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Commutative C*-subalgebras



Gelfand duality

The category of compact Hausdorf spaces and continuous functions is
dual to the category of commutative unital C*-algebras and unital
*-homomorphisms via the functor X — C(X).

Perspectives on Gelfand duality:
e trying to extend it to non-commutative C*-algebras;
e using it to define C*-algebras as ‘non-commutative’ topological
spaces;
e trying to exploit it to study non-commutative C*-algebras.
Consider a unital C*-algebra A. Then we define

C(A) ={C C A: C is a commutative unital C*-subalgebra of A},

which we order by inclusion.



Motivation from physics

e C*-algebras can be used to model quantum systems;

e Observables of a classical systems can be represented by continuous
functions on a topological space representing its phase space.

e Hence commutative C*-algebras can be used to model classical
systems.

e Commutative C*-subalgebras can be used to represent the ‘classical
snapshots’ of a quantum system.

Bohr: Can we reconstruct a quantum system if we know all its classical
pictures?
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Let A and B be C*-algebras such that C(A) = C(B). Then:

Proj(A) = Proj(B);
If Ais an AW*-algebra, then so is B. Moreover, given the unique

decomposition
A=A ® A, @ A, @ A,

where A is an AW*-algebra of type 7 (7 = I, 11, I, III), then
there exist AW*-algebras B, of type 7 (7 = I, I3, I, IIT) such that
B = By @ By, ® B, @© B,

such that Ay and By are *-isomorphic, and such that A, and B; are
Jordan isomorphic for 7 = II;, 1, ITI;

If Ais a W*-algebra, then so is B.



Projections and orthomodular
posets



Definition

An element p in a C*-algebra A satisfying p?> = p = p* is called a
projection. The set of projections is denoted by Proj(A).
Proj(A):

e can be ordered via p < q <= pqg = p;
e becomes an orthomodular poset if we define p~ =14 — p;

e often encodes much of the structure of A.



Commutativity

Let p and g be elements in an orthomodular poset P:

e p and g are orthogonal (p L q) if p < g*;
e p and g commute (pCq) if there are orthogonal er, e, e3 such that
p=e Ve, qg=eVes.

The set C(P) of all elements in P that commute with all elements is
called the center of P.

Let p, g € Proj(A). Then:

plLg <= pg=0;
pCq < pq = qp.

We have C(Proj(A)) = Proj(Z(A)).



Posets of Boolean subalgebras

Let B be a subset of an orthomodular poset P that contains 0 and 1,
and that is closed under joins, meets and the orthocomplementation.
Then all elements of B commute if and only if B is a Boolean algebra.

We call such a subset B a Boolean subalgebra of P.

Let P be an orthomodular poset. Then we denote its set of Boolean
subalgebras by B(P), which we order by inclusion.



Commutative AF-algebras




AF-algebras

A C*-algebra A is called approximately finite dimensional (AF) if there
is a directed set D of finite-dimensional C*-subalgebras of A such that
A=JD.

A commutative C*-algebra A is AF if and only if A= C*(Proj(A)) if
and only if its Gelfand spectrum is a Stone space.
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Posets of commutative AF-algebras

Let A be a C*-algebra. Then Car(A) is defined as the subposet of C(A)
whose elements are AF-algebras.

Let C € C(A) is an atom if and only if it is two dimensional.

Let C € C(A), then C € Car(A) if and only if C is the supremum of
some collection of atoms in C(A).
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The map Car(A) — B(Proj(A)), C — Proj(C) is an order
isomorphism with inverse B — C*(B).

Any orthomodular poset P of two or more elements can be
reconstructed from B(P).

Let A be a C*-algebra. Then we can reconstruct Proj(A) from Car(A),
hence also from C(A).
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AW#*-algebras




Definition of AW*-algebras

A C*-algebra A is called an AW*-algebra if

Proj(A) is a complete lattice;
every maximal commutative C*-subalgebra of A is an AF-algebra.
A C*-subalgebra B of A that is an AW*-algebra such that \/,, p; € B

(as calculated in A) for each {p;}ic; C Proj(B) is called an
AW*-subalgebra.

Any C*-subalgebra of B(H) is precisely a von Neumann algebra if
and only if it is an AW*-subalgebra of B(H);

Any commutative C*-algebra is an AW*-algebra if and only if its
Gelfand spectrum is extremally disconnected.

13



Commutative AW*-subalgebras

Let A be an AW*-algebra, and B a C*-algebra such that C(A) = C(B).
Then B is an AW*-algebra, too.

Let A be an AW*-algebra. Then we denote the poset of all
commutative AW*-subalgebras of A by A(A).

Two reasons to introduce this poset:

e Generalizing V(M), the poset of commutative von Neumann
subalgebras of a von Neumann algebra M;

e Connecting the C*-algebraic and the von Neumann algebraic

frameworks.
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The Jordan structure of a C*-algebra

Let A be a C*-algebra. Then the Jordan product on A is given by
aob= #. A *-preserving linear map ¢ : A — B between
C*-algebras is called a Jordan homomorphism if ¢(a o b) = ¢(a) o ¢(b)
for each a, b € A.

Let A and B be AW*-algebras. Then the following statements are
equivalent:

C(A)
CAF(A (B),
AA) ( )
Proj(A) = Proj(B);

There is a Jordan isomorphism ¢ : A — B.

Il

/—\

c(B )

IIZ

HZ
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Recognizing von Neumann algebras

Observations:

e Any von Neumann algebra M is an AW*-algebra with a separating
family {w;};e/ of states, i.e., w; : M — C is bounded, linear, and
lw|| = w(Im) =1, and for each non-zero self-adjoint a € M there is
some i € | such that w(a) # 0;

e Any Jordan isomorphism M — B is an isometry, so preserves states;

e Hence if M is a von Neumann algebra then B has a separating
family of states, too.

Proposition

Let M be a von Neumann algebra and B be a C*-algebra such that
C(M) = C(B). Then B is a von Neumann algebra.
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The structure of AW*-algebras

Let A be an AW*-algebra and p € Proj(A). Then p is called:

finite if for each a € pAp we have a*a = p if and only if aa* = p.
abelian if pAp is commutative;

central if p € Z(A) (or equivalently p € C(Proj(A))).

A central projection q is called the central cover of p if it is the least
central projection such that p < g. We call p faithful if C(p) = 1a.

Let p be a projection in an AW*-algebra A. Then

p is abelian if and only if g = p A C(q) for each g € Proj(A) such
that g < p;
p is finite if and only if | p C Proj(A) is a modular lattice.
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Type classification

Let A be an AW*-algebra. Then A is of

type [ if it has a faithful abelian projection; if A has a collection
{pi}ticy of faithful abelian projections that are mutually orthogonal
such that \/;, pi = 14, then A is called homogeneous of order |J|.

type Il if it has a faithful finite projection and 0 is the only abelian
projection. If 14 is a finite projection, then A is of type II;; if O is
the only finite central projection, then A is of type Il..

type I11'if O is the only finite projection.

For any AW*-algebra A there is a unique decomposition
A=A ® A @ An,. © Aur,

where A; is an AW*-algebra of type 7 (7 = I, 115, I, III).
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Preservation of types

Let A= P, Ai be a direct sum of AW*-algebras A;, and let B an
AW*-algebra such that Proj(A) = Proj(B). Then B =, , Bi, where
Proj(B;) = Proj(A).

Let A and B be AW*-algebras.

If A and B are both homogeneous of the same order and
Z(A) = Z(B), then A= B;
If A'is of type I, then it is isomorphic to ,.; A;, where each A; is

homogeneous.
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Let A and B be C*-algebras such that C(A) = C(B). Then:

Proj(A) = Proj(B);
If Ais an AW*-algebra, then so is B. Moreover, given the unique

decomposition
A=A ® A, @ A, @ A,

where A is an AW*-algebra of type 7 (7 = I, 11, I, III), then
there exist AW*-algebras B, of type 7 (7 = I, I3, I, IIT) such that

B = B @ By, ® B, ® B,

such that Ay and By are *-isomorphic, and such that A, and B; are
Jordan isomorphic for 7 = II;, 1, ITI;

If Ais a W*-algebra, then so is B.
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