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Commutative C*-subalgebras



Gelfand duality

Theorem

The category of compact Hausdorf spaces and continuous functions is

dual to the category of commutative unital C*-algebras and unital

*-homomorphisms via the functor X 7→ C (X ).

Perspectives on Gelfand duality:

• trying to extend it to non-commutative C*-algebras;

• using it to define C*-algebras as ‘non-commutative’ topological

spaces;

• trying to exploit it to study non-commutative C*-algebras.

Definition

Consider a unital C*-algebra A. Then we define

C(A) = {C ⊆ A : C is a commutative unital C*-subalgebra of A},

which we order by inclusion.
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Motivation from physics

• C*-algebras can be used to model quantum systems;

• Observables of a classical systems can be represented by continuous

functions on a topological space representing its phase space.

• Hence commutative C*-algebras can be used to model classical

systems.

• Commutative C*-subalgebras can be used to represent the ‘classical

snapshots’ of a quantum system.

Bohr: Can we reconstruct a quantum system if we know all its classical

pictures?
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Our goals

Theorem

Let A and B be C*-algebras such that C(A) ∼= C(B). Then:

(1) Proj(A) ∼= Proj(B);

(2) If A is an AW*-algebra, then so is B. Moreover, given the unique

decomposition

A = AI ⊕ AII1 ⊕ AII∞ ⊕ AIII,

where Aτ is an AW*-algebra of type τ (τ = I, II1, II∞, III), then

there exist AW*-algebras Bτ of type τ (τ = I, II1, II∞, III) such that

B ∼= BI ⊕ BII1 ⊕ BII∞ ⊕ BIII,

such that AI and BI are *-isomorphic, and such that Aτ and Bτ are

Jordan isomorphic for τ = II1, II∞, III;

(3) If A is a W*-algebra, then so is B.
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Projections and orthomodular

posets



Projections

Definition

An element p in a C*-algebra A satisfying p2 = p = p∗ is called a

projection. The set of projections is denoted by Proj(A).

Proj(A):

• can be ordered via p ≤ q ⇐⇒ pq = p;

• becomes an orthomodular poset if we define p⊥ = 1A − p;

• often encodes much of the structure of A.
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Commutativity

Let p and q be elements in an orthomodular poset P:

• p and q are orthogonal (p ⊥ q) if p ≤ q⊥;

• p and q commute (pCq) if there are orthogonal e1, e2, e3 such that

p = e1 ∨ e3, q = e2 ∨ e3.

The set C (P) of all elements in P that commute with all elements is

called the center of P.

Lemma

Let p, q ∈ Proj(A). Then:

• p ⊥ q ⇐⇒ pq = 0;

• pCq ⇐⇒ pq = qp.

We have C (Proj(A)) = Proj(Z (A)).
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Posets of Boolean subalgebras

Lemma

Let B be a subset of an orthomodular poset P that contains 0 and 1,

and that is closed under joins, meets and the orthocomplementation.

Then all elements of B commute if and only if B is a Boolean algebra.

We call such a subset B a Boolean subalgebra of P.

Definition

Let P be an orthomodular poset. Then we denote its set of Boolean

subalgebras by B(P), which we order by inclusion.
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Commutative AF-algebras



AF-algebras

Definition

A C*-algebra A is called approximately finite dimensional (AF) if there

is a directed set D of finite-dimensional C*-subalgebras of A such that

A =
⋃
D.

Lemma

A commutative C*-algebra A is AF if and only if A = C∗(Proj(A)) if

and only if its Gelfand spectrum is a Stone space.
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Posets of commutative AF-algebras

Definition

Let A be a C*-algebra. Then CAF(A) is defined as the subposet of C(A)

whose elements are AF-algebras.

Lemma (Hamhalter)

Let C ∈ C(A) is an atom if and only if it is two dimensional.

Proposition (Heunen-L)

Let C ∈ C(A), then C ∈ CAF(A) if and only if C is the supremum of

some collection of atoms in C(A).
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Projections

Theorem (Heunen-L)

The map CAF(A)→ B(Proj(A)), C 7→ Proj(C ) is an order

isomorphism with inverse B 7→ C∗(B).

Theorem (Harding-Heunen-L-Navara)

Any orthomodular poset P of two or more elements can be

reconstructed from B(P).

Corollary

Let A be a C*-algebra. Then we can reconstruct Proj(A) from CAF(A),

hence also from C(A).
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AW*-algebras



Definition of AW*-algebras

Definition

A C*-algebra A is called an AW*-algebra if

• Proj(A) is a complete lattice;

• every maximal commutative C*-subalgebra of A is an AF-algebra.

A C*-subalgebra B of A that is an AW*-algebra such that
∨

i∈I pi ∈ B

(as calculated in A) for each {pi}i∈I ⊆ Proj(B) is called an

AW*-subalgebra.

Examples

• Any C*-subalgebra of B(H) is precisely a von Neumann algebra if

and only if it is an AW*-subalgebra of B(H);

• Any commutative C*-algebra is an AW*-algebra if and only if its

Gelfand spectrum is extremally disconnected.
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Commutative AW*-subalgebras

Proposition

Let A be an AW*-algebra, and B a C*-algebra such that C(A) ∼= C(B).

Then B is an AW*-algebra, too.

Definition

Let A be an AW*-algebra. Then we denote the poset of all

commutative AW*-subalgebras of A by A(A).

Two reasons to introduce this poset:

• Generalizing V(M), the poset of commutative von Neumann

subalgebras of a von Neumann algebra M;

• Connecting the C*-algebraic and the von Neumann algebraic

frameworks.
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The Jordan structure of a C*-algebra

Definition

Let A be a C*-algebra. Then the Jordan product on A is given by

a ◦ b = ab+ba
2 . A *-preserving linear map ϕ : A→ B between

C*-algebras is called a Jordan homomorphism if ϕ(a ◦ b) = ϕ(a) ◦ ϕ(b)

for each a, b ∈ A.

Theorem

Let A and B be AW*-algebras. Then the following statements are

equivalent:

(1) C(A) ∼= C(B);

(2) CAF(A) ∼= CAF(B);

(3) A(A) ∼= A(B);

(4) Proj(A) ∼= Proj(B);

(5) There is a Jordan isomorphism ϕ : A→ B.
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Recognizing von Neumann algebras

Observations:

• Any von Neumann algebra M is an AW*-algebra with a separating

family {ωi}i∈I of states, i.e., ωi : M → C is bounded, linear, and

‖ω‖ = ω(1M) = 1, and for each non-zero self-adjoint a ∈ M there is

some i ∈ I such that ω(a) 6= 0;

• Any Jordan isomorphism M → B is an isometry, so preserves states;

• Hence if M is a von Neumann algebra then B has a separating

family of states, too.

Proposition

Let M be a von Neumann algebra and B be a C*-algebra such that

C(M) ∼= C(B). Then B is a von Neumann algebra.
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The structure of AW*-algebras

Definition

Let A be an AW*-algebra and p ∈ Proj(A). Then p is called:

• finite if for each a ∈ pAp we have a∗a = p if and only if aa∗ = p.

• abelian if pAp is commutative;

• central if p ∈ Z (A) (or equivalently p ∈ C (Proj(A))).

A central projection q is called the central cover of p if it is the least

central projection such that p ≤ q. We call p faithful if C (p) = 1A.

Proposition

Let p be a projection in an AW*-algebra A. Then

• p is abelian if and only if q = p ∧ C (q) for each q ∈ Proj(A) such

that q ≤ p;

• p is finite if and only if ↓ p ⊆ Proj(A) is a modular lattice.
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Type classification

Definition

Let A be an AW*-algebra. Then A is of

• type I if it has a faithful abelian projection; if A has a collection

{pi}i∈J of faithful abelian projections that are mutually orthogonal

such that
∨

i∈J pi = 1A, then A is called homogeneous of order |J|.
• type II if it has a faithful finite projection and 0 is the only abelian

projection. If 1A is a finite projection, then A is of type II1; if 0 is

the only finite central projection, then A is of type II∞.

• type III if 0 is the only finite projection.

For any AW*-algebra A there is a unique decomposition

A = AI ⊕ AII1 ⊕ AII∞ ⊕ AIII,

where Aτ is an AW*-algebra of type τ (τ = I, II1, II∞, III).
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Preservation of types

Proposition

Let A =
⊕

i∈I Ai be a direct sum of AW*-algebras Ai , and let B an

AW*-algebra such that Proj(A) ∼= Proj(B). Then B ∼=
⊕

i∈I Bi , where

Proj(Bi ) ∼= Proj(Ai ).

Theorem (Kaplansky)

Let A and B be AW*-algebras.

• If A and B are both homogeneous of the same order and

Z (A) ∼= Z (B), then A ∼= B;

• If A is of type I, then it is isomorphic to
⊕

i∈I Ai , where each Ai is

homogeneous.
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Summary

Theorem

Let A and B be C*-algebras such that C(A) ∼= C(B). Then:

(1) Proj(A) ∼= Proj(B);

(2) If A is an AW*-algebra, then so is B. Moreover, given the unique

decomposition

A = AI ⊕ AII1 ⊕ AII∞ ⊕ AIII,

where Aτ is an AW*-algebra of type τ (τ = I, II1, II∞, III), then

there exist AW*-algebras Bτ of type τ (τ = I, II1, II∞, III) such that

B ∼= BI ⊕ BII1 ⊕ BII∞ ⊕ BIII,

such that AI and BI are *-isomorphic, and such that Aτ and Bτ are

Jordan isomorphic for τ = II1, II∞, III;

(3) If A is a W*-algebra, then so is B.
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