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‘Fundamental strangeness”?”

* Quantum mechanical phenomena

careful — this is nearly the same
as “lack of known classical
simulation techniques”

e Entanglement — or

A

how is this advantageous
for computation?

Contextuality — i.e., . _
this is exactly about the failure
of a classical technique

better — if a bit vague

very promising
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Questions

Could destructive interference yield intuitions
about the power of quantum computing”

How to even explore this question, it destructive
interference presumes quantum computing?

Results

An approach to studying quasi-quantum models
of computation — funhouse-mirror physics

Characterisations of some quasi-quantum
models, in terms of counting complexity



IMminaries

Prel

N
+
e
7P
i
S
s £
AHUC
®)
O &
2 2
mu
O
DS
oS




Sums over paths

 Computational “paths” —

a (counterfactual) description of the state of the system
over time, along with an amplitude for the entire path



Sums over paths

 Computational “paths” —

a (counterfactual) description of the state of the system
over time, along with an amplitude for the entire path

* a sequence of standard basis states for each instant
— like a computational branch of an NTM



Sums over paths

 Computational “paths” —

a (counterfactual) description of the state of the system
over time, along with an amplitude for the entire path

* a sequence of standard basis states for each instant
— like a computational branch of an NTM

* Evolution given by sum of the amplitudes of each path,
assoclated with reaching each possible endpoint —
a form of Huygen's principle for computation
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 Computational “paths” —

a (counterfactual) description of the state of the system
over time, along with an amplitude for the entire path

* a sequence of standard basis states for each instant
— like a computational branch of an NTM

* Evolution given by sum of the amplitudes of each path,
assoclated with reaching each possible endpoint —
a form of Huygen's principle for computation

* This s the principle behind all known relations
between quantum computation and counting classes
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Sums over paths for NTMs

* Counting complexity —
given a fixed nondeterministic Turing Machine (NTM) in
which the branches form a complete k-ary tree with
N leaves:
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% Ask questions about the resulting sum

al zero, or is it non-zero”

<3, 0risit =27
<3 orisit =237

% Uniformly assign weights to accepting / rejecting branches

<« Sum over all branches (possibly depending on contents of the tapes)

wy >0

wr =10
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* (Observation:

<+ We know much less
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e.g. unlike the “easy”
classes, there is no
known relationship
yet between quantum
classes and PH “hara”

Lnteger

factorisation ;
...... @----- S

~
--------



The best bounds on quantum

NP — is the total-branch weight zero,
Or Non-zero? (wa >0, wg=0)




The best bounds on quantum

NP — is the total-branch weight zero,
Or Non-zero? (wa >0, wg=0)

C-P — is the total-branch weight zero,
or non-zero? (wa = —wg >0)




The best bounds on quantum

NP — is the total-branch weight zero,
Or Non-zero? (wa >0, wg=0)

C-P — is the total-branch weight zero,
or non-zero? (wa = —wg >0) .~




The best bounds on quantum

NP — is the total-branch weight zero,
Or Non-zero? (wa >0, wg=0)

C-P — is the total-branch weight zero,
or non-zero? (wa = —wg >0) .~




The best bounds on quantum

NP — is the total-branch weight zero,
Or Non-zero? (wa >0, wg=0)

C-P — is the total-branch weight zero,
or non-zero? (wa = —wg >0) .~

* (Observation:

% These bounds on quantum
computation are expected
to be very loose, and don't
take unitarity of evolution
iInto account




The best bounds on quantum

NP — is the total-branch weight zero,
Or Non-zero? (wa >0, wg=0)

C-P — is the total-branch weight zero,
or non-zero? (wa = —wg >0) .~

* (Observation:

% These bounds on quantum
computation are expected
to be very loose, and don't
take unitarity of evolution
iInto account

Can we describe the power of interference,
without the notion of unitarity?
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‘Quasi-quantum”?

_Ike quantum computation (from a
formal perspective) — but without the
annoying adherence to physics

e Key ideas:

% Computational states are a subclass of some
distributions £ X over “classical” outcomes X

< The states include X itself, and exclude the
null distribution 0

% Transformations act linearly on all distributions,
and map each state to some other state

* Measurement consists of “sampling” labels from the distribution
(only one primitive notion of measurement)
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How Is this different from
gquantum computation®

.. different enough to be able to recover many
unrelated ideas Iin counting complexity

« Randomised computation:
“ Convex combinations of states = € X, in the space RX

 Nondeterministic computation:
+ Non-trivial distributions in BX, where BX = {1, T}

o Stranger models of computation:
+ Distributions 1 € Zy X satisfying ¥ = 1

— i.e. amplitudes are integers mod 2 (not complex numbers)
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What are such models for"

This framework allows for
‘fundamentally strange” models

But: our aim IS

* to study computation in terms of
linear transformations of distributions
—"sums” over computational paths

But I don’t want to go

, among mad people, * to do soin away which includes but
Sl is not limited to quantum computation

Oh you can't heLp

N7 . i tho oot Question: what happens when
el  CiStributions have amplitudes
‘ which could cancel?
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* ook at computations with

distributions over rings
(cancellable amplitudes)

* Examine polynomial-time
guasi-guantum computation
with bounded error (or failure)

% Define a “significance” order on
amplitudes, respecting multiplication =

% Require that incorrect results
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Complexity of general linear
‘quantum’ computing:

e Aaronson, 2005 —
BQPgL = PP

... avery large increase in (apparent)
computational power

 dB 2015 —

... saturating the known upper bound

* also:
Similar, but less dramatic, increases in power
for exact (error-free and failure-free) computation
with invertible gates
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Amplitudes —
whichever cyclic ring R = Z/p
'S your favourite

States —
any vector ¥ € RX with vy =1

Transformations —
‘norm’-preserving operations

Significance order —
a <X B Iff € BR (cf p-adic norm)
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Complexity of "guantum”™ computing
with amplitudes mod p:

Schumacher + Westmoreland, 2010 —

teleportation, superdense coding, etc. in "'modal quantum
mechanics” involving amplitudes mod p (or drawn from a finite field)

dB 2014 —

e for prime p: can reduce significance
of error / failure to zero, by repetition

* Define UnitaryP, as problems exactly solvable in this
model — with zero significance of either failure or
error In the output — In polynomial time

 Can show that UnitaryP, = Mod,P
— a modulo-p variant of the class NP
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What’s the bottom line”

* These models of computation have in common:

% Destructive interference is possible (like quantum computation)

“ Interference is easier to realise than in quantum computation

< Bounded error / zero error computation is very, very powerful

Evidence of the power of destructive interference

— and that imposing constraints on realising it can have
a dramatic impact on “expected computational power”



What’s the bottom line”

* These models of computation have in common:

% Destructive interference is possible (like quantum computation)
“ Interference is easier to realise than in quantum computation

< Bounded error / zero error computation is very, very powerful

Evidence of the power of destructive interference

— and that imposing constraints on realising it can have
a dramatic impact on “expected computational power”

Intuition for quantum computation

— The class EQP (of problems exactly solvable by efficient
guantum algorithms*) may be much less powerful than BQP.

Perhaps even EQP = P!
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Thanks for listening!

Quantum Computing, Postselection, and Probabilistic Polynomial-Time
Aaronson, [arXiviquant-ph/0412187]

On exact counting and quasi-quantum complexity
dB, [arXiv:1509.07789]

Modal guantum theory
Schumacher and Westmoreland, [arXiv:1010.2929]

On computation with 'probabilities' modulo k
dB, [arXiv:1405.7381]



