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Grothendieck’s inequality in matrix
form I

Theorem (Lindenstrauss-Pelczyński (1968))
Let F ∈ {R,C} and m, n ∈ N. Then there exists a universal
constant K > 0 - not depending on m and n - such that for all
matrices A =

(
aij
)
∈M(m× n;F), for all F-Hilbert spaces H, for

all unit vectors u1, . . . , um, v1, . . . , vn ∈ SH the following inequality
is satisfied:∣∣∣ m∑

i=1

n∑
j=1

aij〈ui, vj〉H
∣∣∣ ≤ K max

{∣∣∣ m∑
i=1

n∑
j=1

aijpiqj

∣∣∣ : pi, qj ∈ {−1, 1}
}
.

The smallest possible value of the corresponding constant K is
denoted by KF

G. It is called Grothendieck’s constant. Computing
the exact numerical value of this constant is an open problem
(unsolved since 1953)!
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Grothendieck’s inequality in matrix
form II

Theorem (R. E. Rietz (1974), H. Niemi (1983))
Let F ∈ {R,C} and H be an arbitrary Hilbert space over F. Let
n ∈ N. Let KF

GH denote the Grothendieck constant, derived from
Grothendieck’s inequality “restricted” to the set of all positive
semidefinite n× n-matrices over F. Then

KR
GH =

π

2
and KC

GH =
4
π
.

From now on are going to consider the real case (i. e., F = R)
only. Nevertheless, we allow an unrestricted use of all matrices
A ∈M(m× n;R) for any m, n ∈ N in GT.
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Grothendieck’s inequality in matrix
form III

Until present the following encapsulation of KR
G holds, primarily

due to R. E. Rietz (1974), J. L. Krivine (1977), and most
recently, M. Braverman, K. Makarychev, Y. Makarychev, and A.
Naor (4-author paper from 2011, available on the arXiv):

1, 676 < KR
G

(!)
<

π

2 ln(1 +
√

2)
≈ 1, 782 .

Screening these numbers we might be tempted to guess the
following

Conjecture
Is KR

G =
√
π ≈ 1, 772?
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Grothendieck’s inequality rewritten I

By transforming Grothendieck’s inequality into an equivalent
inequality between traces of matrix products (respectively
Hilbert-Schmidt inner products) we are lead to a surprising
interpretation which reveals deep links to combinatorial (binary)
optimisation, semidefinite programming (SDP) and multivariate
statistics, built on suitable non-linear mappings between
correlation matrices.

We will sketch this approach which might lead to a constructive
improvement of Krivine’s upper bound π

2 ln(1+
√

2)
. At least it also

can be reproduced in this approach.
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Grothendieck’s inequality rewritten II
Let m, n ∈ N,A ∈M(m× n;R), u := (u1, . . . , um)> ∈ Sm

H and
v := (v1, . . . , vn)> ∈ Sn

H be given, where SH := {w ∈ H : ‖w‖ = 1}
denotes the unit sphere in H.

Firstly, note that

m∑
i=1

n∑
j=1

aij〈ui, vj〉H = tr
(
A> ΓH(u, v)

)
= 〈A,ΓH(u, v)〉,

is precisely the Hilbert-Schmidt inner product (or the Frobenius
inner product) of the matrices A ∈M(m× n;R) and
ΓH(u, v) ∈M(m× n;R), where

ΓH(u, v) :=


〈u1, v1〉H 〈u1, v2〉H . . . 〈u1, vn〉H
〈u2, v1〉H 〈u2, v2〉H . . . 〈u2, vn〉H

...
...

...
...

〈um, v1〉H 〈um, v2〉H . . . 〈um, vn〉H

 .
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Grothendieck’s inequality rewritten III

Let m, n ∈ N,A ∈M(m× n;R), p := (p1, . . . , pm)> ∈
(
S0
)m and

q := (q1, . . . , qn)> ∈
(
S0
)n be given, where S0 := {−1, 1}

denotes the unit “sphere” in R = R0+1.
Similarly as before, we obtain

m∑
i=1

n∑
j=1

aijpiqj = tr
(
A> ΓR(p, q)

)
= 〈A,ΓR(p, q)〉,

where now

ΓR(p, q) := pq> =


±1 ∓1 . . . ±1
∓1 ∓1 . . . ∓1
...

...
...

...
±1 ∓1 . . . ±1

 .
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors
u1, u2, . . . , um, v1, v2, . . . , vn ∈ H and represent them as


〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vn〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vn〉

...
...

...
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉


Does this matrix look familiar to you?
It is a part of something larger...
Namely:
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Block matrix representation I




〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vn〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vn〉

...
...

...
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉



〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vn〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vn〉

...
...

...
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉


T


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Block matrix representation I



〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vn〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vn〉

...
...

...
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉
〈u1, v1〉 〈u2, v1〉 . . . 〈um, v1〉
〈u1, v2〉 〈u2, v2〉 . . . 〈um, v2〉

...
...

...
...

〈u1, vn〉 〈u2, vn〉 . . . 〈um, vn〉


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Block matrix representation I



〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vn〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vn〉

...
...

...
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉
〈v1, u1〉 〈v1, u2〉 . . . 〈v1, um〉
〈v2, u1〉 〈v2, u2〉 . . . 〈v2, um〉

...
...

...
...

〈vn, u1〉 〈vn, u2〉 . . . 〈vn, um〉


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Block matrix representation II



〈u1, u1〉 〈u1, u2〉 . . . 〈u1, um〉
〈u2, u1〉 〈u2, u2〉 . . . 〈u2, um〉

...
...

. . .
...

〈um, u1〉 〈um, u2〉 . . . 〈um, um〉

〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vn〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vn〉

...
...

. . .
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉
〈v1, u1〉 〈v1, u2〉 . . . 〈v1, um〉
〈v2, u1〉 〈v2, u2〉 . . . 〈v2, um〉

...
...

...
...

〈vn, u1〉 〈vn, u2〉 . . . 〈vn, um〉

〈v1, v1〉 〈v1, v2〉 . . . 〈v1, vn〉
〈v2, v1〉 〈v2, v2〉 . . . 〈v2, vn〉

...
...

. . .
...

〈vn, v1〉 〈vm, v2〉 . . . 〈vn, vn〉


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Block matrix representation III



1 〈u1, u2〉 . . . 〈u1, um〉
〈u2, u1〉 1 . . . 〈u2, um〉

...
...

. . .
...

〈um, u1〉 〈um, u2〉 . . . 1

〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vn〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vn〉

...
...

. . .
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉
〈v1, u1〉 〈v1, u2〉 . . . 〈v1, um〉
〈v2, u1〉 〈v2, u2〉 . . . 〈v2, um〉

...
...

...
...

〈vn, u1〉 〈vn, u2〉 . . . 〈vn, um〉

1 〈v1, v2〉 . . . 〈v1, vn〉
〈v2, v1〉 1 . . . 〈v2, vn〉

...
...

. . .
...

〈vn, v1〉 〈vm, v2〉 . . . 1


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A refresher of a few definitions I

Let n ∈ N. We put

PSD(n;R) := {S : S ∈M(n× n;R) and S is positive semidefinite}.

Recall that PSD(n;R) is a closed convex cone which (by
definition!) consists of symmetric matrices only.
Moreover, we consider the set

C(n;R) :=
{

S ∈ PSD(n;R) such that Sii = 1 for all i ∈ [n]
}
.
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A refresher of a few definitions II

Let d, k ∈ N and (H, 〈·, ·〉) be an arbitrary d-dimensional Hilbert
space (i. e, H = ld2). Let w1,w2, . . . ,wk ∈ H. Put
w := (w1, . . . ,wk)

> ∈ Hk and S :=
(
w1 | w2 | . . . | wk

)
∈

M(d × k;R). The matrix ΓH(w,w) ∈ PSD(k;R), defined as

ΓH(w,w)ij := 〈wi,wj〉 =
(
S>S

)
ij

(
i, j ∈ [k] := {1, 2, . . . , k}

)
is called Gram matrix of the vectors w1, . . . ,wk ∈ H.

Observe that 
〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vn〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vn〉

...
...

...
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉


is not a Gram matrix!
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A refresher of a few definitions III
Let n ∈ N. Fix a probability space

(
Ω,F ,P

)
and let

ξ := (ξ1, ξ2, . . . , ξn)> : Ω −→ Rn be a random vector. Let
µ := (µ1, µ2, . . . , µn)> ∈ Rn and C ∈ PSD(n;R).

Recall that ξ is an n-dimensional Gaussian random vector with
respect to the “parameters” µ and C (short: ξ ∼ Nn(µ,C)) if and
only if for all a ∈ Rn there exists ηa ∼ N1(0, 1) such that

〈a, ξ〉 =
n∑

i=1

aiξi = 〈a, µ〉+
√
〈a,Ca〉 ηa

Note that we don’t require here that C is invertible! Following
Feller, the matrix V(ξ) defined as

V(ξ)ij := E[ξiξj]− E[ξi]E[ξj]
(!)
= Cij

(
i, j ∈ [n]

)
is known as the variance matrix of the Gaussian random vector
ξ.
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Structure of correlation matrices I

Corollary
Let n ∈ N and Σ =

(
σij
)
∈M(n× n;R). TFAE:

(i) Σ ∈ C(n;R).
(ii) Σ = Γln2(x, x) for some x = (x1, . . . , xn)> ∈

(
Sn−1

)n.
(iii) σij = cos(ϕij) for some ϕij ∈ [0, π] for all i, j ∈ [n]. Thereby,

ϕii = 0 for all i ∈ [n].
(iv) Σ = V(ξ) is a correlation matrix, induced by some

n-dimensional Gaussian random vector ξ ∼ Nn(0,Σ).
In particular, condition (i) implies that σij ∈ [−1, 1] for all i, j ∈ [n].

26 / 54



Structure of correlation matrices I

Corollary
Let n ∈ N and Σ =

(
σij
)
∈M(n× n;R). TFAE:

(i) Σ ∈ C(n;R).

(ii) Σ = Γln2(x, x) for some x = (x1, . . . , xn)> ∈
(
Sn−1

)n.
(iii) σij = cos(ϕij) for some ϕij ∈ [0, π] for all i, j ∈ [n]. Thereby,

ϕii = 0 for all i ∈ [n].
(iv) Σ = V(ξ) is a correlation matrix, induced by some

n-dimensional Gaussian random vector ξ ∼ Nn(0,Σ).
In particular, condition (i) implies that σij ∈ [−1, 1] for all i, j ∈ [n].

26 / 54



Structure of correlation matrices I

Corollary
Let n ∈ N and Σ =

(
σij
)
∈M(n× n;R). TFAE:

(i) Σ ∈ C(n;R).
(ii) Σ = Γln2(x, x) for some x = (x1, . . . , xn)> ∈

(
Sn−1

)n.

(iii) σij = cos(ϕij) for some ϕij ∈ [0, π] for all i, j ∈ [n]. Thereby,
ϕii = 0 for all i ∈ [n].

(iv) Σ = V(ξ) is a correlation matrix, induced by some
n-dimensional Gaussian random vector ξ ∼ Nn(0,Σ).

In particular, condition (i) implies that σij ∈ [−1, 1] for all i, j ∈ [n].

26 / 54



Structure of correlation matrices I

Corollary
Let n ∈ N and Σ =

(
σij
)
∈M(n× n;R). TFAE:

(i) Σ ∈ C(n;R).
(ii) Σ = Γln2(x, x) for some x = (x1, . . . , xn)> ∈

(
Sn−1

)n.
(iii) σij = cos(ϕij) for some ϕij ∈ [0, π] for all i, j ∈ [n]. Thereby,

ϕii = 0 for all i ∈ [n].

(iv) Σ = V(ξ) is a correlation matrix, induced by some
n-dimensional Gaussian random vector ξ ∼ Nn(0,Σ).

In particular, condition (i) implies that σij ∈ [−1, 1] for all i, j ∈ [n].

26 / 54



Structure of correlation matrices I

Corollary
Let n ∈ N and Σ =

(
σij
)
∈M(n× n;R). TFAE:

(i) Σ ∈ C(n;R).
(ii) Σ = Γln2(x, x) for some x = (x1, . . . , xn)> ∈

(
Sn−1

)n.
(iii) σij = cos(ϕij) for some ϕij ∈ [0, π] for all i, j ∈ [n]. Thereby,

ϕii = 0 for all i ∈ [n].
(iv) Σ = V(ξ) is a correlation matrix, induced by some

n-dimensional Gaussian random vector ξ ∼ Nn(0,Σ).

In particular, condition (i) implies that σij ∈ [−1, 1] for all i, j ∈ [n].

26 / 54



Structure of correlation matrices I

Corollary
Let n ∈ N and Σ =

(
σij
)
∈M(n× n;R). TFAE:

(i) Σ ∈ C(n;R).
(ii) Σ = Γln2(x, x) for some x = (x1, . . . , xn)> ∈

(
Sn−1

)n.
(iii) σij = cos(ϕij) for some ϕij ∈ [0, π] for all i, j ∈ [n]. Thereby,

ϕii = 0 for all i ∈ [n].
(iv) Σ = V(ξ) is a correlation matrix, induced by some

n-dimensional Gaussian random vector ξ ∼ Nn(0,Σ).
In particular, condition (i) implies that σij ∈ [−1, 1] for all i, j ∈ [n].

26 / 54



Structure of correlation matrices II

Observation
Let k ∈ N. Then the sets

{
S : S = xx> for some x ∈ {−1, 1}k

}
and

{
Θ : Θ ∈ C(k;R) and rk(Θ) = 1

}
coincide.

Proposition (K. R. Parthasarathy (2002))
Let k ∈ N. C(k;R) is a compact and convex subset of the
k2-dimensional vector space M(k × k;R). Any k × k-correlation
matrix of rank 1 is an extremal point of the set C(k;R).
In particular, the (finite) set of all k × k-correlation matrices of
rank 1 is not convex.
Let k ∈ N. Put

C1(k;R) :=
{

Θ : Θ ∈ C(k;R) and rk(Θ) = 1
}
.
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Canonical block injection of A

A naturally appearing question is the following:

Having gained - important - additional structure by “enlarging”
the m× n-matrix ΓH(u, v) to a (m + n)× (m + n)-correlation
matrix, how could this gained information be used to rewrite
Grothendieck’s inequality accordingly? To answer this question,
let us also “embed” the m× n-matrix A suitably!

Definition
Let m, n ∈ N and A ∈M(m× n;R) arbitrary. Put

Â :=
1
2

(
0 A

A> 0

)
Let us call M((m + n)× (m + n);R) 3 Â the canonical block
injection of A.
Observe that Â is symmetric, implying that Â = Â>.
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Â :=
1
2

(
0 A

A> 0

)
Let us call M((m + n)× (m + n);R) 3 Â the canonical block
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Observe that Â is symmetric, implying that Â = Â>.
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A further equivalent rewriting of GT I

Proposition
Let H be an arbitrary Hilbert space over R. Let m, n ∈ N and
A =

(
aij
)
∈M(m× n;R). Let K > 0. TFAE:

(i)

sup
(u,v)∈Sm

H×Sn
H

∣∣∣ m∑
i=1

n∑
j=1

aij〈ui, vj〉H
∣∣∣ ≤ K max

(p,q)∈{−1,1}m×{−1,1}n

∣∣∣ m∑
i=1

n∑
j=1

aijpiqj

∣∣∣ .
(ii)

sup
Σ∈C(m+n;R)

|〈Â,Σ〉| ≤ K max
Θ∈C(m+n;R)

rk(Θ)=1

|〈Â,Θ〉| .
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|〈Â,Θ〉| .

29 / 54



A further equivalent rewriting of GT I

Proposition
Let H be an arbitrary Hilbert space over R. Let m, n ∈ N and
A =

(
aij
)
∈M(m× n;R). Let K > 0. TFAE:

(i)

sup
(u,v)∈Sm

H×Sn
H

∣∣∣ m∑
i=1

n∑
j=1

aij〈ui, vj〉H
∣∣∣ ≤ K max

(p,q)∈{−1,1}m×{−1,1}n

∣∣∣ m∑
i=1

n∑
j=1

aijpiqj

∣∣∣ .
(ii)

sup
Σ∈C(m+n;R)
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|〈Â,Θ〉| .

29 / 54



A further equivalent rewriting of GT II

Proposition
Let H be an arbitrary Hilbert space over R. Let m, n ∈ N and
A =

(
aij
)
∈M(m× n;R). Let K > 0. TFAE:

(i)

max
(u,v)∈Sm

H×Sn
H

∣∣∣ m∑
i=1

n∑
j=1

aij〈ui, vj〉H
∣∣∣ ≤ K max

(p,q)∈{−1,1}m×{−1,1}n

∣∣∣ m∑
i=1

n∑
j=1

aijpiqj

∣∣∣ .
(ii)

max
Σ∈C(m+n;R)

|〈Â,Σ〉| ≤ K max
Θ∈C1(m+n;R)

|〈Â,Θ〉| .

We don’t know whether condition (ii) holds for all matrices in
M((m + n)× (m + n);R).
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M((m + n)× (m + n);R).
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GT versus NP-hard optimisation

Observation
On the left side of GT: a convex conic optimisation problem
(since it is SDP) and hence of polynomial worst-case
complexity (P)):

max
Σ∈C(m+n;R)

|〈Â,Σ〉|

On the right side: an NP-hard, non-convex combinatorial
(Boolean) optimisation problem:

max
Θ∈C(m+n;R)

rk(Θ)=1

|〈Â,Θ〉|

Thus, Grothendieck’s constant KR
G is precisely the “integrality

gap”; i. e., the maximum ratio between the solution quality of
the NP-hard Boolean optimisation on the right side of GT and
of its SDP relaxation on the left side!
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|〈Â,Θ〉|

Thus, Grothendieck’s constant KR
G is precisely the “integrality

gap”; i. e., the maximum ratio between the solution quality of
the NP-hard Boolean optimisation on the right side of GT and
of its SDP relaxation on the left side!

31 / 54



1 A very short glimpse at A. Grothendieck’s work in functional
analysis

2 Grothendieck’s inequality in matrix formulation

3 Grothendieck’s inequality rewritten

4 Grothendieck’s inequality and its relation to non-locality in
quantum mechanics

5 Towards a determination of Grothendieck’s constant KR
G
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Modelling quantum correlation I
Following Tsirelson’s approach we consider two sets, the set of
all “classical” (local) (m× n)-cross-correlation matrices and the
set of all (m× n)-quantum correlation matrices:

(i) Let (Ω,F ,P) be a (Kolmogorovian) probability space. Let
A =

(
aij
)
∈M(m× n;R). A ∈ Cloc(m× n;R) iff

aij = EP
[
XiYj

]
, where Xi,Yj : Ω −→ [−1, 1] are random

variables - all defined on the same given probability space
(Ω,F ,P).

(ii) Let A =
(
aij
)
∈M(m× n;R). A ∈ QC(m× n;R) iff there are

k, l ∈ N, a density matrix ρ on B
(
Hk,l
)
, where

Hk,l := Ck ⊗Cl, and linear operators Ai ∈ B
(
Ck
)
, Bj ∈ B

(
Cl
)

such that ‖Ai‖ ≤ 1, ‖Bj‖ ≤ 1 and

aij = 〈ρ,Ai⊗Bj〉 = tr
(
ρ(Ai⊗Bj)

)
= tr

(
ρ(Ai⊗ Id(l))(Id(k)⊗Bj)

)
for all (i, j) ∈ [m]× [n].

33 / 54



Modelling quantum correlation I
Following Tsirelson’s approach we consider two sets, the set of
all “classical” (local) (m× n)-cross-correlation matrices and the
set of all (m× n)-quantum correlation matrices:

(i) Let (Ω,F ,P) be a (Kolmogorovian) probability space. Let
A =

(
aij
)
∈M(m× n;R). A ∈ Cloc(m× n;R) iff

aij = EP
[
XiYj

]
, where Xi,Yj : Ω −→ [−1, 1] are random

variables - all defined on the same given probability space
(Ω,F ,P).

(ii) Let A =
(
aij
)
∈M(m× n;R). A ∈ QC(m× n;R) iff there are

k, l ∈ N, a density matrix ρ on B
(
Hk,l
)
, where

Hk,l := Ck ⊗Cl, and linear operators Ai ∈ B
(
Ck
)
, Bj ∈ B

(
Cl
)

such that ‖Ai‖ ≤ 1, ‖Bj‖ ≤ 1 and

aij = 〈ρ,Ai⊗Bj〉 = tr
(
ρ(Ai⊗Bj)

)
= tr

(
ρ(Ai⊗ Id(l))(Id(k)⊗Bj)

)
for all (i, j) ∈ [m]× [n].

33 / 54



Modelling quantum correlation I
Following Tsirelson’s approach we consider two sets, the set of
all “classical” (local) (m× n)-cross-correlation matrices and the
set of all (m× n)-quantum correlation matrices:

(i) Let (Ω,F ,P) be a (Kolmogorovian) probability space. Let
A =

(
aij
)
∈M(m× n;R). A ∈ Cloc(m× n;R) iff

aij = EP
[
XiYj

]
, where Xi,Yj : Ω −→ [−1, 1] are random

variables - all defined on the same given probability space
(Ω,F ,P).

(ii) Let A =
(
aij
)
∈M(m× n;R). A ∈ QC(m× n;R) iff there are

k, l ∈ N, a density matrix ρ on B
(
Hk,l
)
, where

Hk,l := Ck ⊗Cl, and linear operators Ai ∈ B
(
Ck
)
, Bj ∈ B

(
Cl
)

such that ‖Ai‖ ≤ 1, ‖Bj‖ ≤ 1 and

aij = 〈ρ,Ai⊗Bj〉 = tr
(
ρ(Ai⊗Bj)

)
= tr

(
ρ(Ai⊗ Id(l))(Id(k)⊗Bj)

)
for all (i, j) ∈ [m]× [n].

33 / 54



Modelling quantum correlation II

Is there a link between QC(m× n;R) and the left side of GT?

Theorem (Tsirelson (1987, 1993))
Let A =

(
aij
)
∈M(m× n;R). TFAE:

(i) A ∈ QC(m× n;R).
(ii) A = Γlk2

(u, v) for some k ∈ N and some u ∈
(
Sk−1

)m and
v ∈

(
Sk−1

)n.
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Modelling quantum correlation III

Γlk2
(u, v) =


〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vn〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vn〉

...
...

...
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉



Γlk2
(u, v) = UV is the product of the matrices U : lk2 −→ lm∞ and

V : ln1 −→ lk2, where

V :=
(
v1 | v2 | . . . | vn

)
and U :=


u>1
u>2
...

u>m

 .
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Modelling quantum correlation IV

Hence, we see that if u ∈ Sm
H and v ∈ Sn

H one can canonically
associate a linear operator to the (m× n)-matrix ΓH(u, v) which
factors through the Hilbert space H := lk2 such that
ΓH(u, v) = UV for some (m× k)-matrix U and some
(k × n)-matrix V, satisfying

γ2
(
ΓH(u, v)

)
≤ ‖U‖2,∞ · ‖V‖1,2 ≤ 1 :

-ln1 lm∞
@
@
@R

H
�
�
��

ΓH(u, v)

UV
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Modelling quantum correlation V

Theorem (Grothendieck (1953), Tsirelson (1987), Pisier
(2001))
Let H be a separable Hilbert space and m, n ∈ N. Let
u := (u1, . . . , um)> ∈ Sm

H and v := (v1, . . . , vn)> ∈ Sn
H. Then

ΓH(u, v) ∈ KR
G cx

({
pq> : p ∈ {−1, 1}m, q ∈ {−1, 1}n})

= KR
G Cloc(m× n;R) .

Corollary (Tsirelson (1987, 1993))
Let m, n ∈ N. Then

QC(m× n;R) ⊆ KR
G Cloc(m× n;R) .

Moreover, Cloc(m× n;R) ⊆ QC(m× n;R). The latter set
inclusion is strict.
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Bell’s inequalities and GT I

It is well-known that it is also experimentally verified that
entangled composite quantum systems violate certain relations
between correlations - known as Bell’s inequalities.

Purely in terms of a very elementary application of classical
Kolmogorovian probability theory and a bit of elementary
algebra - and completely independent of any modelling
assumptions in physics - Bell’s inequalities can be represented
in form of an inequality originating from J. F. Clauser, M. A.
Horne, A. Shimony and R. A. Holt in 1969.
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It is well-known that it is also experimentally verified that
entangled composite quantum systems violate certain relations
between correlations - known as Bell’s inequalities.
Purely in terms of of a very elementary application of classical
Kolmogorovian probability theory and a bit of elementary
algebra - and “without the annoying adherence to physics” (as
we have learnt from Niel ,) - Bell’s inequalities can be
represented in form of an inequality originating from J. F.
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Bell’s inequalities and GT II

Lemma (BCHSH Inequality)
Let (Ω,F ,P) be an arbitrary probability space. Let X1,X2,X3 and
X4 be arbitrary random variables with values in [−1, 1] P-a.s., all
defined on Ω. Then

|EP[XiX2]− EP[XiX3]| ≤ 1− EP[X2X3] for all i ∈ {1, 4}

and

|EP[XiX2] + EP[XiX3]| ≤ 1 + EP[X2X3] for all i ∈ {1, 4} .

In particular,

|EP[X1X2] + EP[X1X3] + EP[X4X2]− EP[X4X3]| ≤ 2 .

In other words:
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Bell’s inequalities and GT III

Observation (BCHSH Inequality in matrix form)
Let (Ω,F ,P) be an arbitrary probability space (in the sense of
Kolmogorov).

Put

AHad :=

(
1 1
1 −1

)
(=
√

2· Hadamard matrix ; “quantum gate” )

Then

|〈AHad,Γ〉| = |tr
(
AHad Γ

)
| ≤ 2 for all Γ ∈ Cloc(2× 2;R) .
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Bell’s inequalities and GT IV

Let us turn to the left “quantum correlation side” of GT!

Theorem (Tsirelson (1980))
Let H be an arbitrary Hilbert space, u ∈ S2

H and v ∈ S2
H. Then

|〈AHad,ΓH(u, v)〉| = |tr
(
AHad ΓH(u, v)

)
| ≤ 2

√
2

Even more holds!
To this end, we recall the main ideas underlying the
EPR/Bell-CHSH experiment.
Bear also Rui’s talk in mind!
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Bell’s inequalities and GT V

A source emits in opposite directions two spin 1
2 particles

created from one particle of spin 0. By rotating magnets
perpendicular to the directions of the two spin 1

2 particles, both,
Alice and Bob measure the spin in 2 different directions, leading
to angles −π

2 ≤ α1, α2 <
π
2 for Alice and −π

2 ≤ β1, β2 <
π
2 for

Bob. Only one angle per measurement can be chosen on both
sides. The outcome of this experiment is a “random” pair of
observables belonging to the set

{(A1,B1), (A1,B2), (A2,B1), (A2,B2)} .

Any of these observables takes its values in {−1,+1}.

Describing this experiment purely in terms of mathematics we
immediately recognise that the Bell-Tsirelson constant 2

√
2 is

attained by the Hadamard matrix, since:

43 / 54



Bell’s inequalities and GT V

A source emits in opposite directions two spin 1
2 particles

created from one particle of spin 0. By rotating magnets
perpendicular to the directions of the two spin 1

2 particles, both,
Alice and Bob measure the spin in 2 different directions, leading
to angles −π

2 ≤ α1, α2 <
π
2 for Alice and −π

2 ≤ β1, β2 <
π
2 for

Bob. Only one angle per measurement can be chosen on both
sides. The outcome of this experiment is a “random” pair of
observables belonging to the set

{(A1,B1), (A1,B2), (A2,B1), (A2,B2)} .

Any of these observables takes its values in {−1,+1}.
Describing this experiment purely in terms of mathematics we
immediately recognise that the Bell-Tsirelson constant 2

√
2 is

attained by the Hadamard matrix, since:

43 / 54



Bell’s inequalities and GT VI
Theorem (EPR/Bell-CHSH violates Bell and attains 2

√
2)

Consider the Hilbert space H := C2 ⊗ C2. Let
H 3 x := 1√

2

(
e1 ⊗ e1 + e2 ⊗ e2

)
(“entangled Bell state”).

Let

α1 :=
π

2
, α2 := 0, β1 :=

π

4
and β2 := −π

4
.

Put
ΓEPR :=

(
〈x, (A1 ⊗ B1)x〉H 〈x, (A1 ⊗ B2)x〉H
〈x, (A2 ⊗ B1)x〉H 〈x, (A2 ⊗ B2)x〉H

)
,

where Ai := R(αi), Bj := R(βj) and

O(2;R) 3 R(ϕ) :=

(
cos(ϕ) sin(ϕ)
sin(ϕ) − cos(ϕ)

)
(“rotary reflections”) .

Then ΓEPR ∈ QC(2× 2;R) and

|〈AHad,ΓEPR〉| = |tr
(
AHad ΓEPR)| = 2

√
2 > 2.
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Schur product and the matrix f [A]

Definition
Let ∅ 6= I ⊆ R and f : I −→ R a function. Let
A = (aij) ∈M(m× n;R) such that aij ∈ I for all (i, j) ∈ [m]× [n].

Define f [A] ∈M(m× n;R) - entrywise - as f [A]ij := f (aij) for all
(i, j) ∈ [m]× [n].

Guiding Example
The Schur product (or Hadamard product)

(aij) ∗ (bij) := (aijbij)

of matrices (aij) and (bij) leads to f [A], where f (x) := x2.
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Grothendieck’s identity I
How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let −1 ≤ ρ ≤ 1 and (ξ, η)> ∼ N2(0,Σρ), where

Σρ :=

(
1 ρ
ρ 1

)
.

Consider the function sign : R −→ {−1, 1}, defined as
sign := 11[0,∞) − 11(−∞,0). Then ξ ∼ N1(0, 1), η ∼ N1(0, 1),
corr(ξ, η) = E[ξη] = ρ, and

E[sign(ξ)sign(η)] = 4P(ξ ≥ 0, η ≥ 0)− 1

=
2
π

arcsin
(
E[ξη]

)
=

2
π

arcsin(ρ) .
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Grothendieck’s identity II

Corollary
Let 2 ≤ k ∈ N. Let Σ ∈ C(k;R) an arbitrarily given correlation
matrix. Then there exists a Gaussian random vector
ξ ∼ Nk(0,Σ) such that

C(k;R) 3 2
π

arcsin[Σ]

= E
[
Θ(ξ)

]
,

where
Θ(ξ(ω))ij := sign(ξi(ω))sign(ξj(ω))

for all ω ∈ Ω, and for all i, j ∈ [k]. Θ(ξ(ω)) is a correlation matrix
of rank 1 for all ω ∈ Ω, and we have

max
Θ∈C(k;R)

rank(Θ)=1

|〈Â,Θ〉| ≥ E
[
|〈Â,Θ(ξ)〉|

]
≥ |〈Â,E

[
Θ(ξ)

]
〉| = 2

π
|〈Â, arcsin[Σ]〉| .
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|〈Â, arcsin[Σ]〉| .

48 / 54



Grothendieck’s identity II

Corollary
Let 2 ≤ k ∈ N. Let Σ ∈ C(k;R) an arbitrarily given correlation
matrix. Then there exists a Gaussian random vector
ξ ∼ Nk(0,Σ) such that

C(k;R) 3 2
π

arcsin[Σ] = E
[
Θ(ξ)

]
,

where
Θ(ξ(ω))ij := sign(ξi(ω))sign(ξj(ω))

for all ω ∈ Ω, and for all i, j ∈ [k].

Θ(ξ(ω)) is a correlation matrix
of rank 1 for all ω ∈ Ω, and we have

max
Θ∈C(k;R)

rank(Θ)=1

|〈Â,Θ〉| ≥ E
[
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|〈Â, arcsin[Σ]〉| .

48 / 54



Grothendieck’s identity III

More generally, we may list the following two “Schoenberg-type”
results (applied to non-linear correlation matrix transforms)
which are implied by the Schur product theorem:

Theorem (Schoenberg (1942), Rudin (1959))
Let 0 6= f : [−1, 1] −→ R be a function that admits a power
series representation f (x) =

∑∞
n=0 anxn for some sequence (an)

of non-negative numbers on [−1, 1]. Then f [A] ∈ PSD(m;R) for
all A ∈ PSD(m; [−1, 1]) and all m ∈ N. In particular, f (1) > 0 and
|f (ρ)| ≤ f (1) for all ρ ∈ [−1, 1].

1
f (1) f maps [−1, 1] into [−1, 1].

Let k ∈ N and Σ be an arbitrary (k × k)-correlation matrix. Then
also 1

f (1) f
[
Σ
]

is a (k × k)-correlation matrix.

Conversely, we have:
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Grothendieck’s identity IV

Theorem (Schoenberg (1942), Rudin (1959),
Christensen/Ressel (1978))
Let 0 6= g : [−1, 1] −→ R be a function such that g

[
Σ
]

is a
(k × k)-correlation matrix for all (k × k)-correlation matrices Σ
and all k ∈ N.

Then g(1) = 1 and |g(ρ)| ≤ 1 for all ρ ∈ [−1, 1],
and g[A] ∈ PSD(m;R) for all A ∈ PSD(m; [−1, 1]) and all m ∈ N.
Moreover, g : [−1, 1] −→ [−1, 1] has to be a function that admits
a power series representation g(x) =

∑∞
n=0 bnxn for some

sequence (bn) of non-negative numbers on [−1, 1].
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Grothendieck’s identity V

A seemingly fruitful approach is the following one:

(i) Transform an arbitrarily given correlation matrix Σ0
non-linearly - and entrywise - to another correlation matrix
Σ1 := Φ[Σ0] for some Φ : C(k;R) −→ C(k;R) such that this
non-linear transformation Φ strongly reduces the impact of
the arcsin function (up to a given small error).

(ii) Apply Grothendieck’s identity to the so obtained correlation
matrix Σ1 and apply the estimation above - to arcsin[Σ1].

(iii) A reiteration of the steps (i) and (ii) could lead to an
iterative algorithm which might converge to a “suitable” -
upper - bound of KR

G .
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A phrase of G. H. Hardy

“... at present I will say only that if a chess problem is, in the
crude sense, ’useless’, then that is equally true of most of the
best mathematics; that very little of mathematics is useful
practically, and that that little is comparatively dull. The
’seriousness’ of a mathematical theorem lies, not in its practical
consequences, which are usually negligible, but in the
significance of the mathematical ideas which it connects...”

– A Mathematician’s Apology (1940)
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Thank you for your attention!

Are there any questions, comments or remarks?
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