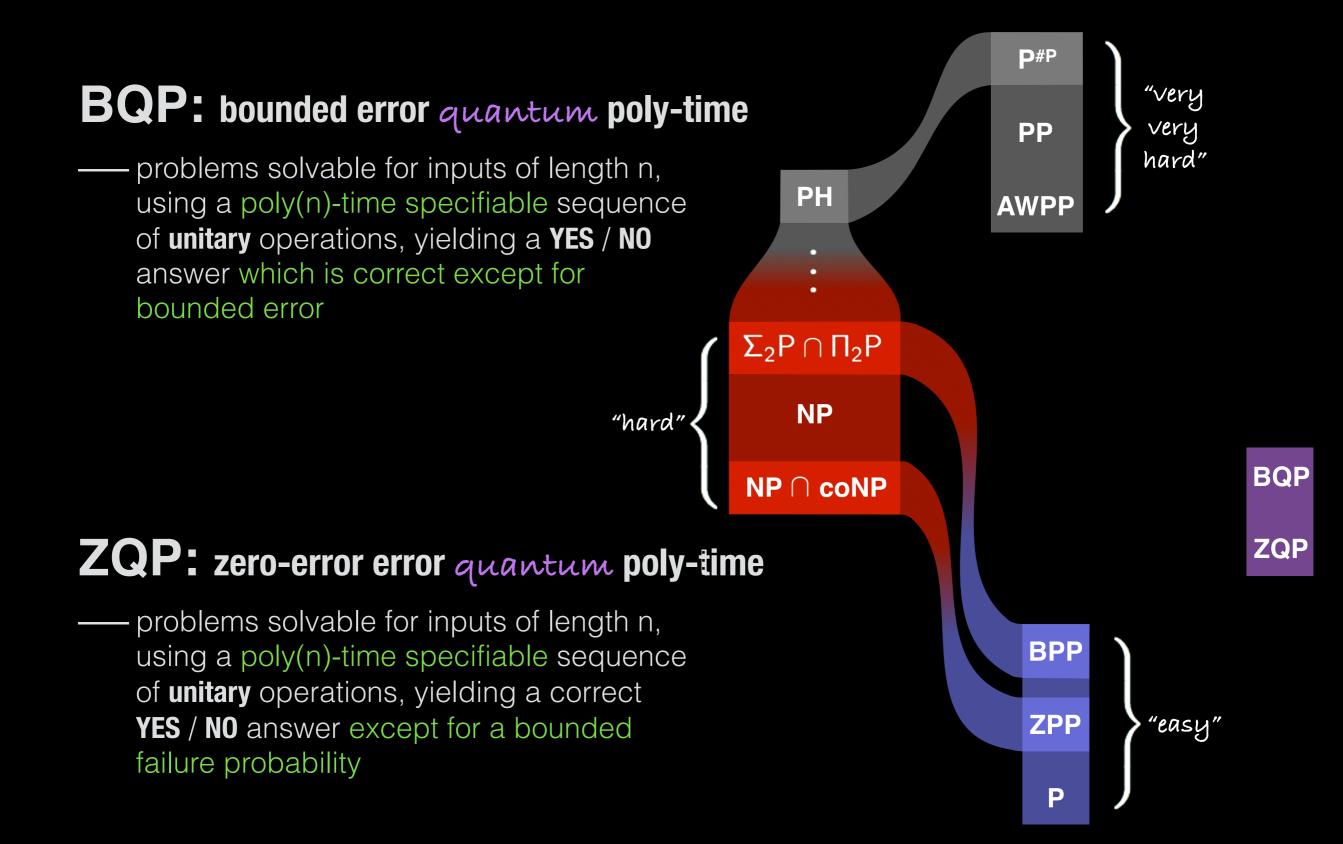
 $\Sigma_2 P \cap \Pi_2 P$ "hard" NP ∩ coNP

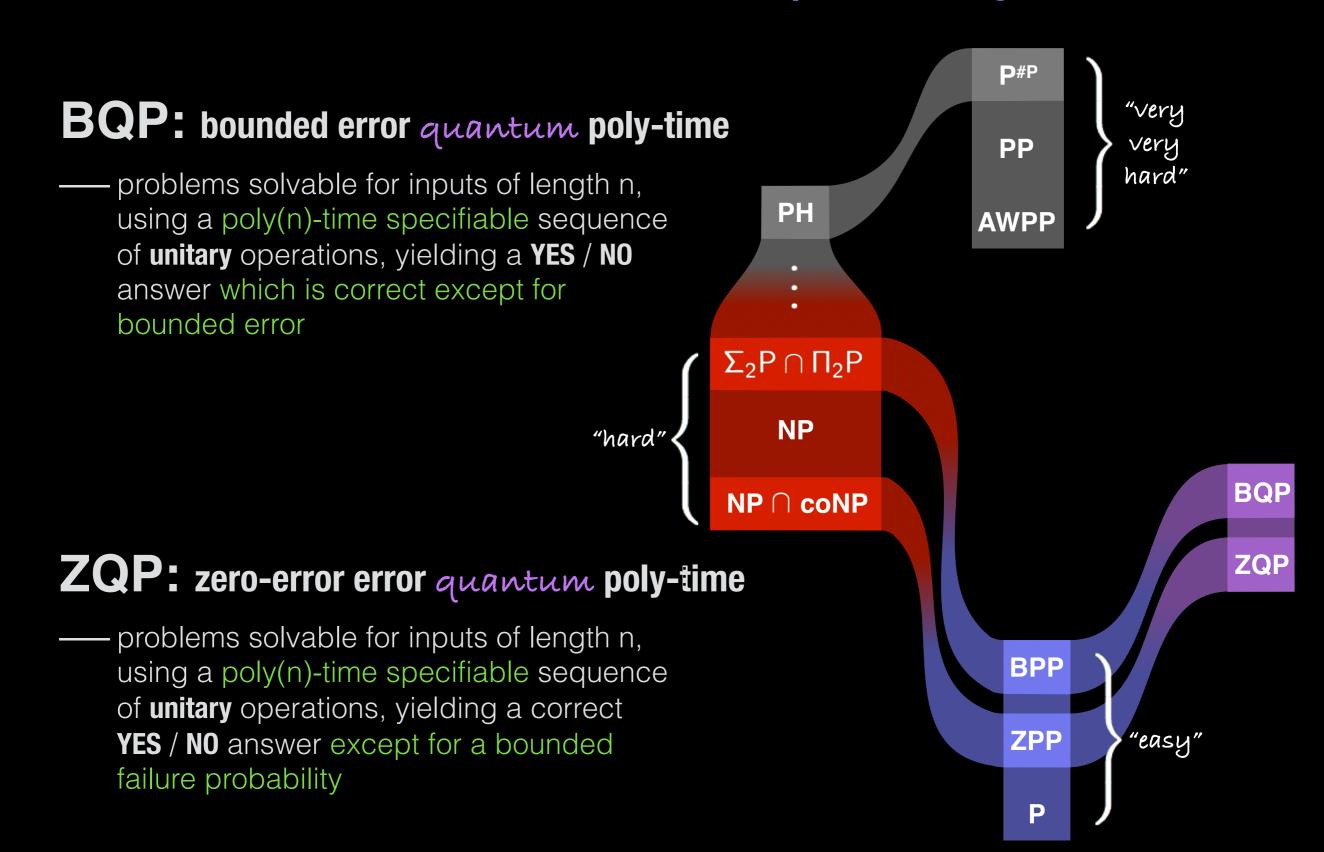
ZPP: zero-error probabilistic poly-time

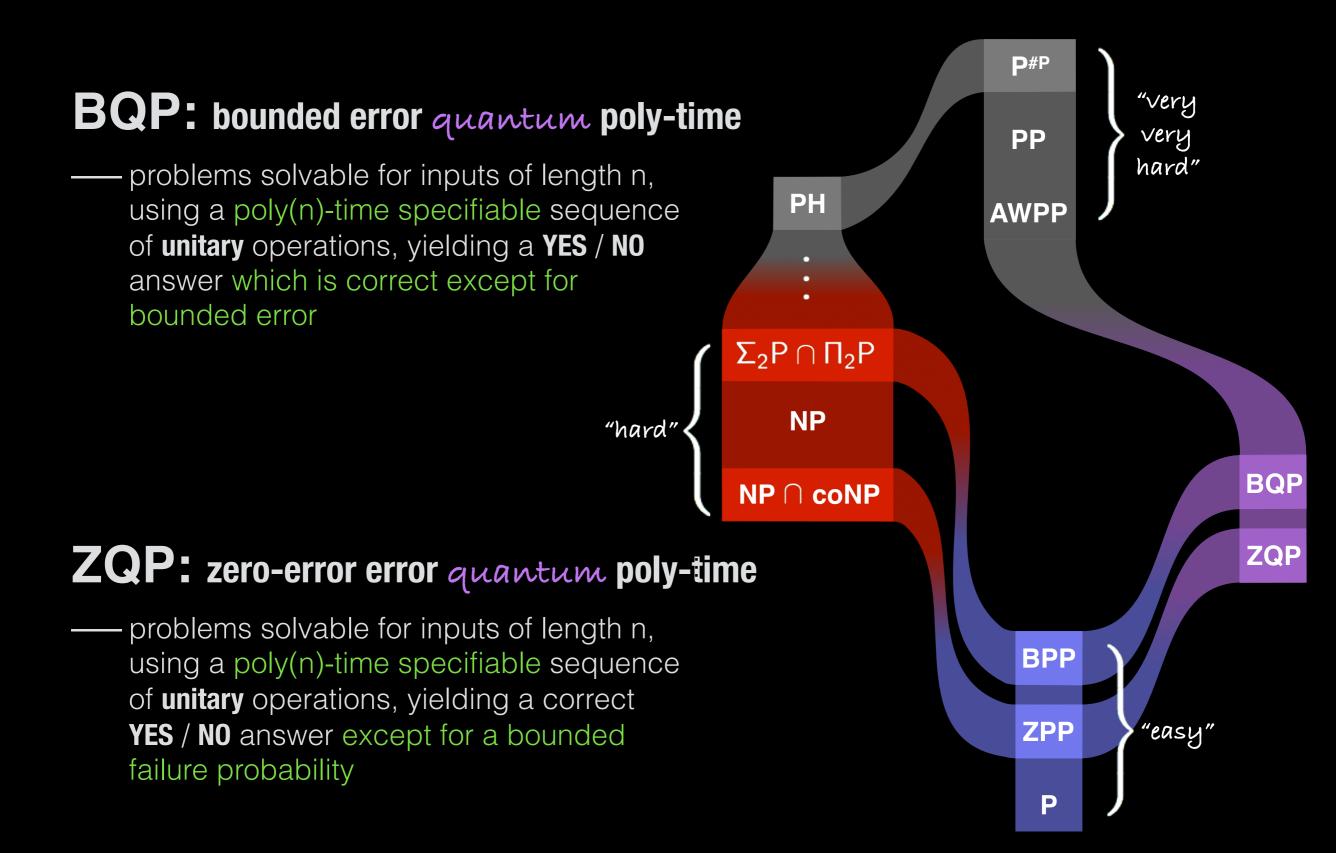
problems solvable for inputs of length n, using a poly(n)-time specifiable sequence of logical operations and bit-flips, yielding a correct YES / NO answer except for a bounded failure probability

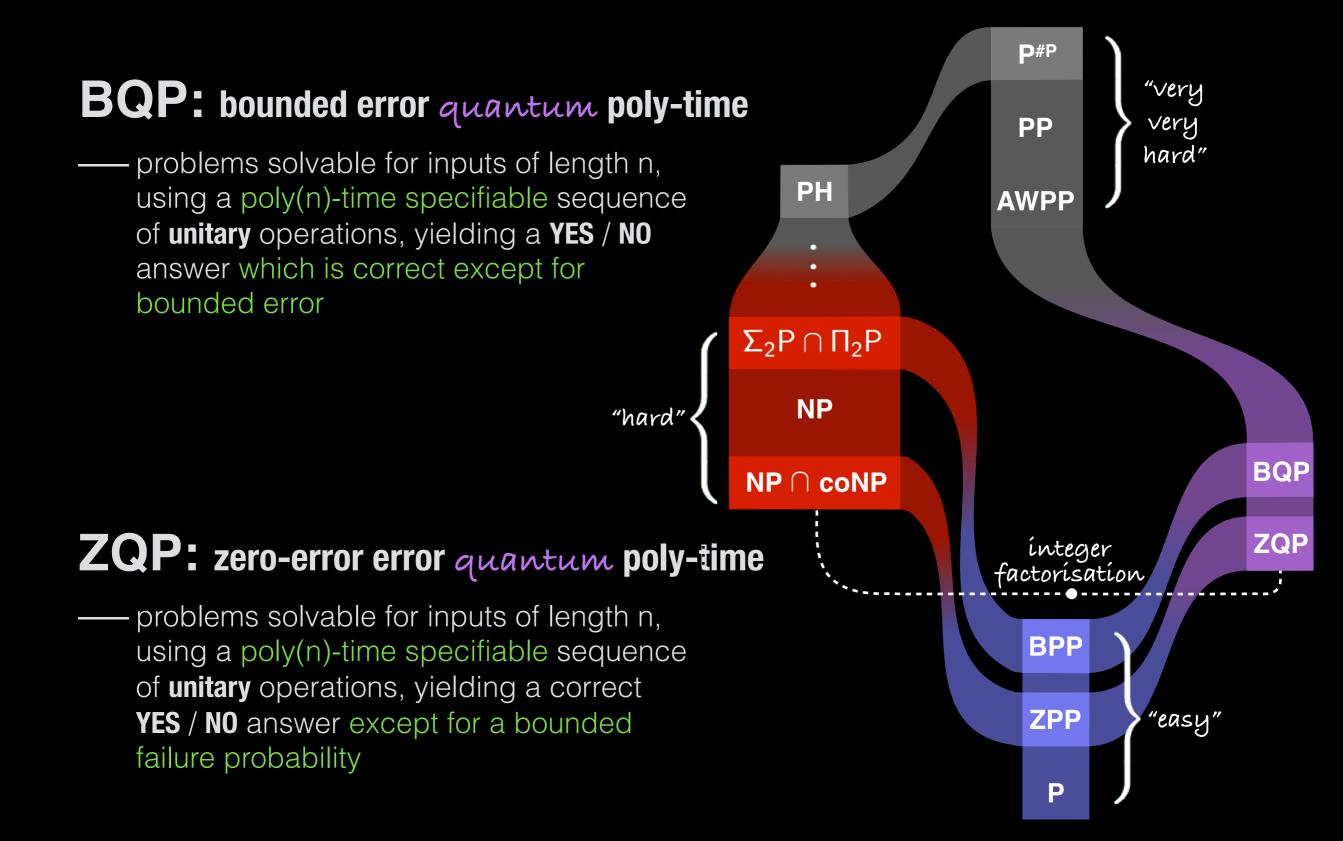
P#P "very very PP hard" PH **AWPP BPP** "easy" **ZPP**

P#P "very BPP: bounded error probabilistic poly-time very PP hard" broklems solvable for inputs of length n using a poly(n)-time specifiable sequence **AWPP** of logical operations and bit-fips, yielding a YES / No answer which is correct except for bounded error $\Sigma_2 P \cap \Pi_2 P$ NP "hard" NP ∩ coNP ZPP: zere-error profabilistic poly-time problems solvable for inputs of length n. using a poly(n) time specifiable sequence **BPP** of logical operations and bit-flips, yielding a correct YES / NO answer except for a **ZPP** "easy" bounded failure probability



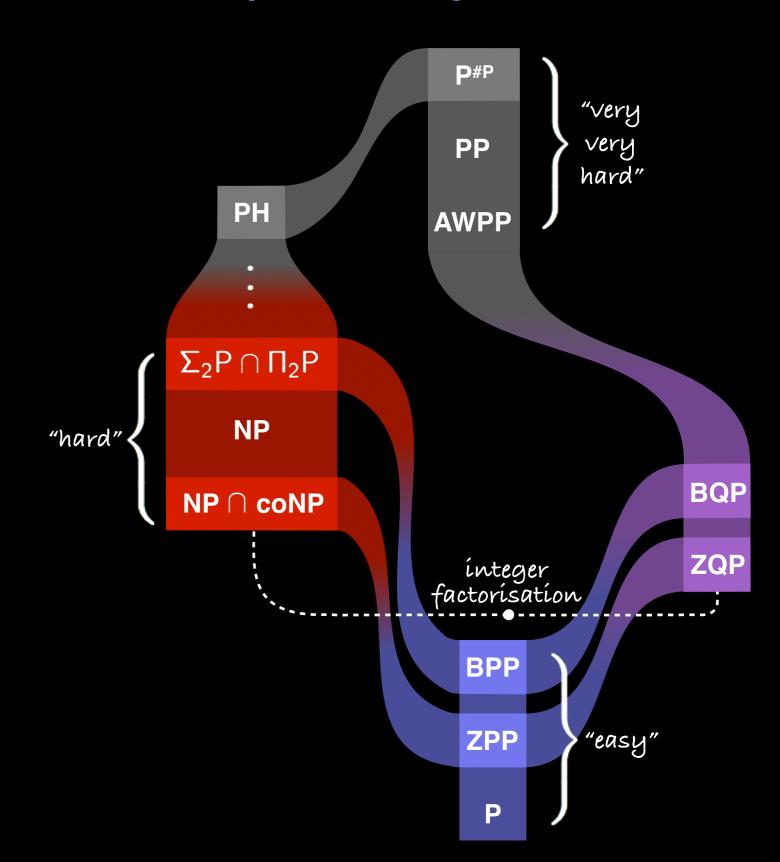






Observation:

We know much less than we would like e.g. unlike the "easy" classes, there is no known relationship yet between quantum classes and PH



NP — is the total-branch weight zero, or non-zero? $(w_A > 0, w_R = 0)$

P#P

PP

AWPP

NP

NP ∩ coNP

BQP

ZQP

NP — is the total-branch weight zero, or non-zero? $(w_A > 0, w_R = 0)$

 $C_{=}P$ — is the total-branch weight zero, or non-zero? ($w_{A}=-w_{R}>0$)

P#P

PP

AWPP

NP

NP ∩ coNP

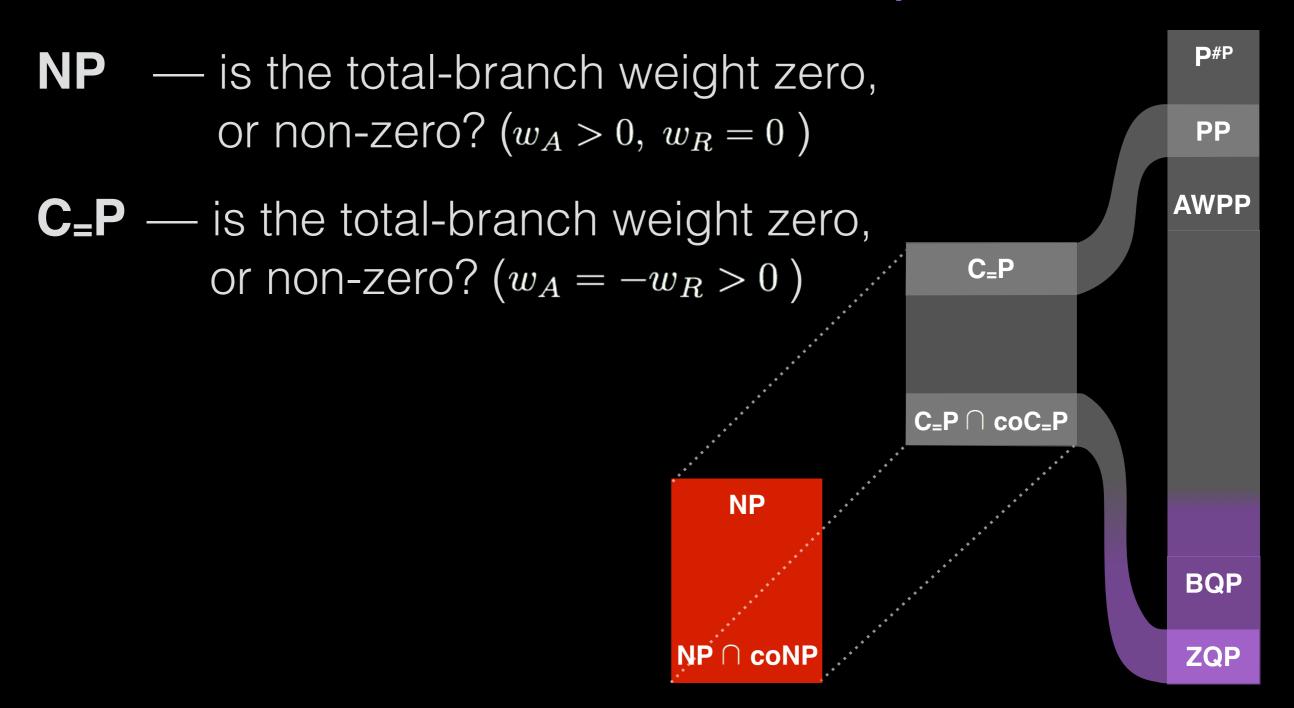
BQP

ZQP

P#P — is the total-branch weight zero, or non-zero? $(w_A > 0, w_R = 0)$ PP **AWPP C**₌**P** — is the total-branch weight zero, C₌P or non-zero? ($w_A = -w_R > 0$) C_P ∩ coC_P NP **BQP**

NP ∩ coNP

ZQP

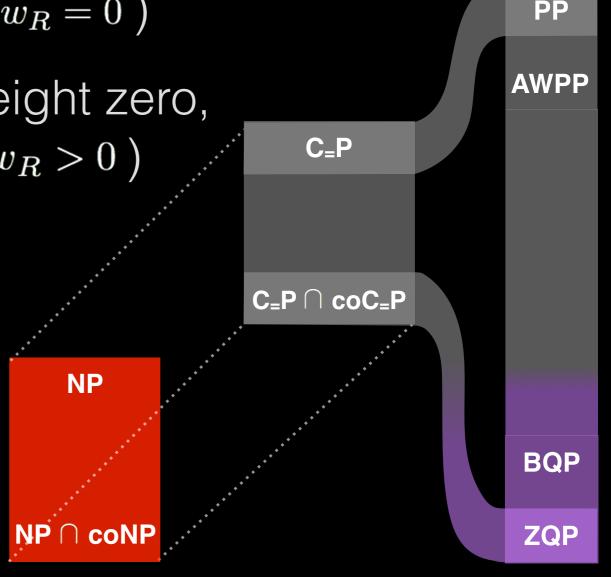


NP — is the total-branch weight zero, or non-zero? $(w_A > 0, w_R = 0)$

C=P — is the total-branch weight zero, or non-zero? $(w_A = -w_R > 0)$

Observation:

These bounds on quantum computation are expected to be very loose, and don't take unitarity of evolution into account



P#P

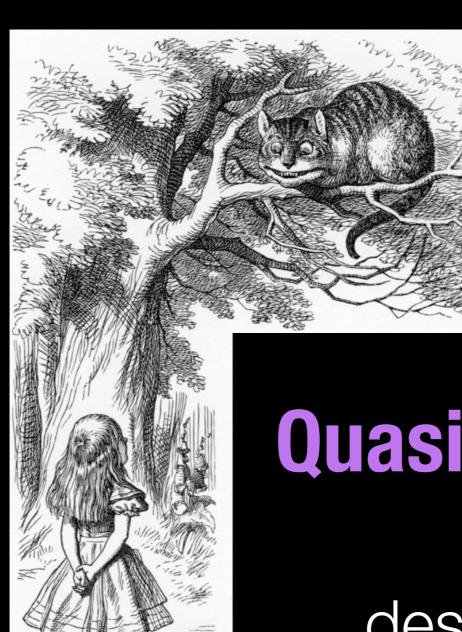
D#P **NP** — is the total-branch weight zero, or non-zero? $(w_A>0,\ \overline{w_R}=0)$ PP **AWPP C**₌**P** — is the total-branch weight zero, or non-zero? $(w_A = -w_R > 0)$ C_P Observation: C_P CoC_P These bounds on quantum computation are expected NP to be very loose, and don't BQP take unitarity of evolution

NP ∩ coNP

ZQP

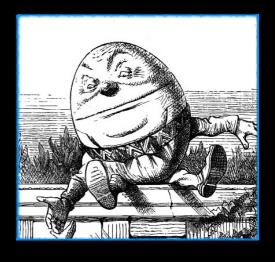
Can we describe the power of interference, without the notion of unitarity?

into account



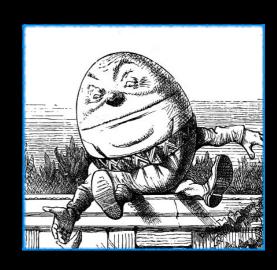
Quasi-quantum theories

to explore destructive interference



Like quantum computation (from a formal perspective) — but without the annoying adherence to physics

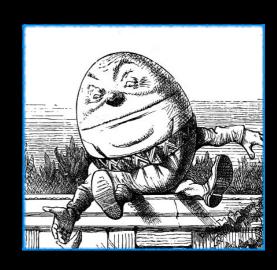
Like quantum computation (from a formal perspective) — but without the annoying adherence to physics



- Key ideas:
 - * Computational states are a subclass of some distributions kX over "classical" outcomes X
 - The states include X itself, and exclude the null distribution 0

$$\psi = \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \end{pmatrix}$$

Like quantum computation (from a formal perspective) — but without the annoying adherence to physics



- Key ideas:
 - * Computational states are a subclass of some distributions kX over "classical" outcomes X
- $\psi = \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \end{pmatrix}$

- The states include X itself, and exclude the null distribution 0
- Transformations act linearly on all distributions, and map each state to some other state
- Measurement consists of "sampling" labels from the distribution (only one primitive notion of measurement)

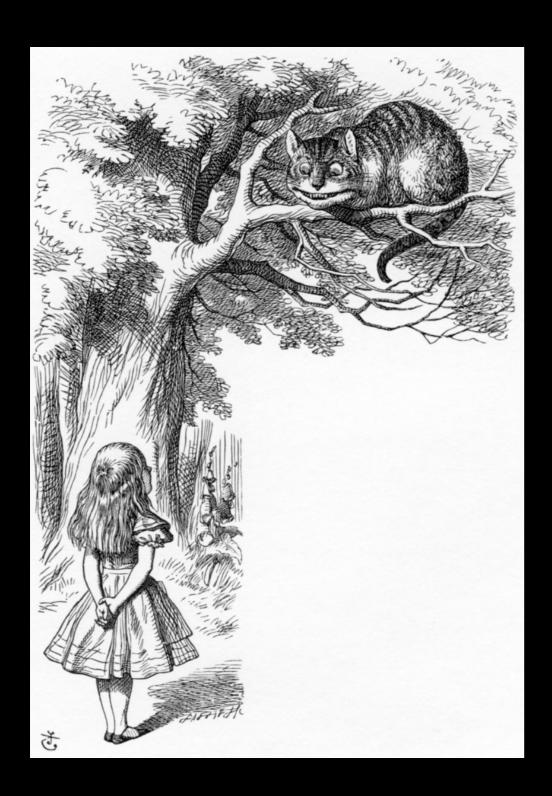
... different enough to be able to recover many unrelated ideas in counting complexity

- ... different enough to be able to recover many unrelated ideas in counting complexity
- Randomised computation:
 - * Convex combinations of states $x \in X$, in the space $\mathbb{R}X$

- ... different enough to be able to recover many unrelated ideas in counting complexity
- Randomised computation:
 - Convex combinations of states $x \in X$, in the space $\mathbb{R}X$
- Nondeterministic computation:
 - lacktrianglet Non-trivial distributions in $\mathbb{B}X$, where $\overline{\mathbb{B}}X=\{\bot,\top\}$

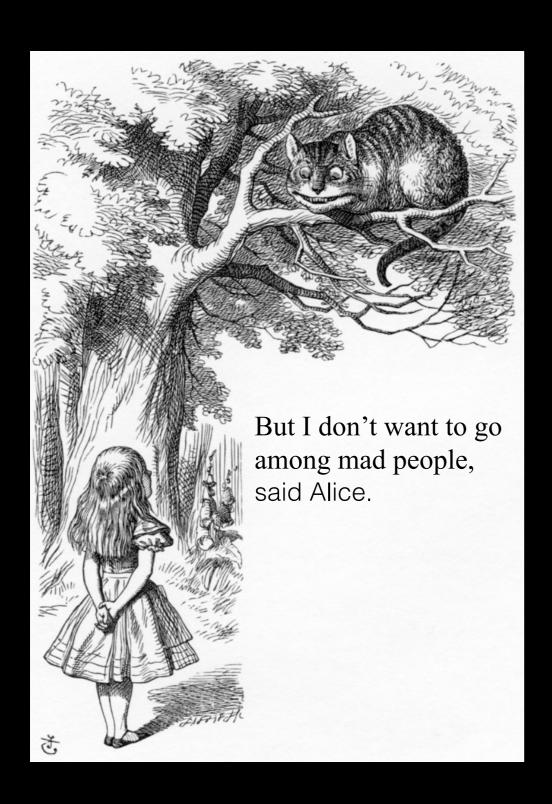
- ... different enough to be able to recover many unrelated ideas in counting complexity
- Randomised computation:
 - Convex combinations of states $x \in X$, in the space $\mathbb{R}X$
- Nondeterministic computation:
 - ullet Non-trivial distributions in $\mathbb{B}X$, where $\mathbb{B}X=\{\bot,\top\}$
- Stranger models of computation:
 - Distributions $\psi \in \mathbb{Z}_2 X$ satisfying $\psi^\mathsf{T} \psi = 1$
 - i.e. amplitudes are integers mod 2 (not complex numbers)

What are such models for?



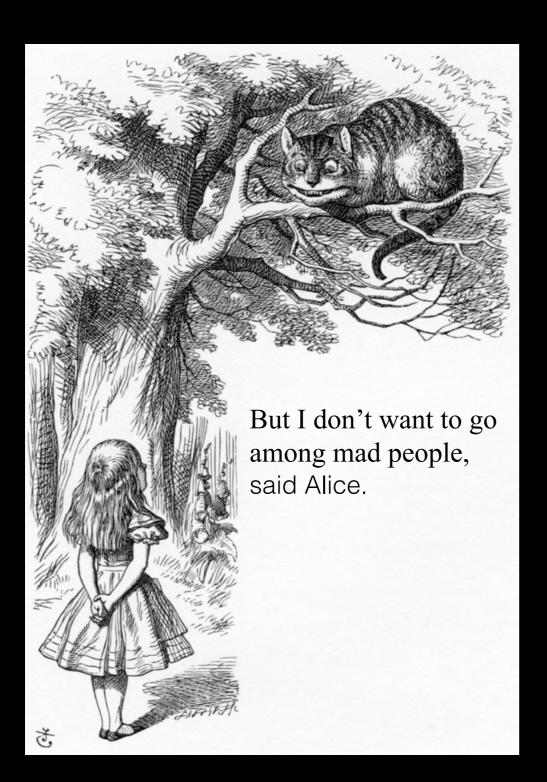
This framework allows for "fundamentally strange" models

What are such models for?



This framework allows for "fundamentally strange" models

What are such models for?

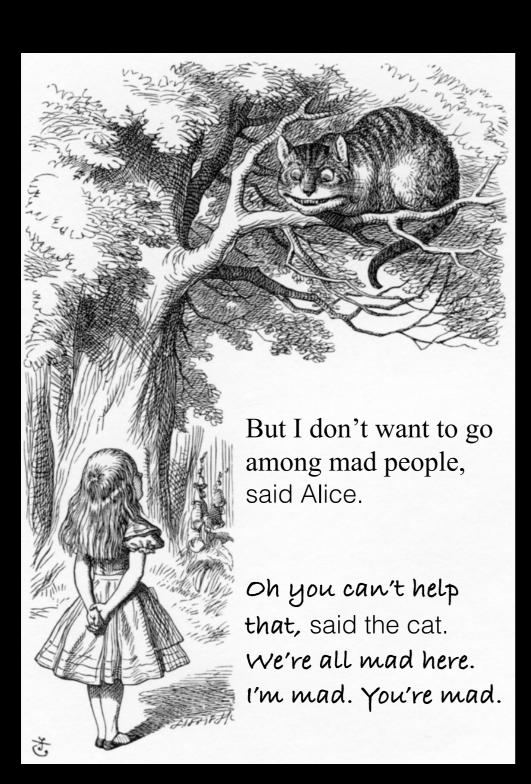


This framework allows for "fundamentally strange" models

But: our aim is

- to study computation in terms of linear transformations of distributions
 —"sums" over computational paths
- to do so in a way which includes but is not limited to quantum computation

What are such models for?

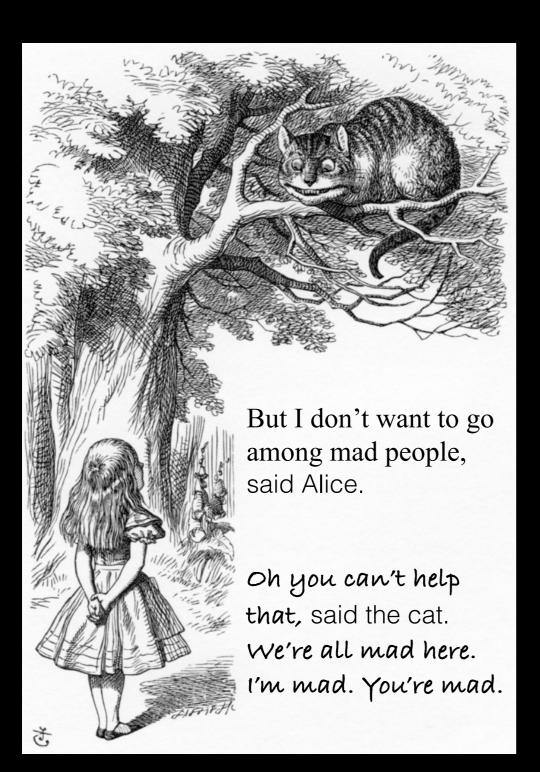


This framework allows for "fundamentally strange" models

But: our aim is

- to study computation in terms of linear transformations of distributions
 —"sums" over computational paths
- to do so in a way which includes but is not limited to quantum computation

What are such models for?



This framework allows for "fundamentally strange" models

But: our aim is

- to study computation in terms of linear transformations of distributions
 —"sums" over computational paths
- to do so in a way which includes but is not limited to quantum computation

Question: what happens when distributions have amplitudes which could cancel?

 Look at computations with distributions over rings (cancellable amplitudes)

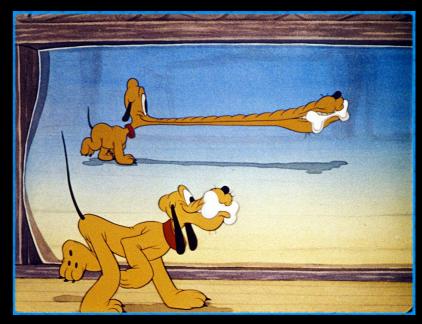
 Examine polynomial-time quasi-quantum computation with bounded error (or failure)

- Examine polynomial-time quasi-quantum computation with bounded error (or failure)
 - Define a "significance" order on amplitudes, respecting multiplication

- Examine polynomial-time quasi-quantum computation with bounded error (or failure)
 - Define a "significance" order on amplitudes, respecting multiplication
 - ❖ Require that incorrect results have less significance in the output distribution than the correct result

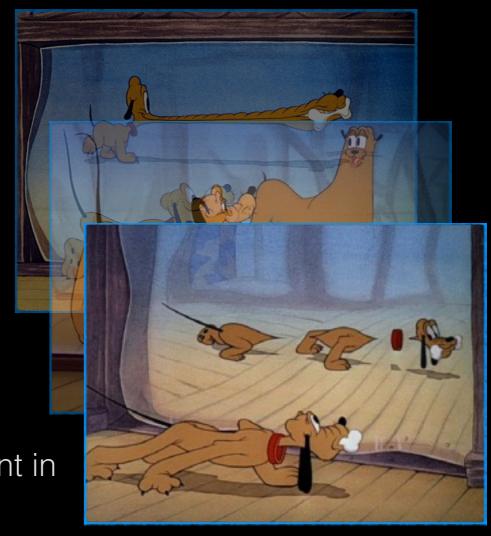
- Examine polynomial-time quasi-quantum computation with bounded error (or failure)
 - Define a "significance" order on amplitudes, respecting multiplication
 - ❖ Require that incorrect results have less significance in the output distribution than the correct result (similarly, require failure to be less significant in the output distribution than success)

- Examine polynomial-time quasi-quantum computation with bounded error (or failure)
 - Define a "significance" order on amplitudes, respecting multiplication
 - ❖ Require that incorrect results have less significance in the output distribution than the correct result (similarly, require failure to be less significant in the output distribution than success)



- Examine polynomial-time quasi-quantum computation with bounded error (or failure)
 - Define a "significance" order on amplitudes, respecting multiplication
 - * Require that incorrect results have **less significance** in the output distribution than the correct result (similarly, require failure to be less significant in the output distribution than success)

- Examine polynomial-time quasi-quantum computation with bounded error (or failure)
 - Define a "significance" order on amplitudes, respecting multiplication
 - * Require that incorrect results have **less significance** in the output distribution than the correct result (similarly, require failure to be less significant in the output distribution than success)



Results

a quick peek through the looking glass

• States — any non-zero complex vector $\psi \in \mathbb{C}X$

- States any non-zero complex vector $\psi \in \mathbb{C}X$
- Transformations —
 any invertible operator

- States any non-zero complex vector $\psi \in \mathbb{C} X$
- Transformations —
 any invertible operator

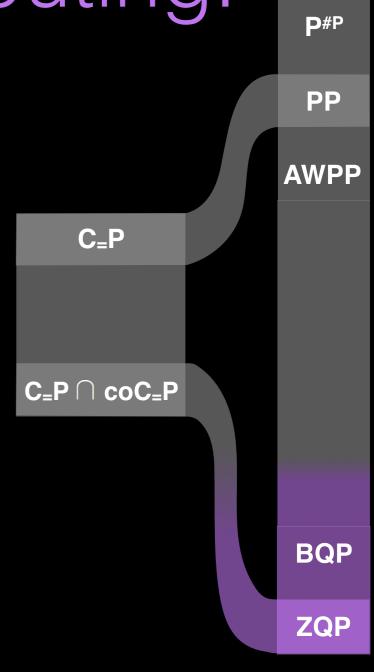
- States any non-zero complex vector $\psi \in \mathbb{C}X$
- Transformations any invertible operator
- Significance order magnitude of norm-squared of amplitudes

- States any non-zero complex vector $\psi \in \mathbb{C} X$
- Transformations —
 any invertible operator
- Significance order magnitude of norm-squared of amplitudes

Can reduce "relative significance" of error (or failure), by **amplifying** outcomes of otherwise unitary computations

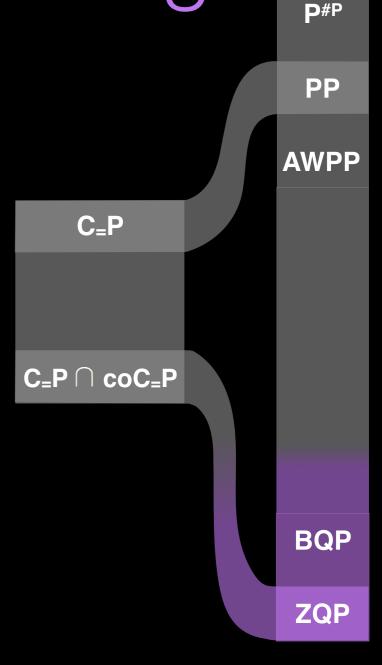
- States any non-zero complex vector $\psi \in \mathbb{C} X$
- Transformations —
 any invertible operator
- Significance order magnitude of norm-squared of amplitudes

Can reduce "relative significance" of error (or failure), by **amplifying** outcomes of otherwise unitary computations



Aaronson, 2005 —BQP_{GL} = PP

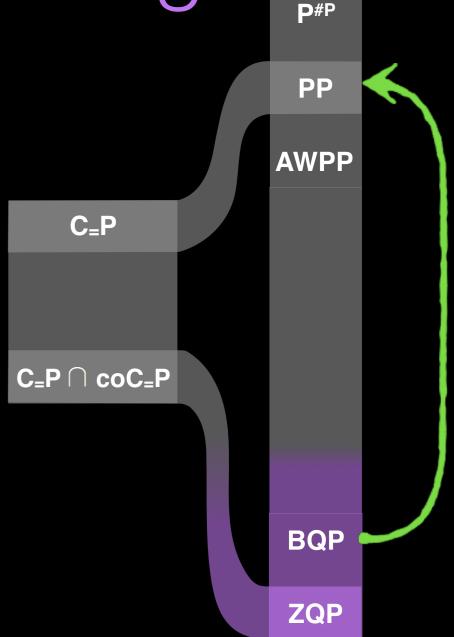
... a very large increase in (apparent) computational power



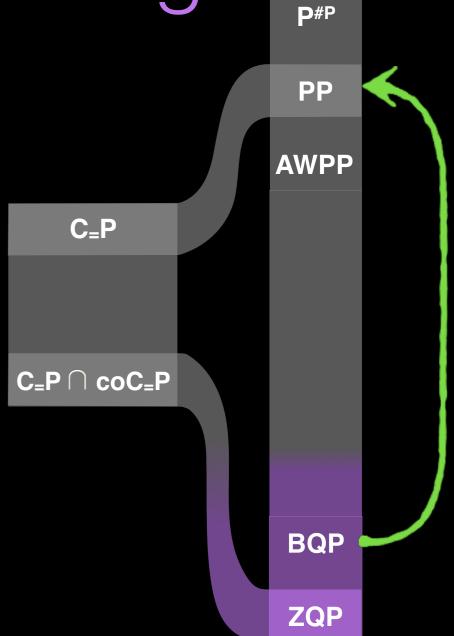
• Aaronson, 2005 —

 $BQP_{GL} = PP$

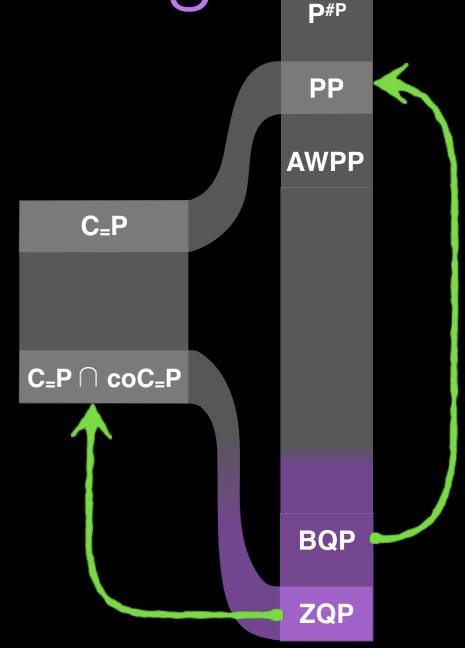
... a very large increase in (apparent) computational power



- Aaronson, 2005 —BQP_{GL} = PP
 - ... a very large increase in (apparent) computational power
- dB 2015 —
 ZQP_{GL} = C₌P ∩ coC₌P
 ... saturating the known upper bound

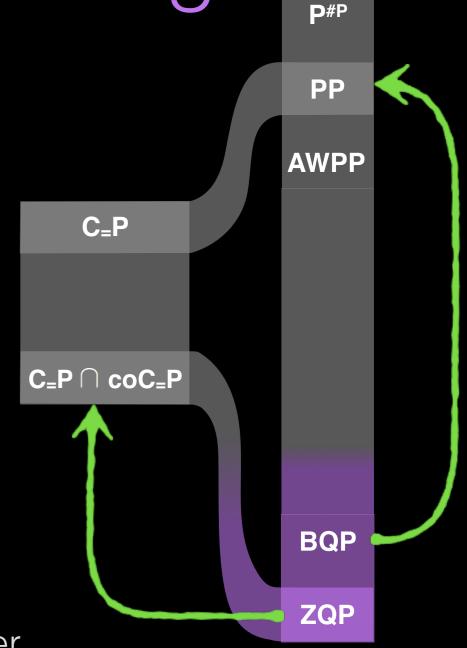


- Aaronson, 2005 —
 BQP_{GL} = PP
 - ... a very large increase in (apparent) computational power
- dB 2015 —
 ZQP_{GL} = C₌P ∩ coC₌P
 ... saturating the known upper bound



- Aaronson, 2005 —BQP_{GL} = PP
 - ... a very large increase in (apparent) computational power
- dB 2015 —
 ZQP_{GL} = C₌P ∩ coC₌P
 ... saturating the known upper bound
- also:

Similar, but less dramatic, increases in power for *exact* (error-free and failure-free) computation with invertible gates



• Amplitudes — whichever cyclic ring $R = \mathbb{Z}/p$ is your favourite

• Amplitudes — whichever cyclic ring $R = \mathbb{Z}/p$ is your favourite

- Amplitudes whichever cyclic ring $R = \mathbb{Z}/p$ is your favourite
- States any vector $\psi \in RX$ with $\psi^\mathsf{T} \psi = 1$



- Amplitudes whichever cyclic ring $R = \mathbb{Z}/p$ is your favourite
- States any vector $\psi \in RX$ with $\psi^\mathsf{T} \psi = 1$

Transformations —

 "norm"-preserving operations

- Amplitudes whichever cyclic ring $R = \mathbb{Z}/p$ is your favourite
- States any vector $\psi \in RX$ with $\psi^\mathsf{T} \psi = 1$

Transformations —

 "norm"-preserving operations

- Amplitudes whichever cyclic ring $R = \mathbb{Z}/p$ is your favourite
- States any vector $\psi \in RX$ with $\psi^\mathsf{T} \psi = 1$

- Transformations —

 "norm"-preserving operations
- Significance order $\alpha \preccurlyeq \beta$ iff $\alpha \in \beta R$ (*c.f. p*-adic norm)

Schumacher + Westmoreland, 2010 —

teleportation, superdense coding, etc. in "modal quantum mechanics" involving amplitudes mod p (or drawn from a finite field)

Schumacher + Westmoreland, 2010 —

teleportation, superdense coding, etc. in "modal quantum mechanics" involving amplitudes mod p (or drawn from a finite field)

dB 2014 —

 for prime p: can reduce significance of error / failure to zero, by repetition

Schumacher + Westmoreland, 2010 —

teleportation, superdense coding, etc. in "modal quantum mechanics" involving amplitudes mod p (or drawn from a finite field)

dB 2014 —

- for prime p: can reduce significance of error / failure to zero, by repetition
- Define UnitaryP_p as problems exactly solvable in this model — with zero significance of either failure or error in the output — in polynomial time

Schumacher + Westmoreland, 2010 —

teleportation, superdense coding, etc. in "modal quantum mechanics" involving amplitudes mod p (or drawn from a finite field)

dB 2014 —

- for prime p: can reduce significance of error / failure to zero, by repetition
- Define UnitaryP_p as problems exactly solvable in this model — with zero significance of either failure or error in the output — in polynomial time
- Can show that UnitaryP_p = Mod_pP
 a modulo-p variant of the class NP

Summary

the take-away from Wonderland

What's the bottom line?

- These models of computation have in common:
 - Destructive interference is possible (like quantum computation)
 - Interference is easier to realise than in quantum computation
 - Bounded error / zero error computation is very, very powerful

Evidence of the power of destructive interference

— and that imposing constraints on realising it can have a dramatic impact on "expected computational power"

What's the bottom line?

- These models of computation have in common:
 - Destructive interference is possible (like quantum computation)
 - Interference is easier to realise than in quantum computation
 - Bounded error / zero error computation is very, very powerful

Evidence of the power of destructive interference

— and that imposing constraints on realising it can have a dramatic impact on "expected computational power"

Intuition for quantum computation

— The class **EQP** (of problems exactly solvable by efficient quantum algorithms*) may be **much less** powerful than **BQP**.

Perhaps even **EQP** = **P**!

Thanks for listening!

Quantum Computing, Postselection, and Probabilistic Polynomial-Time Aaronson, [arXiv:quant-ph/0412187]

On exact counting and quasi-quantum complexity dB, [arXiv:1509.07789]

Modal quantum theory
Schumacher and Westmoreland, [arXiv:1010.2929]

On computation with 'probabilities' modulo k dB, [arXiv:1405.7381]