Posets of Commutative C*-subalgebras

Combining Viewpoints in Quantum Theory

Bert Lindenhovius

Tulane University, New Orleans

Commutative C*-subalgebras

Gelfand duality

Theorem

The category of compact Hausdorf spaces and continuous functions is dual to the category of commutative unital C*-algebras and unital *-homomorphisms via the functor $X \mapsto C(X)$.

Perspectives on Gelfand duality:

- trying to extend it to non-commutative C*-algebras;
- using it to define C*-algebras as 'non-commutative' topological spaces;
- trying to exploit it to study non-commutative C*-algebras.

Definition

Consider a unital C*-algebra A. Then we define

 $C(A) = \{C \subseteq A : C \text{ is a commutative unital C*-subalgebra of } A\},\$

which we order by inclusion.

- C*-algebras can be used to model quantum systems;
- Observables of a classical systems can be represented by continuous functions on a topological space representing its phase space.
- Hence commutative C*-algebras can be used to model classical systems.
- Commutative C*-subalgebras can be used to represent the 'classical snapshots' of a quantum system.

Bohr: Can we reconstruct a quantum system if we know all its classical pictures?

Related research

- A. Döring, J. Harding, Abelian subalgebras and the Jordan structure of von Neumann algebras, arXiv:1009.4945v1 (2010).
- J. Hamhalter, Isomorphisms of ordered structures of abelian C*-subalgebras of C*-algebras, J. Math. Anal. Appl. 383: 391-399 (2011).
- J. Hamhalter, *Dye's Theorem and Gleason's Theorem for AW*-algebras*, J. of Math. Anal. Appl., **422** 1103–1115 (2015).
- J. Hamhalter, E. Turilova, *Structure of associative subalgebras of Jordan operator algebras*, The Quarterly Journal of Mathematics 64, 397408 (2013).
- C. Heunen, M. L. Reyes, Active lattices determine AW*-algebras, Journal of Mathematical Analysis and Applications 416:289-313 (2014).

 J. Hamhalter, Isomorphisms of ordered structures of abelian C*-subalgebras of C*-algebras, J. Math. Anal. Appl. 383: 391-399 (2011).

Theorem

Let A be a commutative C*-algebra and B be a C*-algebra such that $C(A) \cong C(B)$. Then $A \cong B$.

C. Heunen, M. L. Reyes, Active lattices determine AW*-algebras, Journal of Mathematical Analysis and Applications 416:289-313 (2014).

Applications

- J. Butterfield, C.J. Isham, A topos perspective on the Kochen-Specker theorem: I. Quantum states as generalized valuations, International Journal of Theoretical Physics 37 (11), 2669-2733 (1998).
- A. Döring, C.J. Isham, 'What is a thing?' Topos theory in the foundation of Physics. In: B. Coecke, ed., New Structures in Physics, Lecture Notes in Physics, Springer (2009).
- J. Hamhalter, E. Turilova, Orthogonal Measures on State Spaces and Context Structure of Quantum Theory, International Journal of Theoretical Physics, 55,7, 3353-3365 (2016)
- C. Heunen, N.P. Landsman, B. Spitters, *A Topos for Algebraic Quantum Theory*, Commun. Math. Phys. **291**: 63-110 (2009).

Our goals

Theorem

Let A and B be C*-algebras such that $\mathcal{C}(A) \cong \mathcal{C}(B)$. Then:

(1) $\operatorname{Proj}(A) \cong \operatorname{Proj}(B);$

(2) If A is an AW*-algebra, then so is B. Moreover, given the unique decomposition

$$A = A_{\mathrm{I}} \oplus A_{\mathrm{II}_{1}} \oplus A_{\mathrm{II}_{\infty}} \oplus A_{\mathrm{III}},$$

where A_{τ} is an AW*-algebra of type τ ($\tau = I, II_1, II_{\infty}, III$), then there exist AW*-algebras B_{τ} of type τ ($\tau = I, II_1, II_{\infty}, III$) such that

 $B \cong B_{\mathrm{I}} \oplus B_{\mathrm{II}_1} \oplus B_{\mathrm{II}_{\infty}} \oplus B_{\mathrm{III}},$

such that $A_{\rm I}$ and $B_{\rm I}$ are *-isomorphic, and such that A_{τ} and B_{τ} are Jordan isomorphic for $\tau = {\rm II}_1, {\rm II}_{\infty}, {\rm III}$;

(3) If A is a W*-algebra, then so is B.

Projections and orthomodular posets

An element p in a C*-algebra A satisfying $p^2 = p = p^*$ is called a *projection*. The set of projections is denoted by Proj(A).

 $\operatorname{Proj}(A)$:

- can be ordered via $p \leq q \iff pq = p$;
- becomes an orthomodular poset if we define $p^{\perp} = 1_A p$;
- often encodes much of the structure of A.

Let p and q be elements in an orthomodular poset P:

- p and q are orthogonal $(p \perp q)$ if $p \leq q^{\perp}$;
- p and q commute (pCq) if there are orthogonal e_1, e_2, e_3 such that $p = e_1 \lor e_3, q = e_2 \lor e_3$.

The set C(P) of all elements in P that commute with all elements is called the *center* of P.

Lemma

Let $p, q \in \operatorname{Proj}(A)$. Then:

•
$$p \perp q \iff pq = 0;$$

•
$$pCq \iff pq = qp$$
.

We have $C(\operatorname{Proj}(A)) = \operatorname{Proj}(Z(A))$.

Lemma

Let B be a subset of an orthomodular poset P that contains 0 and 1, and that is closed under joins, meets and the orthocomplementation. Then all elements of B commute if and only if B is a Boolean algebra.

We call such a subset B a *Boolean subalgebra* of P.

Definition

Let P be an orthomodular poset. Then we denote its set of Boolean subalgebras by $\mathcal{B}(P)$, which we order by inclusion.

Commutative AF-algebras

A C*-algebra A is called *approximately finite dimensional* (AF) if there is a directed set \mathcal{D} of finite-dimensional C*-subalgebras of A such that $A = \overline{\bigcup \mathcal{D}}$.

Lemma

A commutative C*-algebra A is AF if and only if $A = C^*(Proj(A))$ if and only if its Gelfand spectrum is a Stone space.

Let A be a C*-algebra. Then $C_{AF}(A)$ is defined as the subposet of C(A) whose elements are AF-algebras.

Lemma (Hamhalter)

Let $C \in C(A)$ is an atom if and only if it is two dimensional.

Proposition (Heunen-L)

Let $C \in C(A)$, then $C \in C_{AF}(A)$ if and only if C is the supremum of some collection of atoms in C(A).

Theorem (Heunen-L)

The map $\mathcal{C}_{AF}(A) \to \mathcal{B}(\operatorname{Proj}(A))$, $C \mapsto \operatorname{Proj}(C)$ is an order isomorphism with inverse $B \mapsto C^*(B)$.

Theorem (Harding-Heunen-L-Navara)

Any orthomodular poset P of two or more elements can be reconstructed from $\mathcal{B}(P)$.

Corollary

Let A be a C*-algebra. Then we can reconstruct $\operatorname{Proj}(A)$ from $\mathcal{C}_{AF}(A)$, hence also from $\mathcal{C}(A)$.

AW*-algebras

Definition of AW*-algebras

Definition

A C*-algebra A is called an AW*-algebra if

- $\operatorname{Proj}(A)$ is a complete lattice;
- every maximal commutative C*-subalgebra of A is an AF-algebra.

A C*-subalgebra B of A that is an AW*-algebra such that $\bigvee_{i \in I} p_i \in B$ (as calculated in A) for each $\{p_i\}_{i \in I} \subseteq \operatorname{Proj}(B)$ is called an AW*-subalgebra.

Examples

- Any C*-subalgebra of B(H) is precisely a von Neumann algebra if and only if it is an AW*-subalgebra of B(H);
- Any commutative C*-algebra is an AW*-algebra if and only if its Gelfand spectrum is extremally disconnected.

Proposition

Let A be an AW*-algebra, and B a C*-algebra such that $C(A) \cong C(B)$. Then B is an AW*-algebra, too.

Definition

Let A be an AW*-algebra. Then we denote the poset of all commutative AW*-subalgebras of A by $\mathcal{A}(A)$.

Two reasons to introduce this poset:

- Generalizing V(M), the poset of commutative von Neumann subalgebras of a von Neumann algebra M;
- Connecting the C*-algebraic and the von Neumann algebraic frameworks.

Let A be a C*-algebra. Then the Jordan product on A is given by $a \circ b = \frac{ab+ba}{2}$. A *-preserving linear map $\varphi : A \to B$ between C*-algebras is called a Jordan homomorphism if $\varphi(a \circ b) = \varphi(a) \circ \varphi(b)$ for each $a, b \in A$.

Theorem

Let A and B be AW*-algebras. Then the following statements are equivalent:

- (1) $\mathcal{C}(A) \cong \mathcal{C}(B);$
- (2) $\mathcal{C}_{AF}(A) \cong \mathcal{C}_{AF}(B);$
- (3) $\mathcal{A}(A) \cong \mathcal{A}(B);$
- (4) $\operatorname{Proj}(A) \cong \operatorname{Proj}(B);$

(5) There is a Jordan isomorphism $\varphi : A \to B$.

Observations:

- Any von Neumann algebra *M* is an AW*-algebra with a separating family {ω_i}_{i∈I} of states, i.e., ω_i : *M* → C is bounded, linear, and ||ω|| = ω(1_M) = 1, and for each non-zero self-adjoint a ∈ M there is some i ∈ I such that ω(a) ≠ 0;
- Any Jordan isomorphism $M \rightarrow B$ is an isometry, so preserves states;
- Hence if *M* is a von Neumann algebra then *B* has a separating family of states, too.

Proposition

Let *M* be a von Neumann algebra and *B* be a C*-algebra such that $C(M) \cong C(B)$. Then *B* is a von Neumann algebra.

Let A be an AW*-algebra and $p \in Proj(A)$. Then p is called:

- *finite* if for each $a \in pAp$ we have $a^*a = p$ if and only if $aa^* = p$.
- abelian if pAp is commutative;
- central if $p \in Z(A)$ (or equivalently $p \in C(\operatorname{Proj}(A))$).

A central projection q is called the *central cover* of p if it is the least central projection such that $p \leq q$. We call p faithful if $C(p) = 1_A$.

Proposition

Let p be a projection in an AW*-algebra A. Then

- p is abelian if and only if q = p ∧ C(q) for each q ∈ Proj(A) such that q ≤ p;
- p is finite if and only if $\downarrow p \subseteq \operatorname{Proj}(A)$ is a modular lattice.

Type classification

Definition

Let A be an AW*-algebra. Then A is of

- type I if it has a faithful abelian projection; if A has a collection
 {p_i}_{i∈J} of faithful abelian projections that are mutually orthogonal
 such that V_{i∈J} p_i = 1_A, then A is called homogeneous of order |J|.
- type II if it has a faithful finite projection and 0 is the only abelian projection. If 1_A is a finite projection, then A is of type II₁; if 0 is the only finite central projection, then A is of type II_∞.

For any AW*-algebra A there is a unique decomposition

$$A = A_{\mathrm{I}} \oplus A_{\mathrm{II}_{1}} \oplus A_{\mathrm{II}_{\infty}} \oplus A_{\mathrm{III}},$$

where A_{τ} is an AW*-algebra of type τ ($\tau = I, II_1, II_{\infty}, III$).

Proposition

Let $A = \bigoplus_{i \in I} A_i$ be a direct sum of AW*-algebras A_i , and let B an AW*-algebra such that $\operatorname{Proj}(A) \cong \operatorname{Proj}(B)$. Then $B \cong \bigoplus_{i \in I} B_i$, where $\operatorname{Proj}(B_i) \cong \operatorname{Proj}(A_i)$.

Theorem (Kaplansky)

Let A and B be AW*-algebras.

- If A and B are both homogeneous of the same order and $Z(A) \cong Z(B)$, then $A \cong B$;
- If A is of type I, then it is isomorphic to ⊕_{i∈I} A_i, where each A_i is homogeneous.

Summary

Theorem

Let A and B be C*-algebras such that $\mathcal{C}(A) \cong \mathcal{C}(B)$. Then:

(1) $\operatorname{Proj}(A) \cong \operatorname{Proj}(B);$

(2) If A is an AW*-algebra, then so is B. Moreover, given the unique decomposition

$$A = A_{\mathrm{I}} \oplus A_{\mathrm{II}_{1}} \oplus A_{\mathrm{II}_{\infty}} \oplus A_{\mathrm{III}},$$

where A_{τ} is an AW*-algebra of type τ ($\tau = I, II_1, II_{\infty}, III$), then there exist AW*-algebras B_{τ} of type τ ($\tau = I, II_1, II_{\infty}, III$) such that

 $B \cong B_{\mathrm{I}} \oplus B_{\mathrm{II}_1} \oplus B_{\mathrm{II}_{\infty}} \oplus B_{\mathrm{III}},$

such that $A_{\rm I}$ and $B_{\rm I}$ are *-isomorphic, and such that A_{τ} and B_{τ} are Jordan isomorphic for $\tau = {\rm II}_1, {\rm II}_{\infty}, {\rm III}$;

(3) If A is a W*-algebra, then so is B.

- I. Kaplansky, Projections in Banach Algebras, Annals of Mathematics, Second Series, Vol. 53, No. 2, pp. 235-249 (1951).
- I. Kaplansky, *Algebras of Type I*, Annals of Mathematics, Second Series, Vol. 56, No. 3, pp. 460-472 (1952).
- M. Ozawa, A classification of type I AW* algebras and Boolean valued analysis, J. Math. Soc. Japan Volume 36, Number 4, 589-608 (1984).
- K. Saito, J.D.M. Wright, On Defining AW*-algebras and Rickart C*-algebras, Q. J. Math. 66, no. 3, 979989 (2015).