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I We often talk about the poset of commutative subalgebras of the
algebra of observables A.

I This does not have nice functoriality properties in A.
What is the reason for using commutative subalgebras anyway?

I A better solution is to consider all ∗-homomorphisms C → A for all
commutative C .
This is nicely functorial in A.

I In a C*-setting, this means that we consider all ∗-homomorphisms
C(X )→ A for all X ∈ CHaus.

I So we associate to every A the functor

CHaus→ Set, X 7→ C∗alg1(C(X ),A).

I By Gelfand duality, this is equivalent the restricted Yoneda
embedding C∗alg1 → SetcC∗algop

1 .
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I Generally, we can start with a physical system in any theoretical
framework.

I For every space X ∈ CHaus, there should be defined a set M(X ),
namely the set of all possible measurements with outcomes in X .

I For every f : X → Y in CHaus, there should be defined a function

M(f ) : M(X )→ M(Y )

which implements the idea of post-processing along f .

I Thus we obtain a functor M : CHaus→ Set, the measurement
functor describing the system.

Question
How much information about the system is contained in its measurement
functor?



Question
How much information about the system is contained in its measurement
functor?

I Consider the case of a quantum system described by a C*-algebra A.

I Then we write
X (A) := C∗alg1(C(X ),A)

for the value of the measurement functor associated to A on X .

I Notation in analogy with algebraic geometry: for X a scheme and A
a commutative ring, X (A) is the set of points X over A.

I Our idea is the same, except: now A is fixed rather than X .

I For example, [−1,+1](A) is the set of self-adjoints x ∈ A with
‖x‖ ≤ 1. By scaling, we reconstruct all self-adjoints in A together
with their norm!



I More generally, for every compact X ⊆ C, we can identify X (A)
with the set of normal elements with spectrum in X .

I Applying an f : (X ⊆ C)→ (Y ⊆ C) is the usual functional calculus.

I Thus, our measurement functor −(A) : CHaus→ Set generalizes
functional calculus.

I In this spirit, we may also think of every f ∈ X (A), represented by
f : C(X )→ A, as a “generalized normal element”.

Definition
The category of measurement functors is the functor cat SetCHaus.

Question
How does C∗alg1 relate to SetCHaus?



Definition (van den Berg & Heunen ’10)
A piecewise C*-algebra is a set A equipped with
I a reflexive and symmetric relation y ⊆ A× A. If αyβ, we say that
α and β commute;

I binary operations +, · : y→ A;
I a scalar multiplication · : C× A→ A;
I distinguished elements 0, 1 ∈ A;
I an involution ∗ : A→ A;
I a norm || − || : A→ R;

such that every C ⊆ A of pairwise commuting elements is contained in
some C̄ ⊆ A which is a commutative C*-algebra.

I Example: the normal elements of any C*-algebra form a piecewise
C*-algebra.



I We have the category of piecewise C*-algebras pC∗alg1.

I We can still associate to every A ∈ pC∗alg1 a measurement functor,

CHaus→ Set, X 7→ pC∗alg1(C(X ),A).

Thus we get pC∗alg1 → SetCHaus.

I By Gelfand duality, CHausop is again a full subcategory, so that this
is equivalent to the restricted Yoneda embedding

pC∗alg1 → SetcC∗alg
1 .

Proposition
The functor pC∗alg1 → SetCHaus is fully faithful.

The proof uses the fact that x , y ∈ ©(A) commute if and only if they
are in the image of

(©×©)(A) −→©(A)×©(A).



I Thus we try to understand the essential image of
pC∗alg1 → SetCHaus.

I Doing so results in a characterization and reconstruction of
piecewise C*-algebras in terms of measurement functors.

I To this end, we will formulate a certain sheaf condition in several
steps.

Definition
I A cone is a collection of morphisms {fi : X → Yi}i∈I for some index

set I.
I A cone is effective-monic if the diagram

X //
∏
i∈I

Yi
//
//
∏
i ,j∈I

(Yi qfi fj Yj),

is an equalizer.



Example (Isbell ’60, essentially)
I For every X ∈ CHaus, the cone of all functions {X → �} is

effective-monic, where � := [0, 1]2.

I The same is not true with [0, 1] in place of �.

I Equivalently: points of X are in bijection with valuations f 7→ ν(f )
operating on functions f : X → �, which are consistent in the sense
that ν(g ◦ f ) = g(ν(f )) for all g : �→ �.



We also need a very technical additional condition:

Definition
An effective-monic cone {fi : X → Yi}i∈I in CHaus is directed if for
every i ∈ I there is a cone {g j

i : Yi → Z j
i }j∈Ji which separates points, and

such that for every i , i ′ ∈ I and j ∈ Ji , j ′ ∈ Ji ′ there is k ∈ I and a
diagram

X
fi

~~
fk
��

fi′

!!
Yi

g j
i ��

Yk

�� ��

Yi ′

g j′
i′��

Z j
i Z j′

i ′

I The effective-monic cone of all functions {X → �} is directed.



Definition
A measurement functor M ∈ SetCHaus is a sheaf if and only if for every
directed effective-monic cone {fi : X → Yi}i∈I , also

M(X ) //
∏
i∈I

M(Yi )
//
//
∏
i ,j∈I

M(Yi qfi fj Yj),

is an equalizer.

I The sheaf condition on {X → �} “explains” why measurements in
the lab can be assumed to be (complex) numerical.

Theorem
The essential image of cC∗alg1 → SetCHaus consists of those
measurement functors which satisfy the sheaf condition on all
effective-monic cones.



We write Sh(CHaus) ⊆ SetCHaus for the full subcategory of measurement
functors satisfying the sheaf condition on all directed effective-monic
cones.

Theorem
I The measurement functor associated to every piecewise C*-algebra

is a sheaf.
I The resulting functor pC∗alg1 → Sh(CHaus) is fully faithful, with

essential image given by those M for which

M(�)→ M(�)×M(�)

is injective.

I The injectivity condition says: for every two �-valued measurements,
there is at most one joint measurement combining them.

I Open problem: is this condition necessary or automatically satisfied?



Thus we can answer the question:

Question
How much information about the system is contained in its measurement
functor?

The answer is: measurement functors satisfying the sheaf condition
are the same thing as piecewise C*-algebras!

I However, piecewise C*-algebras only capture the commutative
aspects of C*-algebra theory.

I In particular, we cannot reconstruct the multiplication of
noncommuting elements, and not even the addition!

I From the physical perspective, what is missing is dynamics: for
every h = h∗ ∈ A,

a 7→ e−ith a eith

is a 1-parameter group of inner automorphisms of A.



I From the physical perspective, what is missing is dynamics: for
every observable h = h∗ ∈ A,

a 7−→ e−ith a eith

is a 1-parameter group of inner automorphisms of A.

I This is one of the central features of quantum physics!

I Its construction proceeds in two steps:
I exponentiate h. Being functional calculus, this is captured by M.

I conjugating by the resulting unitary. This is not captured by M!

I Hence we axiomatize the action of inner automorphisms as an
extra piece of structure.



Definition
An almost C*-algebra is an injective measurement sheaf
M : CHaus→ Set together with a self-action, which is a map

a : M(S1) −→ Aut(M)

such that if u, v ∈ M(S1) are jointly measurable, then
I a(u)(v) = v ,
I a(uv) = a(u)a(v).

I Here, it no longer matters whether we work with piecewise
C*-algebras or injective measurement sheaves.

I The first equation is related to Noether’s theorem.

I Every C*-algebra carries the structure of an almost C*-algebra.



Problem
Is the category of almost C*-algebras equivalent to the category of
C*-algebras?

This question has two parts:

I Is every almost C*-algebra is isomorphic to a C*-algebra?
This is wide open.

I For A,B ∈ C∗alg1, is every almost ∗-homomorphism A→ B already
a ∗-homomorphism? Here, we know:

Theorem
If A is a von Neumann algebra, then every almost ∗-homomorphism
A→ B is a ∗-homomorphism.



Problem
Is the category of almost C*-algebras equivalent to the category of
C*-algebras?

I If the answer is positive, we have axioms for C*-algebras with clearer
physical meaning.

I In particular, we would have the first reconstruction of
infinite-dimensional quantum theory from (more) physical axioms.

I If the answer is negative, we can try to develop physical theories in
terms of almost C*-algebras as alternatives to existing theories
formulated in terms of C*-algebras. Could these be physically
realistic? (Almost certainly not.)



Summary of proposed reconstruction
Roughly speaking, we have two kinds of axioms.

Measurements:
I Associated to every compact Hausdorff space X there is a set M(X ),

comprising all measurements on the system with outcomes in X .
I Associated to every continuous function f : X → Y , there is a

post-processing or coarse-graining function M(f ) : M(X )→ M(Y ).

Dynamics and Symmetry:
I Associated to every unitary u is an automorphism a(u), satisfying

suitable conditions.

In combination with the measurements structure, this results in:
associated to every observable is a 1-parameter family of automorphisms.
→ Time evolution and other symmetries in physics.


