Measurement Functors

Based on arXiv:1512.01669

March 2018

- ► We often talk about the poset of commutative subalgebras of the algebra of observables *A*.
- This does not have nice functoriality properties in A. What is the reason for using commutative subalgebras anyway?
- A better solution is to consider all *-homomorphisms C → A for all commutative C.
 This is nicely functorial in A.

- ► We often talk about the poset of commutative subalgebras of the algebra of observables *A*.
- This does not have nice functoriality properties in A. What is the reason for using commutative subalgebras anyway?
- A better solution is to consider all *-homomorphisms C → A for all commutative C.
 This is nicely functorial in A.
- ▶ In a C*-setting, this means that we consider all *-homomorphisms $C(X) \rightarrow A$ for all $X \in$ CHaus.
- ► So we associate to every A the functor

$$CHaus \rightarrow Set$$
, $X \mapsto C^* alg_1(C(X), A)$.

 ▶ By Gelfand duality, this is equivalent the restricted Yoneda embedding C*alg₁ → Set^{cC*alg₁^{op}}.

- Generally, we can start with a physical system in any theoretical framework.
- For every space X ∈ CHaus, there should be defined a set M(X), namely the set of all possible measurements with outcomes in X.
- For every $f: X \rightarrow Y$ in CHaus, there should be defined a function

 $M(f): M(X) \to M(Y)$

which implements the idea of post-processing along f.

► Thus we obtain a functor *M* : CHaus → Set, the measurement functor describing the system.

Question

How much information about the system is contained in its measurement functor?

Question

How much information about the system is contained in its measurement functor?

- ► Consider the case of a quantum system described by a C*-algebra A.
- Then we write

$$X(A) := \mathsf{C}^*\mathsf{alg}_1(C(X), A)$$

for the value of the measurement functor associated to A on X.

- ► Notation in analogy with algebraic geometry: for X a scheme and A a commutative ring, X(A) is the set of points X over A.
- Our idea is the same, except: now A is fixed rather than X.
- For example, [-1,+1](A) is the set of self-adjoints x ∈ A with ||x|| ≤ 1. By scaling, we reconstruct all self-adjoints in A together with their norm!

- More generally, for every compact X ⊆ C, we can identify X(A) with the set of normal elements with spectrum in X.
- Applying an $f : (X \subseteq \mathbb{C}) \to (Y \subseteq \mathbb{C})$ is the usual functional calculus.
- ► Thus, our measurement functor -(A) : CHaus → Set generalizes functional calculus.
- ▶ In this spirit, we may also think of every $f \in X(A)$, represented by $f : C(X) \rightarrow A$, as a "generalized normal element".

The category of measurement functors is the functor cat Set^{CHaus}.

Question How does C*alg₁ relate to Set^{CHaus}?

Definition (van den Berg & Heunen '10)

A piecewise C*-algebra is a set A equipped with

- a reflexive and symmetric relation ⊥ ⊆ A × A. If α ⊥ β, we say that α and β commute;
- binary operations $+, \cdot : \blacksquare \to A$;
- a scalar multiplication $\cdot : \mathbb{C} \times A \rightarrow A$;
- distinguished elements $0, 1 \in A$;
- an involution $* : A \rightarrow A$;
- a norm $|| || : A \rightarrow \mathbb{R};$

such that every $C \subseteq A$ of pairwise commuting elements is contained in some $\overline{C} \subseteq A$ which is a commutative C*-algebra.

 Example: the normal elements of any C*-algebra form a piecewise C*-algebra.

- ▶ We have the category of piecewise C*-algebras pC*alg₁.
- We can still associate to every $A \in pC^*alg_1$ a measurement functor,

CHaus \rightarrow Set, $X \mapsto pC^*alg_1(C(X), A)$.

Thus we get $\mathsf{pC^*alg}_1 \to \mathsf{Set}^{\mathsf{CHaus}}.$

► By Gelfand duality, CHaus^{op} is again a full subcategory, so that this is equivalent to the restricted Yoneda embedding

$$\mathsf{pC}^*\mathsf{alg}_1 o \mathsf{Set}_1^{\mathsf{cC}^*\mathsf{alg}}.$$

Proposition

The functor $pC^*alg_1 \rightarrow Set^{CHaus}$ is fully faithful.

The proof uses the fact that $x, y \in \bigcirc(A)$ commute if and only if they are in the image of

$$(\bigcirc \times \bigcirc)(A) \longrightarrow \bigcirc(A) \times \bigcirc(A).$$

- ▶ Thus we try to understand the essential image of $pC^*alg_1 \rightarrow Set^{CHaus}$.
- Doing so results in a characterization and reconstruction of piecewise C*-algebras in terms of measurement functors.
- To this end, we will formulate a certain sheaf condition in several steps.

- A cone is a collection of morphisms {f_i : X → Y_i}_{i∈I} for some index set I.
- A cone is **effective-monic** if the diagram

$$X \longrightarrow \prod_{i \in I} Y_i \xrightarrow{\longrightarrow} \prod_{i,j \in I} (Y_i f_i \amalg f_j Y_j),$$

is an equalizer.

Example (Isbell '60, essentially)

For every X ∈ CHaus, the cone of all functions {X → □} is effective-monic, where □ := [0, 1]².

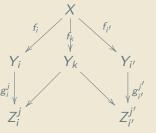
• The same is not true with [0, 1] in place of \Box .

Equivalently: points of X are in bijection with valuations f → ν(f) operating on functions f : X → □, which are consistent in the sense that ν(g ∘ f) = g(ν(f)) for all g : □ → □.

We also need a very technical additional condition:

Definition

An effective-monic cone $\{f_i : X \to Y_i\}_{i \in I}$ in CHaus is **directed** if for every $i \in I$ there is a cone $\{g_i^j : Y_i \to Z_i^j\}_{j \in J_i}$ which separates points, and such that for every $i, i' \in I$ and $j \in J_i, j' \in J_{i'}$ there is $k \in I$ and a diagram



• The effective-monic cone of all functions $\{X \to \Box\}$ is directed.

A measurement functor $M \in \text{Set}^{\text{CHaus}}$ is a **sheaf** if and only if for every directed effective-monic cone $\{f_i : X \to Y_i\}_{i \in I}$, also

$$M(X) \longrightarrow \prod_{i \in I} M(Y_i) \xrightarrow{\longrightarrow} \prod_{i,j \in I} M(Y_i |_{f_i} \amalg_{f_j} Y_j),$$

is an equalizer.

► The sheaf condition on {X → □} "explains" why measurements in the lab can be assumed to be (complex) numerical.

Theorem

The essential image of cC*alg₁ \rightarrow Set^{CHaus} consists of those measurement functors which satisfy the sheaf condition on **all** effective-monic cones.

We write $Sh(CHaus) \subseteq Set^{CHaus}$ for the full subcategory of measurement functors satisfying the sheaf condition on all directed effective-monic cones.

Theorem

- The measurement functor associated to every piecewise C*-algebra is a sheaf.
- ▶ The resulting functor $pC^*alg_1 \rightarrow Sh(CHaus)$ is fully faithful, with essential image given by those *M* for which

$$M(\Box) o M(\Box) imes M(\Box)$$

is injective.

- ► The injectivity condition says: for every two □-valued measurements, there is at most one joint measurement combining them.
- ▶ Open problem: is this condition necessary or automatically satisfied?

Thus we can answer the question:

Question How much information about the system is contained in its measurement functor?

The answer is: measurement functors satisfying the sheaf condition are the same thing as piecewise C*-algebras!

- ► However, piecewise C*-algebras only capture the commutative aspects of C*-algebra theory.
- In particular, we cannot reconstruct the multiplication of noncommuting elements, and not even the addition!
- ► From the physical perspective, what is missing is dynamics: for every h = h* ∈ A,

$$a\mapsto e^{-ith}\,a\,e^{ith}$$

is a 1-parameter group of inner automorphisms of A.

► From the physical perspective, what is missing is dynamics: for every observable h = h* ∈ A,

$$a \mapsto e^{-ith} a e^{ith}$$

is a 1-parameter group of inner automorphisms of A.

- ► This is one of the central features of quantum physics!
- Its construction proceeds in two steps:
 - exponentiate h. Being functional calculus, this is captured by M.
 - conjugating by the resulting unitary. This is not captured by M!
- Hence we axiomatize the action of inner automorphisms as an extra piece of structure.

An **almost C*-algebra** is an injective measurement sheaf M: CHaus \rightarrow Set together with a **self-action**, which is a map

 $\mathfrak{a}: M(S^1) \longrightarrow \operatorname{Aut}(M)$

such that if $u, v \in M(S^1)$ are jointly measurable, then

- $\mathfrak{a}(u)(v) = v$,
- $\mathfrak{a}(uv) = \mathfrak{a}(u)\mathfrak{a}(v).$
- Here, it no longer matters whether we work with piecewise C*-algebras or injective measurement sheaves.
- ► The first equation is related to Noether's theorem.
- ► Every C*-algebra carries the structure of an almost C*-algebra.

Problem

Is the category of almost C*-algebras equivalent to the category of C*-algebras?

This question has two parts:

- Is every almost C*-algebra is isomorphic to a C*-algebra? This is wide open.
- For A, B ∈ C*alg₁, is every almost *-homomorphism A → B already a *-homomorphism? Here, we know:

Theorem

If A is a von Neumann algebra, then every almost *-homomorphism $A \to B$ is a *-homomorphism.

Problem Is the category of almost C*-algebras equivalent to the category of C*-algebras?

- If the answer is positive, we have axioms for C*-algebras with clearer physical meaning.
- In particular, we would have the first reconstruction of infinite-dimensional quantum theory from (more) physical axioms.
- If the answer is negative, we can try to develop physical theories in terms of almost C*-algebras as alternatives to existing theories formulated in terms of C*-algebras. Could these be physically realistic? (Almost certainly not.)

Summary of proposed reconstruction

Roughly speaking, we have two kinds of axioms.

Measurements:

- ► Associated to every compact Hausdorff space X there is a set M(X), comprising all measurements on the system with outcomes in X.
- ► Associated to every continuous function f : X → Y, there is a post-processing or coarse-graining function M(f) : M(X) → M(Y).

Dynamics and Symmetry:

► Associated to every unitary u is an automorphism a(u), satisfying suitable conditions.

In combination with the measurements structure, this results in: associated to every observable is a 1-parameter family of automorphisms.

 \rightarrow Time evolution and other symmetries in physics.