

<ロ > < 団 > < 臣 > < 臣 > 臣 ? QQ ? 1/54

A statistical interpretation of Grothendieck's inequality and its relation to the size of non-locality of quantum mechanics

Frank Oertel

Philosophy, Logic & Scientific Method Centre for Philosophy of Natural and Social Sciences (CPNSS) London School of Economics & Political Science, UK http://www.frank-oertel-math.de

Workshop on Combining Viewpoints in Quantum Theory

International Centre for Mathematical Sciences (ICMS) Edinburgh, UK

19-22 March 2018

Contents

- A very short glimpse at A. Grothendieck's work in functional analysis
- 2 Grothendieck's inequality in matrix formulation
- **3** Grothendieck's inequality rewritten
- Grothendieck's inequality and its relation to non-locality in quantum mechanics
- **5** Towards a determination of Grothendieck's constant $K_G^{\mathbb{R}}$

1 A very short glimpse at A. Grothendieck's work in functional analysis

- 2 Grothendieck's inequality in matrix formulation
- **3** Grothendieck's inequality rewritten
- Grothendieck's inequality and its relation to non-locality in quantum mechanics
- **5** Towards a determination of Grothendieck's constant $K_G^{\mathbb{R}}$

A portrait of A. Grothendieck

A. Grothendieck lecturing at IHES (1958-1970)

Excerpt from A. Grothendieck's handwritten lecture notes I

(Espen a like them) King and the second of the second of the second sec 1 type lyche and will a something of the Marine , (15 3° = N° , Aug & and a Ly - 24° andar 24 where, has a white the experience on all referring me have site-i an en ine-i as enether for en Particular and Later and file - 1) at the at to the for an atom (w - + ipin - 2 the p. Nais Uno, the so weather Nous he wa Uma. pikaning (W. W. frinkan 2 Ka) (Now - Sup | Trun 1) 2: Nuisi relate, Fr, f- when where where and in the w MEL - - Con IT - - 1 Lip-iting & we have (6.8), many Wins - Withman) Nulstation - June IT - -- 1 strangen H work (E.F), No, v. 2 for a desaid, hit Septimin LA (E,F) a cos Non cos , Non man in LA(E,F) is Lon (EF) + Lon (B,F), - mainten L'(E,F) CLEUR, P) CL(E,F) L'(E,F) C L, ACP) C -, (E,F) Buccockan motion the dog My Wins= Wins) Wange and Was, Dlange word ---and the start in the section of the section

<ロ > < 部 > < 言 > < 言 > 言 < 6/54

Excerpt from A. Grothendieck's handwritten lecture notes II

E- this as an LUIE, ES, particular suite L'(E), particular we any althe way the direction and on Litture velocity in the source when source handing inter an an and with + LM(E) (invoite, an in the could and Elkill & M your N'any) & 1, and N' invite $\begin{array}{c} & \mathcal{W}_{1}, \\ (\omega_{1}), \\ (\omega_{2}), \\ ($ Mis muchan Tim - LULE, Plan LW (F, E). 1. white letter man and 1 Prog to and a Low Wife and Low IE F? on LM(EF) Mini = ally and an in hiller Mang) = Way, Way), elans and M(E,P), or (M(E,C)) in Many = M(M, S, M(M)) = M(M) min me has, any your form the the area I to get , - want Mar 11 to have the consist a site and 2: We want in your a war war war show web. In The name you're a - me had a - Manung & W'may W con W'' awy. News = him NIP- Jp = h - Nump 1- C- 1kg po propries with a replicit on a little of omin. ~. (a. - Menes = Mapusan) & N'mus N'(20) + W" () W ()) . E - K- - - wel- , Top N(12, mas) & News

<ロト < 団 ト < 臣 ト < 臣 ト 三 · ??52

Excerpt from A. Grothendieck's handwritten lecture notes III

Amin Olit Non an a same on all for har interest. a Bring por velo(E,F) , pro-10, Naso Nacon) Nor + Say ITra de --man a private in L. W. F. Sint L* 16,87 L and again a l(E,F) from an when a Inits an argum E. L'aller the E. C. F. day In me holl for theme a c c l l P) a at and a lemis c l " at day the L' Mar Eros and L'G.FI ... wind ushall, E) Q an - OWLIGHT and the share have here h that al the 14 love en). S. No. - 1 has N. W. N. r. - man muns are like the 1- BINC241 = Nho Was 1 +- +, 7+ R/4) dus --. - we LIEF, JELIF, 5) , Nou) + N'w) N'w) up LAILIFY , + L M (E,F) , in unt L M(E,F) dan a L. ut Lp. G.FI .- or Le (E.F) Jut La (E,F) - En y-x-e-, -- an - = L(E,F) , = = 6 (F, 6) avera, & Now SPWS down we LAREFI AF LN' COLDI and L'IEE) (B) I TUNN 1 + Way W"WS

- A very short glimpse at A. Grothendieck's work in functional analysis
- 2 Grothendieck's inequality in matrix formulation
- **3** Grothendieck's inequality rewritten
- Grothendieck's inequality and its relation to non-locality in quantum mechanics
- **5** Towards a determination of Grothendieck's constant $K_G^{\mathbb{R}}$

<ロ > < 団 > < 臣 > < 臣 > 臣 2000 10/54

Grothendieck's inequality in matrix form I

Theorem (Lindenstrauss-Pelczyński (1968))

Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ and $m, n \in \mathbb{N}$. Then there exists a universal constant K > 0 - not depending on m and n - such that for all matrices $A = (a_{ij}) \in \mathbb{M}(m \times n; \mathbb{F})$, for all \mathbb{F} -Hilbert spaces H, for all unit vectors $u_1, \ldots, u_m, v_1, \ldots, v_n \in S_H$ the following inequality is satisfied:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \langle u_i, v_j \rangle_H \Big| \le K \max \left\{ \Big| \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} p_i q_j \Big| : p_i, q_j \in \{-1, 1\} \right\}.$$

4 ロ ト 4 母 ト 4 星 ト 4 星 ト 星 10/54
10/54

Grothendieck's inequality in matrix form I

Theorem (Lindenstrauss-Pelczyński (1968))

Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ and $m, n \in \mathbb{N}$. Then there exists a universal constant K > 0 - not depending on m and n - such that for all matrices $A = (a_{ij}) \in \mathbb{M}(m \times n; \mathbb{F})$, for all \mathbb{F} -Hilbert spaces H, for all unit vectors $u_1, \ldots, u_m, v_1, \ldots, v_n \in S_H$ the following inequality is satisfied:

$$\sum_{i=1}^m \sum_{j=1}^n a_{ij} \langle u_i, v_j \rangle_H \Big| \le K \max\left\{ \Big| \sum_{i=1}^m \sum_{j=1}^n a_{ij} p_i q_j \Big| : p_i, q_j \in \{-1, 1\} \right\}.$$

The smallest possible value of the corresponding constant *K* is denoted by $K_G^{\mathbb{F}}$. It is called Grothendieck's constant.

Grothendieck's inequality in matrix form I

Theorem (Lindenstrauss-Pelczyński (1968))

Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ and $m, n \in \mathbb{N}$. Then there exists a universal constant K > 0 - not depending on m and n - such that for all matrices $A = (a_{ij}) \in \mathbb{M}(m \times n; \mathbb{F})$, for all \mathbb{F} -Hilbert spaces H, for all unit vectors $u_1, \ldots, u_m, v_1, \ldots, v_n \in S_H$ the following inequality is satisfied:

$$\sum_{i=1}^m \sum_{j=1}^n a_{ij} \langle u_i, v_j \rangle_H \Big| \le K \max\left\{ \Big| \sum_{i=1}^m \sum_{j=1}^n a_{ij} p_i q_j \Big| : p_i, q_j \in \{-1, 1\} \right\}.$$

The smallest possible value of the corresponding constant *K* is denoted by $K_G^{\mathbb{F}}$. It is called Grothendieck's constant. Computing the exact numerical value of this constant is an open problem (unsolved since 1953)!

Grothendieck's inequality in matrix form II

<ロ > < 団 > < 臣 > < 臣 > E 2000 11/54

Grothendieck's inequality in matrix form II

$$K_{GH}^{\mathbb{R}} = \frac{\pi}{2}$$

<ロ > < 団 > < 臣 > < 臣 > E 2000 11/54

Grothendieck's inequality in matrix form II

$$\mathit{K}_{GH}^{\mathbb{R}}=rac{\pi}{2}$$
 and

<ロ > < 団 > < 臣 > < 臣 > 臣 2000 11/54

Grothendieck's inequality in matrix form II

$$K_{GH}^{\mathbb{R}} = rac{\pi}{2}$$
 and $K_{GH}^{\mathbb{C}} = rac{4}{\pi}$

Grothendieck's inequality in matrix form II

Theorem (R. E. Rietz (1974), H. Niemi (1983))

Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ and H be an arbitrary Hilbert space over \mathbb{F} . Let $n \in \mathbb{N}$. Let $K_{GH}^{\mathbb{F}}$ denote the Grothendieck constant, derived from Grothendieck's inequality "restricted" to the set of all positive semidefinite $n \times n$ -matrices over \mathbb{F} . Then

$$K_{GH}^{\mathbb{R}}=rac{\pi}{2}$$
 and $K_{GH}^{\mathbb{C}}=rac{4}{\pi}$.

From now on are going to consider the real case (i. e., $\mathbb{F} = \mathbb{R}$) only. Nevertheless, we allow an unrestricted use of all matrices $A \in \mathbb{M}(m \times n; \mathbb{R})$ for any $m, n \in \mathbb{N}$ in GT.

<ロ > < 団 > < 臣 > < 臣 > 臣 2000 12/54

Grothendieck's inequality in matrix form III

Until present the following encapsulation of $K_G^{\mathbb{R}}$ holds, primarily due to R. E. Rietz (1974), J. L. Krivine (1977), and most recently, M. Braverman, K. Makarychev, Y. Makarychev, and A. Naor (4-author paper from 2011, available on the arXiv):

<ロ > < 団 > < 臣 > < 臣 > 臣 2000 12/54

Grothendieck's inequality in matrix form III

Until present the following encapsulation of $K_G^{\mathbb{R}}$ holds, primarily due to R. E. Rietz (1974), J. L. Krivine (1977), and most recently, M. Braverman, K. Makarychev, Y. Makarychev, and A. Naor (4-author paper from 2011, available on the arXiv):

$$1,676 < K_G^{\mathbb{R}} \stackrel{(!)}{<} \frac{\pi}{2\ln(1+\sqrt{2})} \approx 1,782.$$

<ロ > < 部 > < 臣 > < 臣 > 臣 12/54

Grothendieck's inequality in matrix form III

Until present the following encapsulation of $K_G^{\mathbb{R}}$ holds, primarily due to R. E. Rietz (1974), J. L. Krivine (1977), and most recently, M. Braverman, K. Makarychev, Y. Makarychev, and A. Naor (4-author paper from 2011, available on the arXiv):

$$1,676 < K_G^{\mathbb{R}} \stackrel{(!)}{<} \frac{\pi}{2\ln(1+\sqrt{2})} \approx 1,782.$$

Screening these numbers we might be tempted to guess the following

<ロト<団ト<臣ト<臣ト 12/54

Grothendieck's inequality in matrix form III

Until present the following encapsulation of $K_G^{\mathbb{R}}$ holds, primarily due to R. E. Rietz (1974), J. L. Krivine (1977), and most recently, M. Braverman, K. Makarychev, Y. Makarychev, and A. Naor (4-author paper from 2011, available on the arXiv):

$$1,676 < K_G^{\mathbb{R}} \stackrel{(!)}{<} \frac{\pi}{2\ln(1+\sqrt{2})} \approx 1,782.$$

Screening these numbers we might be tempted to guess the following

Conjecture Is $K_G^{\mathbb{R}} = \sqrt{\pi} \approx 1,772$?

<ロ > < 団 > < 臣 > < 臣 > 臣) 2000 13/54

- A very short glimpse at A. Grothendieck's work in functional analysis
- 2 Grothendieck's inequality in matrix formulation
- **3** Grothendieck's inequality rewritten
- Grothendieck's inequality and its relation to non-locality in quantum mechanics
- **5** Towards a determination of Grothendieck's constant $K_G^{\mathbb{R}}$

<ロ > < 団 > < 臣 > < 臣 > 臣 2000 14/54

Grothendieck's inequality rewritten I

By transforming Grothendieck's inequality into an equivalent inequality between traces of matrix products (respectively Hilbert-Schmidt inner products) we are lead to a surprising interpretation which reveals deep links to combinatorial (binary) optimisation, semidefinite programming (SDP) and multivariate statistics, built on suitable non-linear mappings between correlation matrices.

Grothendieck's inequality rewritten I

By transforming Grothendieck's inequality into an equivalent inequality between traces of matrix products (respectively Hilbert-Schmidt inner products) we are lead to a surprising interpretation which reveals deep links to combinatorial (binary) optimisation, semidefinite programming (SDP) and multivariate statistics, built on suitable non-linear mappings between correlation matrices.

We will sketch this approach which might lead to a constructive improvement of Krivine's upper bound $\frac{\pi}{2\ln(1+\sqrt{2})}$. At least it also can be reproduced in this approach.

Grothendieck's inequality rewritten II

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n; \mathbb{R}), u := (u_1, \dots, u_m)^\top \in S_H^m$ and $v := (v_1, \dots, v_n)^\top \in S_H^n$ be given, where $S_H := \{w \in H : ||w|| = 1\}$ denotes the unit sphere in H.

Grothendieck's inequality rewritten II

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n; \mathbb{R}), u := (u_1, \dots, u_m)^\top \in S_H^m$ and $v := (v_1, \dots, v_n)^\top \in S_H^n$ be given, where $S_H := \{w \in H : ||w|| = 1\}$ denotes the unit sphere in H.

Firstly, note that

$$\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}\langle u_{i},v_{j}\rangle_{H}=$$

<ロ > < 団 > < 臣 > < 臣 > 臣 2000 15/54

Grothendieck's inequality rewritten II

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n; \mathbb{R}), u := (u_1, \dots, u_m)^\top \in S_H^m$ and $v := (v_1, \dots, v_n)^\top \in S_H^n$ be given, where $S_H := \{w \in H : ||w|| = 1\}$ denotes the unit sphere in H.

Firstly, note that

$$\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}\langle u_{i},v_{j}\rangle_{H}=\mathsf{tr}\big(A^{\top}\,\Gamma_{H}(u,v)\big)=$$

Grothendieck's inequality rewritten II

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n; \mathbb{R}), u := (u_1, \dots, u_m)^\top \in S_H^m$ and $v := (v_1, \dots, v_n)^\top \in S_H^n$ be given, where $S_H := \{w \in H : ||w|| = 1\}$ denotes the unit sphere in H.

Firstly, note that

$$\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}\langle u_{i},v_{j}\rangle_{H}=\mathrm{tr}\big(A^{\top}\,\Gamma_{H}(u,v)\big)=\langle A,\Gamma_{H}(u,v)\rangle,$$

is precisely the Hilbert-Schmidt inner product (or the Frobenius inner product) of the matrices $A \in \mathbb{M}(m \times n; \mathbb{R})$ and $\Gamma_H(u, v) \in \mathbb{M}(m \times n; \mathbb{R})$, where

Grothendieck's inequality rewritten II

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n; \mathbb{R}), u := (u_1, \dots, u_m)^\top \in S_H^m$ and $v := (v_1, \dots, v_n)^\top \in S_H^n$ be given, where $S_H := \{w \in H : ||w|| = 1\}$ denotes the unit sphere in H.

Firstly, note that

$$\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}\langle u_{i},v_{j}\rangle_{H}=\mathrm{tr}\big(A^{\top}\,\Gamma_{H}(u,v)\big)=\langle A,\Gamma_{H}(u,v)\rangle,$$

is precisely the Hilbert-Schmidt inner product (or the Frobenius inner product) of the matrices $A \in \mathbb{M}(m \times n; \mathbb{R})$ and $\Gamma_H(u, v) \in \mathbb{M}(m \times n; \mathbb{R})$, where

$$\Gamma_{H}(u,v) := \begin{pmatrix} \langle u_{1}, v_{1} \rangle_{H} & \langle u_{1}, v_{2} \rangle_{H} & \dots & \langle u_{1}, v_{n} \rangle_{H} \\ \langle u_{2}, v_{1} \rangle_{H} & \langle u_{2}, v_{2} \rangle_{H} & \dots & \langle u_{2}, v_{n} \rangle_{H} \\ \vdots & \vdots & \vdots & \vdots \\ \langle u_{m}, v_{1} \rangle_{H} & \langle u_{m}, v_{2} \rangle_{H} & \dots & \langle u_{m}, v_{n} \rangle_{H} \end{pmatrix}$$

Grothendieck's inequality rewritten III

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n; \mathbb{R}), p := (p_1, \dots, p_m)^\top \in (\mathbb{S}^0)^m$ and $q := (q_1, \dots, q_n)^\top \in (\mathbb{S}^0)^n$ be given, where $\mathbb{S}^0 := \{-1, 1\}$ denotes the unit "sphere" in $\mathbb{R} = \mathbb{R}^{0+1}$. Similarly as before, we obtain

$$\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}p_{i}q_{j}=\mathsf{tr}\big(A^{\top}\,\Gamma_{\mathbb{R}}(p,q)\big)=\langle A,\Gamma_{\mathbb{R}}(p,q)\rangle,$$

where now

$$\Gamma_{\mathbb{R}}(p,q) := pq^{\top} = \begin{pmatrix} \pm 1 & \mp 1 & \dots & \pm 1 \\ \mp 1 & \mp 1 & \dots & \mp 1 \\ \vdots & \vdots & \vdots & \vdots \\ \pm 1 & \mp 1 & \dots & \pm 1 \end{pmatrix}$$

<ロ > < 団 > < 臣 > < 臣 > 三 2000 17/54

Full matrix representation of the Hilbert space vectors

Pick all m + n Hilbert space unit vectors $u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n \in H$ and represent them as

<ロ > < 団 > < 臣 > < 臣 > 三 2000 17/54

Full matrix representation of the Hilbert space vectors

Pick all m + n Hilbert space unit vectors $u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n \in H$ and represent them as

$\langle u_1, v_1 \rangle$	$\langle u_1, v_2 \rangle$		$\langle u_1, v_n \rangle$
$\langle u_2, v_1 \rangle$	$\langle u_2, v_2 \rangle$	• • •	$\langle u_2, v_n \rangle$
÷		1	÷
$\langle u_m, v_1 \rangle$	$\langle u_m, v_2 \rangle$		$\langle u_m, v_n \rangle$

<ロ > < 団 > < 臣 > < 臣 > 三 2000 17/54

Full matrix representation of the Hilbert space vectors

Pick all m + n Hilbert space unit vectors $u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n \in H$ and represent them as

$$\begin{pmatrix} \langle u_1, v_1 \rangle & \langle u_1, v_2 \rangle & \dots & \langle u_1, v_n \rangle \\ \langle u_2, v_1 \rangle & \langle u_2, v_2 \rangle & \dots & \langle u_2, v_n \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle u_m, v_1 \rangle & \langle u_m, v_2 \rangle & \dots & \langle u_m, v_n \rangle \end{pmatrix}$$

Does this matrix look familiar to you?

<ロ > < 団 > < 直 > < 亘 > < 亘 > 三 2000 17/54

Full matrix representation of the Hilbert space vectors

Pick all m + n Hilbert space unit vectors $u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n \in H$ and represent them as

$$\begin{pmatrix} \langle u_1, v_1 \rangle & \langle u_1, v_2 \rangle & \dots & \langle u_1, v_n \rangle \\ \langle u_2, v_1 \rangle & \langle u_2, v_2 \rangle & \dots & \langle u_2, v_n \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle u_m, v_1 \rangle & \langle u_m, v_2 \rangle & \dots & \langle u_m, v_n \rangle \end{pmatrix}$$

Does this matrix look familiar to you? It is a part of something larger...

Full matrix representation of the Hilbert space vectors

Pick all m + n Hilbert space unit vectors $u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n \in H$ and represent them as

$$\begin{pmatrix} \langle u_1, v_1 \rangle & \langle u_1, v_2 \rangle & \dots & \langle u_1, v_n \rangle \\ \langle u_2, v_1 \rangle & \langle u_2, v_2 \rangle & \dots & \langle u_2, v_n \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle u_m, v_1 \rangle & \langle u_m, v_2 \rangle & \dots & \langle u_m, v_n \rangle \end{pmatrix}$$

Does this matrix look familiar to you? It is a part of something larger... Namely:

Block matrix representation I

($ \begin{pmatrix} \langle u_1, v_1 \rangle \\ \langle u_2, v_1 \rangle \end{pmatrix} $	$\begin{array}{l} \langle u_1, v_2 \rangle \\ \langle u_2, v_2 \rangle \end{array}$	· · · ·	$ \begin{array}{c} \langle u_1, v_n \rangle \\ \langle u_2, v_n \rangle \end{array} $
				т	$\langle u_m, v_1 \rangle$	\vdots $\langle u_m, v_2 \rangle$		$\left \begin{array}{c} \vdots \\ \langle u_m, v_n \rangle \end{array} \right $
	$ \begin{pmatrix} \langle u_1, v_1 \rangle \\ \langle u_2, v_1 \rangle \end{pmatrix} $	$\begin{array}{l} \langle u_1, v_2 \rangle \\ \langle u_2, v_2 \rangle \end{array}$	· · · ·	$ \begin{array}{c} \langle u_1, v_n \rangle \\ \langle u_2, v_n \rangle \end{array} $				
	\vdots $\langle u_m, v_1 \rangle$	\vdots $\langle u_m, v_2 \rangle$		$\left \begin{array}{c} \vdots \\ \langle u_m, v_n \rangle \end{array} \right $				

・ロ > ・ ()

Block matrix representation I

$$\begin{pmatrix} \langle u_1, v_1 \rangle & \langle u_1, v_2 \rangle & \dots & \langle u_1, v_n \rangle \\ \langle u_2, v_1 \rangle & \langle u_2, v_2 \rangle & \dots & \langle u_2, v_n \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle u_m, v_1 \rangle & \langle u_2, v_1 \rangle & \dots & \langle u_m, v_1 \rangle \\ \langle u_1, v_2 \rangle & \langle u_2, v_2 \rangle & \dots & \langle u_m, v_2 \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle u_1, v_n \rangle & \langle u_2, v_n \rangle & \dots & \langle u_m, v_n \rangle \end{pmatrix}$$

<ロ > < 団 > < 臣 > < 臣 > 三 2000 19/54

<ロ > < 団 > < 臣 > < 臣 > 三 20/54

Block matrix representation I

$$\begin{pmatrix} \langle u_1, v_1 \rangle & \langle u_1, v_2 \rangle & \dots & \langle u_1, v_n \rangle \\ \langle u_2, v_1 \rangle & \langle u_2, v_2 \rangle & \dots & \langle u_2, v_n \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle u_m, v_1 \rangle & \langle u_m, v_2 \rangle & \dots & \langle u_m, v_n \rangle \\ \langle v_1, u_1 \rangle & \langle v_1, u_2 \rangle & \dots & \langle v_1, u_m \rangle \\ \langle v_2, u_1 \rangle & \langle v_2, u_2 \rangle & \dots & \langle v_2, u_m \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle v_n, u_1 \rangle & \langle v_n, u_2 \rangle & \dots & \langle v_n, u_m \rangle \end{pmatrix}$$

Block matrix representation II

$\langle u_1, u_1 \rangle$	$\langle u_1, u_2 \rangle$		$\langle u_1, u_m \rangle$	$\langle u_1, v_1 \rangle$	$\langle u_1, v_2 \rangle$		$\langle u_1, v_n \rangle$
$\langle u_2, u_1 \rangle$	$\langle u_2, u_2 \rangle$		$\langle u_2, u_m \rangle$	$\langle u_2, v_1 \rangle$	$\langle u_2, v_2 \rangle$		$\langle u_2, v_n \rangle$
÷	1	$\mathcal{T}_{\mathcal{T}_{\mathcal{T}}}$	1	1	1	$\gamma_{2,1}$	
$\langle u_m, u_1 \rangle$	$\langle u_m, u_2 \rangle$		$\langle u_m, u_m \rangle$	$\langle u_m, v_1 \rangle$	$\langle u_m, v_2 \rangle$		$\langle u_m, v_n \rangle$
$\langle v_1, u_1 \rangle$	$\langle v_1, u_2 \rangle$		$\langle v_1, u_m \rangle$	$\langle v_1, v_1 \rangle$	$\langle v_1, v_2 \rangle$		$\langle v_1, v_n \rangle$
$\langle v_2, u_1 \rangle$	$\langle v_2, u_2 \rangle$		$\langle v_2, u_m \rangle$	$\langle v_2, v_1 \rangle$	$\langle v_2, v_2 \rangle$		$\langle v_2, v_n \rangle$
÷	1	1	1		1	$\mathcal{T}_{\mathcal{T}_{\mathcal{T}}}$	÷
$\langle v_n, u_1 \rangle$	$\langle v_n, u_2 \rangle$		$\langle v_n, u_m \rangle$	$\langle v_n, v_1 \rangle$	$\langle v_m, v_2 \rangle$		$\langle v_n, v_n \rangle$

Block matrix representation III

(1	$\langle u_1, u_2 \rangle$		$\langle u_1, u_m \rangle$	$\langle u_1, v_1 \rangle$	$\langle u_1, v_2 \rangle$		$\langle u_1, v_n \rangle$
$\langle u_2, u_1 \rangle$	1		$\langle u_2, u_m \rangle$	$\langle u_2, v_1 \rangle$	$\langle u_2, v_2 \rangle$		$\langle u_2, v_n \rangle$
÷		\mathbb{P}_{2}			1	$\mathcal{T}_{\mathcal{T}_{\mathcal{T}}}$	÷
$\langle u_m, u_1 \rangle$	$\langle u_m, u_2 \rangle$		1	$\langle u_m, v_1 \rangle$	$\langle u_m, v_2 \rangle$		$\langle u_m, v_n \rangle$
$\langle v_1, u_1 \rangle$	$\langle v_1, u_2 \rangle$		$\langle v_1, u_m \rangle$	1	$\langle v_1, v_2 \rangle$		$\langle v_1, v_n \rangle$
$\langle v_2, u_1 \rangle$	$\langle v_2, u_2 \rangle$		$\langle v_2, u_m \rangle$	$\langle v_2, v_1 \rangle$	1		$\langle v_2, v_n \rangle$
÷		1	1.1		1.1	$\mathbb{P}_{\mathcal{A}}$	1
$\langle v_n, u_1 \rangle$	$\langle v_n, u_2 \rangle$		$\langle v_n, u_m \rangle$	$\langle v_n, v_1 \rangle$	$\langle v_m, v_2 \rangle$		1 /

<ロ > < 団 > < 臣 > < 臣 > 三 23/54

A refresher of a few definitions I

Let $n \in \mathbb{N}$. We put

 $PSD(n; \mathbb{R}) := \{S : S \in \mathbb{M}(n \times n; \mathbb{R}) \text{ and } S \text{ is positive semidefinite} \}.$

・ ロ ト < 部 ト < 差 ト < 差 ト 差 23/54
</p>

A refresher of a few definitions I

Let $n \in \mathbb{N}$. We put

 $PSD(n; \mathbb{R}) := \{S : S \in \mathbb{M}(n \times n; \mathbb{R}) \text{ and } S \text{ is positive semidefinite} \}.$

Recall that $PSD(n; \mathbb{R})$ is a closed convex cone which (by definition!) consists of symmetric matrices only.

・ ロ ト < 部 ト < 差 ト < 差 ト 差 23/54
</p>

A refresher of a few definitions I

Let $n \in \mathbb{N}$. We put

 $PSD(n; \mathbb{R}) := \{S : S \in \mathbb{M}(n \times n; \mathbb{R}) \text{ and } S \text{ is positive semidefinite} \}.$

Recall that $PSD(n; \mathbb{R})$ is a closed convex cone which (by definition!) consists of symmetric matrices only. Moreover, we consider the set

 $C(n;\mathbb{R}) := \{ S \in PSD(n;\mathbb{R}) \text{ such that } S_{ii} = 1 \text{ for all } i \in [n] \}.$

<ロト</th>
日本
日本
日本
日本
日本
日本
日本

24/54

A refresher of a few definitions II

Let $d, k \in \mathbb{N}$ and $(H, \langle \cdot, \cdot \rangle)$ be an arbitrary *d*-dimensional Hilbert space (i. e, $H = l_2^d$). Let $w_1, w_2, \ldots, w_k \in H$. Put $w := (w_1, \ldots, w_k)^\top \in H^k$ and $S := (w_1 | w_2 | \ldots | w_k) \in$ $\mathbb{M}(d \times k; \mathbb{R})$. The matrix $\Gamma_H(w, w) \in PSD(k; \mathbb{R})$, defined as

 $\Gamma_H(w,w)_{ij} := \langle w_i, w_j \rangle = \left(S^\top S \right)_{ij} \quad \left(i, j \in [k] := \{1, 2, \dots, k\} \right)$

is called Gram matrix of the vectors $w_1, \ldots, w_k \in H$.

<ロ > < 団 > < 臣 > < 臣 > 三 24/54

A refresher of a few definitions II

Let $d, k \in \mathbb{N}$ and $(H, \langle \cdot, \cdot \rangle)$ be an arbitrary *d*-dimensional Hilbert space (i. e, $H = l_2^d$). Let $w_1, w_2, \ldots, w_k \in H$. Put $w := (w_1, \ldots, w_k)^\top \in H^k$ and $S := (w_1 | w_2 | \ldots | w_k) \in$ $\mathbb{M}(d \times k; \mathbb{R})$. The matrix $\Gamma_H(w, w) \in PSD(k; \mathbb{R})$, defined as

 $\Gamma_H(w,w)_{ij} := \langle w_i, w_j \rangle = \left(S^\top S \right)_{ij} \quad \left(i, j \in [k] := \{1, 2, \dots, k\} \right)$

is called Gram matrix of the vectors $w_1, \ldots, w_k \in H$. Observe that

$$\begin{pmatrix} \langle u_1, v_1 \rangle & \langle u_1, v_2 \rangle & \dots & \langle u_1, v_n \rangle \\ \langle u_2, v_1 \rangle & \langle u_2, v_2 \rangle & \dots & \langle u_2, v_n \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle u_m, v_1 \rangle & \langle u_m, v_2 \rangle & \dots & \langle u_m, v_n \rangle \end{pmatrix}$$

is not a Gram matrix!

A refresher of a few definitions III

Let $n \in \mathbb{N}$. Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\xi := (\xi_1, \xi_2, \dots, \xi_n)^\top : \Omega \longrightarrow \mathbb{R}^n$ be a random vector. Let $\mu := (\mu_1, \mu_2, \dots, \mu_n)^\top \in \mathbb{R}^n$ and $C \in PSD(n; \mathbb{R})$.

A refresher of a few definitions III

Let $n \in \mathbb{N}$. Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\xi := (\xi_1, \xi_2, \dots, \xi_n)^\top : \Omega \longrightarrow \mathbb{R}^n$ be a random vector. Let $\mu := (\mu_1, \mu_2, \dots, \mu_n)^\top \in \mathbb{R}^n$ and $C \in PSD(n; \mathbb{R})$.

Recall that ξ is an *n*-dimensional Gaussian random vector with respect to the "parameters" μ and *C* (short: $\xi \sim N_n(\mu, C)$) if and only if for all $a \in \mathbb{R}^n$ there exists $\eta_a \sim N_1(0, 1)$ such that

$$\langle a, \xi \rangle = \sum_{i=1}^{n} a_i \xi_i = \langle a, \mu \rangle + \sqrt{\langle a, Ca \rangle} \eta_a$$

<ロ > < 団 > < 直 > < 亘 > < 亘 > 三 25/54

A refresher of a few definitions III

Let $n \in \mathbb{N}$. Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\xi := (\xi_1, \xi_2, \dots, \xi_n)^\top : \Omega \longrightarrow \mathbb{R}^n$ be a random vector. Let $\mu := (\mu_1, \mu_2, \dots, \mu_n)^\top \in \mathbb{R}^n$ and $C \in PSD(n; \mathbb{R})$.

Recall that ξ is an *n*-dimensional Gaussian random vector with respect to the "parameters" μ and *C* (short: $\xi \sim N_n(\mu, C)$) if and only if for all $a \in \mathbb{R}^n$ there exists $\eta_a \sim N_1(0, 1)$ such that

$$\langle a, \xi \rangle = \sum_{i=1}^{n} a_i \xi_i = \langle a, \mu \rangle + \sqrt{\langle a, Ca \rangle} \eta_a$$

Note that we don't require here that *C* is invertible!

A refresher of a few definitions III

Let $n \in \mathbb{N}$. Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\xi := (\xi_1, \xi_2, \dots, \xi_n)^\top : \Omega \longrightarrow \mathbb{R}^n$ be a random vector. Let $\mu := (\mu_1, \mu_2, \dots, \mu_n)^\top \in \mathbb{R}^n$ and $C \in PSD(n; \mathbb{R})$.

Recall that ξ is an *n*-dimensional Gaussian random vector with respect to the "parameters" μ and *C* (short: $\xi \sim N_n(\mu, C)$) if and only if for all $a \in \mathbb{R}^n$ there exists $\eta_a \sim N_1(0, 1)$ such that

$$\langle a, \xi \rangle = \sum_{i=1}^{n} a_i \xi_i = \langle a, \mu \rangle + \sqrt{\langle a, Ca \rangle} \eta_a$$

Note that we don't require here that *C* is invertible! Following Feller, the matrix $\mathbb{V}(\xi)$ defined as

$$\mathbb{V}(\xi)_{ij} := \mathbb{E}[\xi_i \xi_j] - \mathbb{E}[\xi_i] \mathbb{E}[\xi_j] \stackrel{(!)}{=} C_{ij} \quad (i, j \in [n])$$

is known as the variance matrix of the Gaussian random vector ξ .

Structure of correlation matrices I

Corollary Let $n \in \mathbb{N}$ and $\Sigma = (\sigma_{ij}) \in \mathbb{M}(n \times n; \mathbb{R})$. TFAE:

Structure of correlation matrices I

Corollary Let $n \in \mathbb{N}$ and $\Sigma = (\sigma_{ij}) \in \mathbb{M}(n \times n; \mathbb{R})$. TFAE: (i) $\Sigma \in C(n; \mathbb{R})$.

Structure of correlation matrices I

Corollary Let $n \in \mathbb{N}$ and $\Sigma = (\sigma_{ij}) \in \mathbb{M}(n \times n; \mathbb{R})$. TFAE: (i) $\Sigma \in C(n; \mathbb{R})$. (ii) $\Sigma = \Gamma_{l_2}(x, x)$ for some $x = (x_1, \dots, x_n)^\top \in (S^{n-1})^n$.

<ロ > < 部 > < 言 > < 言 > 言 26/54

Structure of correlation matrices I

Corollary Let $n \in \mathbb{N}$ and $\Sigma = (\sigma_{ij}) \in \mathbb{M}(n \times n; \mathbb{R})$. TFAE: (i) $\Sigma \in C(n; \mathbb{R})$. (ii) $\Sigma = \Gamma_{l_2^n}(x, x)$ for some $x = (x_1, \dots, x_n)^\top \in (S^{n-1})^n$. (iii) $\sigma_{ij} = \cos(\varphi_{ij})$ for some $\varphi_{ij} \in [0, \pi]$ for all $i, j \in [n]$. Thereby, $\varphi_{ii} = 0$ for all $i \in [n]$.

<ロ > < 部 > < 言 > < 言 > 言 26/54

Structure of correlation matrices I

Corollary

- Let $n \in \mathbb{N}$ and $\Sigma = (\sigma_{ij}) \in \mathbb{M}(n \times n; \mathbb{R})$. TFAE:
 - (i) $\Sigma \in C(n; \mathbb{R})$.
- (ii) $\Sigma = \Gamma_{l_2^n}(x, x)$ for some $x = (x_1, \dots, x_n)^\top \in (S^{n-1})^n$.
- (iii) $\sigma_{ij} = \cos(\varphi_{ij})$ for some $\varphi_{ij} \in [0, \pi]$ for all $i, j \in [n]$. Thereby, $\varphi_{ii} = 0$ for all $i \in [n]$.
- (iv) $\Sigma = \mathbb{V}(\xi)$ is a correlation matrix, induced by some *n*-dimensional Gaussian random vector $\xi \sim N_n(0, \Sigma)$.

・ロ ト <
同 ト <
言 ト <
言 ト 、
言 26/54
</p>

Structure of correlation matrices I

Corollary

- Let $n \in \mathbb{N}$ and $\Sigma = (\sigma_{ij}) \in \mathbb{M}(n \times n; \mathbb{R})$. TFAE:
 - (i) $\Sigma \in C(n; \mathbb{R})$.
- (ii) $\Sigma = \Gamma_{l_2^n}(x, x)$ for some $x = (x_1, \dots, x_n)^\top \in (S^{n-1})^n$.
- (iii) $\sigma_{ij} = \cos(\varphi_{ij})$ for some $\varphi_{ij} \in [0, \pi]$ for all $i, j \in [n]$. Thereby, $\varphi_{ii} = 0$ for all $i \in [n]$.
- (iv) $\Sigma = \mathbb{V}(\xi)$ is a correlation matrix, induced by some *n*-dimensional Gaussian random vector $\xi \sim N_n(0, \Sigma)$.

In particular, condition (i) implies that $\sigma_{ij} \in [-1, 1]$ for all $i, j \in [n]$.

Structure of correlation matrices II

Observation Let $k \in \mathbb{N}$. Then the sets $\{S : S = xx^{\top} \text{ for some } x \in \{-1, 1\}^k\}$ and $\{\Theta : \Theta \in C(k; \mathbb{R}) \text{ and } rk(\Theta) = 1\}$ coincide.

<ロト<団ト<臣ト<臣ト 27/54

Structure of correlation matrices II

Observation Let $k \in \mathbb{N}$. Then the sets $\{S : S = xx^{\top} \text{ for some } x \in \{-1, 1\}^k\}$ and $\{\Theta : \Theta \in C(k; \mathbb{R}) \text{ and } rk(\Theta) = 1\}$ coincide.

Proposition (K. R. Parthasarathy (2002))

Let $k \in \mathbb{N}$. $C(k; \mathbb{R})$ is a compact and convex subset of the k^2 -dimensional vector space $\mathbb{M}(k \times k; \mathbb{R})$. Any $k \times k$ -correlation matrix of rank 1 is an extremal point of the set $C(k; \mathbb{R})$.

<ロト<団ト<臣ト<臣ト 27/54

Structure of correlation matrices II

Observation Let $k \in \mathbb{N}$. Then the sets $\{S : S = xx^{\top} \text{ for some } x \in \{-1, 1\}^k\}$ and $\{\Theta : \Theta \in C(k; \mathbb{R}) \text{ and } rk(\Theta) = 1\}$ coincide.

Proposition (K. R. Parthasarathy (2002))

Let $k \in \mathbb{N}$. $C(k; \mathbb{R})$ is a compact and convex subset of the k^2 -dimensional vector space $\mathbb{M}(k \times k; \mathbb{R})$. Any $k \times k$ -correlation matrix of rank 1 is an extremal point of the set $C(k; \mathbb{R})$.

In particular, the (finite) set of all $k \times k$ -correlation matrices of rank 1 is not convex.

<ロト<団ト<臣ト<臣ト 27/54

Structure of correlation matrices II

Observation

Let $k \in \mathbb{N}$. Then the sets $\{S : S = xx^{\top} \text{ for some } x \in \{-1, 1\}^k\}$ and $\{\Theta : \Theta \in C(k; \mathbb{R}) \text{ and } rk(\Theta) = 1\}$ coincide.

Proposition (K. R. Parthasarathy (2002))

Let $k \in \mathbb{N}$. $C(k; \mathbb{R})$ is a compact and convex subset of the k^2 -dimensional vector space $\mathbb{M}(k \times k; \mathbb{R})$. Any $k \times k$ -correlation matrix of rank 1 is an extremal point of the set $C(k; \mathbb{R})$.

In particular, the (finite) set of all $k \times k$ -correlation matrices of rank 1 is not convex.

Let $k \in \mathbb{N}$. Put

 $C_1(k;\mathbb{R}) := \{\Theta : \Theta \in C(k;\mathbb{R}) \text{ and } \mathsf{rk}(\Theta) = 1\}.$

Canonical block injection of A

A naturally appearing question is the following:

<ロ > < 団 > < 臣 > < 臣 > 臣 28/54

Canonical block injection of A

A naturally appearing question is the following:

Having gained - important - additional structure by "enlarging" the $m \times n$ -matrix $\Gamma_H(u, v)$ to a $(m + n) \times (m + n)$ -correlation matrix, how could this gained information be used to rewrite Grothendieck's inequality accordingly?

<ロ > < 団 > < 臣 > < 臣 > 臣 28/54

Canonical block injection of A

A naturally appearing question is the following:

Having gained - important - additional structure by "enlarging" the $m \times n$ -matrix $\Gamma_H(u, v)$ to a $(m + n) \times (m + n)$ -correlation matrix, how could this gained information be used to rewrite Grothendieck's inequality accordingly? To answer this question, let us also "embed" the $m \times n$ -matrix A suitably!

<ロ > < 回 > < 臣 > < 臣 > 三 28/54

Canonical block injection of A

A naturally appearing question is the following:

Having gained - important - additional structure by "enlarging" the $m \times n$ -matrix $\Gamma_H(u, v)$ to a $(m + n) \times (m + n)$ -correlation matrix, how could this gained information be used to rewrite Grothendieck's inequality accordingly? To answer this question, let us also "embed" the $m \times n$ -matrix A suitably!

Definition

Let $m, n \in \mathbb{N}$ and $A \in \mathbb{M}(m \times n; \mathbb{R})$ arbitrary. Put

$$\widehat{A} := \frac{1}{2} \begin{pmatrix} \mathbf{0} & A \\ A^\top & \mathbf{0} \end{pmatrix}$$

Let us call $\mathbb{M}((m+n) \times (m+n); \mathbb{R}) \ni \widehat{A}$ the canonical block injection of *A*.

Canonical block injection of A

A naturally appearing question is the following:

Having gained - important - additional structure by "enlarging" the $m \times n$ -matrix $\Gamma_H(u, v)$ to a $(m + n) \times (m + n)$ -correlation matrix, how could this gained information be used to rewrite Grothendieck's inequality accordingly? To answer this question, let us also "embed" the $m \times n$ -matrix A suitably!

Definition

Let $m, n \in \mathbb{N}$ and $A \in \mathbb{M}(m \times n; \mathbb{R})$ arbitrary. Put

$$\widehat{A} := \frac{1}{2} \begin{pmatrix} \mathbf{0} & A \\ A^\top & \mathbf{0} \end{pmatrix}$$

Let us call $\mathbb{M}((m+n) \times (m+n); \mathbb{R}) \ni \widehat{A}$ the canonical block injection of A.

Observe that \widehat{A} is symmetric, implying that $\widehat{A} = \widehat{A}^{\top}$.

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 29/54

A further equivalent rewriting of GT I

Proposition

Let *H* be an arbitrary Hilbert space over \mathbb{R} . Let $m, n \in \mathbb{N}$ and $A = (a_{ij}) \in \mathbb{M}(m \times n; \mathbb{R})$. Let K > 0. TFAE:

A further equivalent rewriting of GT I

Proposition

Let *H* be an arbitrary Hilbert space over \mathbb{R} . Let $m, n \in \mathbb{N}$ and $A = (a_{ij}) \in \mathbb{M}(m \times n; \mathbb{R})$. Let K > 0. TFAE: (i)

$$\sup_{(u,v)\in S_{H}^{m}\times S_{H}^{n}}\left|\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}\langle u_{i},v_{j}\rangle_{H}\right|\leq K\,\max_{(p,q)\in\{-1,1\}^{m}\times\{-1,1\}^{n}}\left|\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}p_{i}q_{j}\right|.$$

A further equivalent rewriting of GT I

Proposition

Let *H* be an arbitrary Hilbert space over \mathbb{R} . Let $m, n \in \mathbb{N}$ and $A = (a_{ij}) \in \mathbb{M}(m \times n; \mathbb{R})$. Let K > 0. TFAE: (i)

$$\sup_{(u,v)\in S_{H}^{m}\times S_{H}^{n}}\left|\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}\langle u_{i},v_{j}\rangle_{H}\right|\leq K\,\max_{(p,q)\in\{-1,1\}^{m}\times\{-1,1\}^{n}}\left|\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}p_{i}q_{j}\right|.$$

(ii)

$$\sup_{\Sigma \in C(m+n;\mathbb{R})} |\langle \widehat{A}, \Sigma \rangle| \le K \max_{\substack{\Theta \in C(m+n;\mathbb{R}) \\ \mathsf{rk}(\Theta) = 1}} |\langle \widehat{A}, \Theta \rangle| \,.$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 29/54

<ロト<団ト<臣>< 注)</td>

A further equivalent rewriting of GT II

Proposition

Let *H* be an arbitrary Hilbert space over \mathbb{R} . Let $m, n \in \mathbb{N}$ and $A = (a_{ij}) \in \mathbb{M}(m \times n; \mathbb{R})$. Let K > 0. TFAE: (i)

$$\max_{\substack{(u,v)\in S_{H}^{m}\times S_{H}^{n}}}\left|\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}\langle u_{i},v_{j}\rangle_{H}\right| \leq K \max_{\substack{(p,q)\in\{-1,1\}^{m}\times\{-1,1\}^{n}}}\left|\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}p_{i}q_{j}\right|.$$

$$(ii)$$

$$\max_{\Sigma\in C(m+n;\mathbb{R})}\left|\langle\widehat{A},\Sigma\rangle\right| \leq K \max_{\substack{\Theta\in C_{1}(m+n;\mathbb{R})}}\left|\langle\widehat{A},\Theta\rangle\right|.$$

A further equivalent rewriting of GT II

Proposition

Let *H* be an arbitrary Hilbert space over \mathbb{R} . Let $m, n \in \mathbb{N}$ and $A = (a_{ij}) \in \mathbb{M}(m \times n; \mathbb{R})$. Let K > 0. TFAE: (i)

$$\max_{\substack{(u,v)\in S_{H}^{n}\times S_{H}^{n}}} \left|\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}\langle u_{i},v_{j}\rangle_{H}\right| \leq K \max_{\substack{(p,q)\in\{-1,1\}^{m}\times\{-1,1\}^{n}}} \left|\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}p_{i}q_{j}\right|.$$
(ii)
$$\max_{\Sigma\in C(m+n:\mathbb{R})} \left|\langle\widehat{A},\Sigma\rangle\right| \leq K \max_{\Theta\in C_{1}(m+n:\mathbb{R})} \left|\langle\widehat{A},\Theta\rangle\right|.$$

We don't know whether condition (ii) holds for all matrices in
$$\mathbb{M}((m+n) \times (m+n); \mathbb{R}).$$

<ロ > < 団 > < 臣 > < 臣 > 三 30/54

<ロ > < 部 > < 言 > < 言 > 言 31/54

GT versus NP-hard optimisation

Observation On the left side of GT: a convex conic optimisation problem (since it is SDP) and hence of polynomial worst-case complexity (P)):

 $\max_{\Sigma \in C(m+n;\mathbb{R})} |\langle \widehat{A}, \Sigma \rangle|$

<ロ > < 団 > < 直 > < 亘 > < 亘 > 三 31/54

GT versus NP-hard optimisation

Observation On the left side of GT: a convex conic optimisation problem (since it is SDP) and hence of polynomial worst-case complexity (P)):

 $\max_{\Sigma \in C(m+n;\mathbb{R})} |\langle \widehat{A}, \Sigma \rangle|$

On the right side: an NP-hard, non-convex combinatorial (Boolean) optimisation problem:

$$\max_{\substack{\Theta \in C(m+n;\mathbb{R})\\ rk(\Theta) = 1}} |\langle \widehat{A}, \Theta \rangle|$$

GT versus NP-hard optimisation

Observation On the left side of GT: a convex conic optimisation problem (since it is SDP) and hence of polynomial worst-case complexity (P)):

 $\max_{\Sigma \in C(m+n;\mathbb{R})} |\langle \widehat{A}, \Sigma \rangle|$

On the right side: an NP-hard, non-convex combinatorial (Boolean) optimisation problem:

$$\max_{\substack{\Theta \in C(m+n;\mathbb{R})\\ \mathsf{rk}(\Theta) = 1}} |\langle \widehat{A}, \Theta \rangle|$$

Thus, Grothendieck's constant $K_G^{\mathbb{R}}$ is precisely the "integrality gap"; i. e., the maximum ratio between the solution quality of the NP-hard Boolean optimisation on the right side of GT and of its SDP relaxation on the left side!

<ロト<団ト<臣>< 注)</td>

- A very short glimpse at A. Grothendieck's work in functional analysis
- 2 Grothendieck's inequality in matrix formulation
- 3 Grothendieck's inequality rewritten
- Grothendieck's inequality and its relation to non-locality in quantum mechanics
- **5** Towards a determination of Grothendieck's constant $K_G^{\mathbb{R}}$

Modelling quantum correlation I

Following Tsirelson's approach we consider two sets, the set of all "classical" (local) $(m \times n)$ -cross-correlation matrices and the set of all $(m \times n)$ -quantum correlation matrices:

<ロト</th>
 < 目 > < 目 > < 目 > < 目 > < 目 > 33/54

Modelling quantum correlation I

Following Tsirelson's approach we consider two sets, the set of all "classical" (local) $(m \times n)$ -cross-correlation matrices and the set of all $(m \times n)$ -quantum correlation matrices:

(i) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a (Kolmogorovian) probability space. Let $A = (a_{ij}) \in \mathbb{M}(m \times n; \mathbb{R})$. $A \in C_{\mathsf{loc}}(m \times n; \mathbb{R})$ iff $a_{ij} = \mathbb{E}_{\mathbb{P}}[X_i Y_j]$, where $X_i, Y_j : \Omega \longrightarrow [-1, 1]$ are random variables - all defined on the same given probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Modelling quantum correlation I

Following Tsirelson's approach we consider two sets, the set of all "classical" (local) $(m \times n)$ -cross-correlation matrices and the set of all $(m \times n)$ -quantum correlation matrices:

- (i) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a (Kolmogorovian) probability space. Let $A = (a_{ij}) \in \mathbb{M}(m \times n; \mathbb{R})$. $A \in C_{\mathsf{loc}}(m \times n; \mathbb{R})$ iff $a_{ij} = \mathbb{E}_{\mathbb{P}}[X_i Y_j]$, where $X_i, Y_j : \Omega \longrightarrow [-1, 1]$ are random variables all defined on the same given probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
- (ii) Let $A = (a_{ij}) \in \mathbb{M}(m \times n; \mathbb{R})$. $A \in QC(m \times n; \mathbb{R})$ iff there are $k, l \in \mathbb{N}$, a density matrix ρ on $\mathcal{B}(H_{k,l})$, where $H_{k,l} := \mathbb{C}^k \otimes \mathbb{C}^l$, and linear operators $A_i \in \mathcal{B}(\mathbb{C}^k)$, $B_j \in \mathcal{B}(\mathbb{C}^l)$ such that $||A_i|| \le 1$, $||B_j|| \le 1$ and

$$a_{ij} = \langle \rho, A_i \otimes B_j \rangle = \operatorname{tr} \left(\rho(A_i \otimes B_j) \right) = \operatorname{tr} \left(\rho(A_i \otimes Id^{(l)}) (Id^{(k)} \otimes B_j) \right)$$

for all $(i,j) \in [m] \times [n]$.

Modelling quantum correlation II

Is there a link between $QC(m \times n; \mathbb{R})$ and the left side of GT?

Modelling quantum correlation II

Is there a link between $QC(m \times n; \mathbb{R})$ and the left side of GT?

Theorem (Tsirelson (1987, 1993))
Let
$$A = (a_{ij}) \in \mathbb{M}(m \times n; \mathbb{R})$$
. TFAE:
(i) $A \in QC(m \times n; \mathbb{R})$.
(ii) $A = \Gamma_{l_2^k}(u, v)$ for some $k \in \mathbb{N}$ and some $u \in (S^{k-1})^m$ and $v \in (S^{k-1})^n$.

Modelling quantum correlation III

$$\Gamma_{l_2^k}(u,v) = \begin{pmatrix} \langle u_1, v_1 \rangle & \langle u_1, v_2 \rangle & \dots & \langle u_1, v_n \rangle \\ \langle u_2, v_1 \rangle & \langle u_2, v_2 \rangle & \dots & \langle u_2, v_n \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle u_m, v_1 \rangle & \langle u_m, v_2 \rangle & \dots & \langle u_m, v_n \rangle \end{pmatrix}$$

<ロ > < 回 > < 直 > < 直 > < 亘 > < 亘 > 三 35/54

Modelling quantum correlation III

$$\Gamma_{l_2^k}(u,v) = \begin{pmatrix} \langle u_1, v_1 \rangle & \langle u_1, v_2 \rangle & \dots & \langle u_1, v_n \rangle \\ \langle u_2, v_1 \rangle & \langle u_2, v_2 \rangle & \dots & \langle u_2, v_n \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle u_m, v_1 \rangle & \langle u_m, v_2 \rangle & \dots & \langle u_m, v_n \rangle \end{pmatrix}$$

 $\Gamma_{l_2^k}(u,v) = UV$ is the product of the matrices $U: l_2^k \longrightarrow l_{\infty}^m$ and $V: l_1^n \longrightarrow l_2^k$, where

$$V := \left(v_1 | v_2 | \dots | v_n\right)$$
 and $U := \begin{pmatrix} u_1^\top \\ u_2^\top \\ \vdots \\ u_m^\top \end{pmatrix}$.

Modelling quantum correlation IV

Hence, we see that if $u \in S_H^m$ and $v \in S_H^n$ one can canonically associate a linear operator to the $(m \times n)$ -matrix $\Gamma_H(u, v)$ which factors through the Hilbert space $H := l_2^k$ such that $\Gamma_H(u, v) = UV$ for some $(m \times k)$ -matrix U and some $(k \times n)$ -matrix V, satisfying

 $\gamma_2(\Gamma_H(u,v)) \le \|U\|_{2,\infty} \cdot \|V\|_{1,2} \le 1$:

<ロ > < 団 > < 直 > < 亘 > < 亘 > 三 36/54

Modelling quantum correlation V

Theorem (Grothendieck (1953), Tsirelson (1987), Pisier (2001))

Let *H* be a separable Hilbert space and $m, n \in \mathbb{N}$. Let $u := (u_1, \ldots, u_m)^\top \in S_H^m$ and $v := (v_1, \ldots, v_n)^\top \in S_H^n$. Then

$$\begin{split} \Gamma_H(u,v) &\in K_G^{\mathbb{R}} \operatorname{cx}(\left\{ pq^{\top} : p \in \{-1,1\}^m, q \in \{-1,1\}^n \right\}) \\ &= K_G^{\mathbb{R}} \operatorname{C}_{\operatorname{loc}}(m \times n; \mathbb{R}) \,. \end{split}$$

Modelling quantum correlation V

Theorem (Grothendieck (1953), Tsirelson (1987), Pisier (2001))

Let *H* be a separable Hilbert space and $m, n \in \mathbb{N}$. Let $u := (u_1, \ldots, u_m)^\top \in S_H^m$ and $v := (v_1, \ldots, v_n)^\top \in S_H^n$. Then

$$\begin{split} \Gamma_H(u,v) &\in K_G^{\mathbb{R}} \operatorname{cx}(\{pq^{\top} : p \in \{-1,1\}^m, q \in \{-1,1\}^n\}) \\ &= K_G^{\mathbb{R}} \operatorname{C}_{\operatorname{loc}}(m \times n; \mathbb{R}) \,. \end{split}$$

Corollary (Tsirelson (1987, 1993)) Let $m, n \in \mathbb{N}$. Then

$$QC(m \times n; \mathbb{R}) \subseteq K_G^{\mathbb{R}} C_{loc}(m \times n; \mathbb{R}).$$

Moreover, $C_{loc}(m \times n; \mathbb{R}) \subseteq QC(m \times n; \mathbb{R})$. The latter set inclusion is strict.

<ロ > < 団 > < 臣 > < 臣 > 臣 38/54

Bell's inequalities and GT I

It is well-known that it is also experimentally verified that entangled composite quantum systems violate certain relations between correlations - known as *Bell's inequalities*.

Bell's inequalities and GT I

4 ロ ト 4 母 ト 4 差 ト 4 差 ト 差 38/54
38/54

It is well-known that it is also experimentally verified that entangled composite quantum systems violate certain relations between correlations - known as *Bell's inequalities*.

Purely in terms of a very elementary application of classical Kolmogorovian probability theory and a bit of elementary algebra - and completely independent of any modelling assumptions in physics - Bell's inequalities can be represented in form of an inequality originating from *J. F. Clauser, M. A. Horne, A. Shimony* and *R. A. Holt* in 1969.

Bell's inequalities and GT I

<ロ > < 母 > < 言 > < 言 > 言 39/54

It is well-known that it is also experimentally verified that entangled composite quantum systems violate certain relations between correlations - known as *Bell's inequalities*.

Purely in terms of of a very elementary application of classical Kolmogorovian probability theory and a bit of elementary algebra - and "without the annoying adherence to physics" (as we have learnt from Niel \odot) - Bell's inequalities can be represented in form of an inequality originating from *J. F. Clauser, M. A. Horne, A. Shimony* and *R. A. Holt* in 1969.

<ロ > < 部 > < 書 > < 書 > 書 20%で

Bell's inequalities and GT II

Lemma (BCHSH Inequality)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be an arbitrary probability space. Let X_1, X_2, X_3 and X_4 be arbitrary random variables with values in $[-1, 1] \mathbb{P}$ -a.s., all defined on Ω . Then

 $|\mathbb{E}_{\mathbb{P}}[X_iX_2] - \mathbb{E}_{\mathbb{P}}[X_iX_3]| \le 1 - \mathbb{E}_{\mathbb{P}}[X_2X_3]$ for all $i \in \{1, 4\}$

Bell's inequalities and GT II

Lemma (BCHSH Inequality)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be an arbitrary probability space. Let X_1, X_2, X_3 and X_4 be arbitrary random variables with values in $[-1, 1] \mathbb{P}$ -a.s., all defined on Ω . Then

$$|\mathbb{E}_{\mathbb{P}}[X_iX_2] - \mathbb{E}_{\mathbb{P}}[X_iX_3]| \le 1 - \mathbb{E}_{\mathbb{P}}[X_2X_3]$$
 for all $i \in \{1, 4\}$

and

 $|\mathbb{E}_{\mathbb{P}}[X_iX_2] + \mathbb{E}_{\mathbb{P}}[X_iX_3]| \le 1 + \mathbb{E}_{\mathbb{P}}[X_2X_3]$ for all $i \in \{1, 4\}$.

<ロ > < 団 > < 臣 > < 臣 > 臣 300 40/54

Bell's inequalities and GT II

Lemma (BCHSH Inequality)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be an arbitrary probability space. Let X_1, X_2, X_3 and X_4 be arbitrary random variables with values in $[-1, 1] \mathbb{P}$ -a.s., all defined on Ω . Then

$$|\mathbb{E}_{\mathbb{P}}[X_iX_2] - \mathbb{E}_{\mathbb{P}}[X_iX_3]| \le 1 - \mathbb{E}_{\mathbb{P}}[X_2X_3]$$
 for all $i \in \{1, 4\}$

and

$$|\mathbb{E}_{\mathbb{P}}[X_iX_2] + \mathbb{E}_{\mathbb{P}}[X_iX_3]| \le 1 + \mathbb{E}_{\mathbb{P}}[X_2X_3]$$
 for all $i \in \{1, 4\}$.

In particular,

$$|\mathbb{E}_{\mathbb{P}}[X_1X_2] + \mathbb{E}_{\mathbb{P}}[X_1X_3] + \mathbb{E}_{\mathbb{P}}[X_4X_2] - \mathbb{E}_{\mathbb{P}}[X_4X_3]| \le 2.$$

Bell's inequalities and GT II

Lemma (BCHSH Inequality)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be an arbitrary probability space. Let X_1, X_2, X_3 and X_4 be arbitrary random variables with values in $[-1, 1] \mathbb{P}$ -a.s., all defined on Ω . Then

$$|\mathbb{E}_{\mathbb{P}}[X_iX_2] - \mathbb{E}_{\mathbb{P}}[X_iX_3]| \le 1 - \mathbb{E}_{\mathbb{P}}[X_2X_3]$$
 for all $i \in \{1, 4\}$

and

$$|\mathbb{E}_{\mathbb{P}}[X_iX_2] + \mathbb{E}_{\mathbb{P}}[X_iX_3]| \le 1 + \mathbb{E}_{\mathbb{P}}[X_2X_3]$$
 for all $i \in \{1, 4\}$.

In particular,

$$|\mathbb{E}_{\mathbb{P}}[X_1X_2] + \mathbb{E}_{\mathbb{P}}[X_1X_3] + \mathbb{E}_{\mathbb{P}}[X_4X_2] - \mathbb{E}_{\mathbb{P}}[X_4X_3]| \le 2.$$

In other words:

Bell's inequalities and GT III

Observation (BCHSH Inequality in matrix form) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be an arbitrary probability space (in the sense of Kolmogorov).

Bell's inequalities and GT III

Observation (BCHSH Inequality in matrix form) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be an arbitrary probability space (in the sense of Kolmogorov). Put

$$A^{\textit{Had}} := \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 $(= \sqrt{2} \cdot \textit{Hadamard matrix} \rightsquigarrow "quantum gate")$

Bell's inequalities and GT III

Observation (BCHSH Inequality in matrix form) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be an arbitrary probability space (in the sense of Kolmogorov). Put

$$A^{\text{Had}} := \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad (= \sqrt{2} \cdot \text{Hadamard matrix} \rightsquigarrow \text{``quantum gate''})$$

Then

$$|\langle A^{\textit{Had}}, \Gamma \rangle| = |\textit{tr}(A^{\textit{Had}}\Gamma)| \le 2 \text{ for all } \Gamma \in C_{\textit{loc}}(2 \times 2; \mathbb{R}).$$

Bell's inequalities and GT IV

Let us turn to the left "quantum correlation side" of GT!

Bell's inequalities and GT IV

Let us turn to the left "quantum correlation side" of GT!

Theorem (Tsirelson (1980))

Let *H* be an arbitrary Hilbert space, $u \in S_H^2$ and $v \in S_H^2$. Then

$$|\langle A^{Had}, \Gamma_H(u, v) \rangle| = |tr(A^{Had}\Gamma_H(u, v))| \le 2\sqrt{2}$$

Bell's inequalities and GT IV

Let us turn to the left "quantum correlation side" of GT!

Theorem (Tsirelson (1980))

Let *H* be an arbitrary Hilbert space, $u \in S_H^2$ and $v \in S_H^2$. Then

 $|\langle A^{Had}, \Gamma_H(u, v) \rangle| = |tr(A^{Had}\Gamma_H(u, v))| \le 2\sqrt{2}$

Even more holds!

To this end, we recall the main ideas underlying the EPR/Bell-CHSH experiment.

<ロ > < 団 > < 臣 > < 臣 > 臣 2000 42/54

Bell's inequalities and GT IV

Let us turn to the left "quantum correlation side" of GT!

Theorem (Tsirelson (1980))

Let *H* be an arbitrary Hilbert space, $u \in S_H^2$ and $v \in S_H^2$. Then

 $|\langle A^{Had}, \Gamma_H(u, v) \rangle| = |tr(A^{Had}\Gamma_H(u, v))| \le 2\sqrt{2}$

Even more holds!

To this end, we recall the main ideas underlying the EPR/Bell-CHSH experiment.

Bear also Rui's talk in mind!

Bell's inequalities and GT V

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A source emits in opposite directions two spin $\frac{1}{2}$ particles created from one particle of spin 0. By rotating magnets perpendicular to the directions of the two spin $\frac{1}{2}$ particles, both, Alice and Bob measure the spin in 2 different directions, leading to angles $-\frac{\pi}{2} \leq \alpha_1, \alpha_2 < \frac{\pi}{2}$ for Alice and $-\frac{\pi}{2} \leq \beta_1, \beta_2 < \frac{\pi}{2}$ for Bob. Only one angle per measurement can be chosen on both sides. The outcome of this experiment is a "random" pair of observables belonging to the set

$$\{(A_1, B_1), (A_1, B_2), (A_2, B_1), (A_2, B_2)\}.$$

Any of these observables takes its values in $\{-1, +1\}$.

Bell's inequalities and GT V

A source emits in opposite directions two spin $\frac{1}{2}$ particles created from one particle of spin 0. By rotating magnets perpendicular to the directions of the two spin $\frac{1}{2}$ particles, both, Alice and Bob measure the spin in 2 different directions, leading to angles $-\frac{\pi}{2} \leq \alpha_1, \alpha_2 < \frac{\pi}{2}$ for Alice and $-\frac{\pi}{2} \leq \beta_1, \beta_2 < \frac{\pi}{2}$ for Bob. Only one angle per measurement can be chosen on both sides. The outcome of this experiment is a "random" pair of observables belonging to the set

 $\{(A_1, B_1), (A_1, B_2), (A_2, B_1), (A_2, B_2)\}.$

Any of these observables takes its values in $\{-1, +1\}$.

Describing this experiment purely in terms of mathematics we immediately recognise that the Bell-Tsirelson constant $2\sqrt{2}$ is attained by the Hadamard matrix, since:

4日 > 4日 > 4 目 > 4 目 > 目 20 0.0 44/54

Bell's inequalities and GT VI

Theorem (EPR/Bell-CHSH violates Bell and attains $2\sqrt{2}$) Consider the Hilbert space $H := \mathbb{C}^2 \otimes \mathbb{C}^2$. Let $H \ni x := \frac{1}{\sqrt{2}} (e_1 \otimes e_1 + e_2 \otimes e_2)$ ("entangled Bell state").

4日 > 4日 > 4 目 > 4 目 > 目 20 0.0 44/54

Bell's inequalities and GT VI

Theorem (EPR/Bell-CHSH violates Bell and attains $2\sqrt{2}$) Consider the Hilbert space $H := \mathbb{C}^2 \otimes \mathbb{C}^2$. Let $H \ni x := \frac{1}{\sqrt{2}} (e_1 \otimes e_1 + e_2 \otimes e_2)$ ("entangled Bell state"). Let

$$\alpha_1 := \frac{\pi}{2}, \, \alpha_2 := 0, \, \beta_1 := \frac{\pi}{4} \text{ and } \beta_2 := -\frac{\pi}{4} \,.$$

4日 > 4日 > 4 目 > 4 目 > 目 20 0.0 44/54

Bell's inequalities and GT VI

Theorem (EPR/Bell-CHSH violates Bell and attains $2\sqrt{2}$) Consider the Hilbert space $H := \mathbb{C}^2 \otimes \mathbb{C}^2$. Let $H \ni x := \frac{1}{\sqrt{2}} (e_1 \otimes e_1 + e_2 \otimes e_2)$ ("entangled Bell state"). Let

$$\alpha_1 := \frac{\pi}{2}, \, \alpha_2 := 0, \, \beta_1 := \frac{\pi}{4} \text{ and } \beta_2 := -\frac{\pi}{4}.$$

Put

$$\Gamma^{EPR} := \begin{pmatrix} \langle x, (A_1 \otimes B_1) x \rangle_H & \langle x, (A_1 \otimes B_2) x \rangle_H \\ \langle x, (A_2 \otimes B_1) x \rangle_H & \langle x, (A_2 \otimes B_2) x \rangle_H \end{pmatrix},$$

where $A_i := R(\alpha_i)$, $B_j := R(\beta_j)$ and

$$O(2;\mathbb{R}) \ni R(\varphi) := \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ \sin(\varphi) & -\cos(\varphi) \end{pmatrix} \text{ ("rotary reflections")}.$$

Bell's inequalities and GT VI

Theorem (EPR/Bell-CHSH violates Bell and attains $2\sqrt{2}$) Consider the Hilbert space $H := \mathbb{C}^2 \otimes \mathbb{C}^2$. Let $H \ni x := \frac{1}{\sqrt{2}} (e_1 \otimes e_1 + e_2 \otimes e_2)$ ("entangled Bell state"). Let

$$\alpha_1 := \frac{\pi}{2}, \, \alpha_2 := 0, \, \beta_1 := \frac{\pi}{4} \text{ and } \beta_2 := -\frac{\pi}{4}.$$

Put

$$\Gamma^{EPR} := \begin{pmatrix} \langle x, (A_1 \otimes B_1) x \rangle_H & \langle x, (A_1 \otimes B_2) x \rangle_H \\ \langle x, (A_2 \otimes B_1) x \rangle_H & \langle x, (A_2 \otimes B_2) x \rangle_H \end{pmatrix},$$

where $A_i := R(\alpha_i)$, $B_j := R(\beta_j)$ and

$$O(2;\mathbb{R}) \ni R(\varphi) := \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ \sin(\varphi) & -\cos(\varphi) \end{pmatrix} \text{ ("rotary reflections")}.$$

Then $\Gamma^{EPR} \in QC(2 \times 2; \mathbb{R})$ and $|\langle A^{Had}, \Gamma^{EPR} \rangle| = |tr(A^{Had} \Gamma^{EPR})| = 2\sqrt{2} > 2.$

- A very short glimpse at A. Grothendieck's work in functional analysis
- 2 Grothendieck's inequality in matrix formulation
- **3** Grothendieck's inequality rewritten
- Grothendieck's inequality and its relation to non-locality in quantum mechanics

5 Towards a determination of Grothendieck's constant $K_G^{\mathbb{R}}$

<ロ > < 団 > < 臣 > < 臣 > 三 3000 46/54

Schur product and the matrix f[A]

Definition Let $\emptyset \neq I \subseteq \mathbb{R}$ and $f : I \longrightarrow \mathbb{R}$ a function. Let $A = (a_{ij}) \in \mathbb{M}(m \times n; \mathbb{R})$ such that $a_{ij} \in I$ for all $(i, j) \in [m] \times [n]$.

4日 > 4日 > 4 目 > 4 目 > 目 20 0, (*)
46/54

Schur product and the matrix f[A]

Definition Let $\emptyset \neq I \subseteq \mathbb{R}$ and $f : I \longrightarrow \mathbb{R}$ a function. Let $A = (a_{ij}) \in \mathbb{M}(m \times n; \mathbb{R})$ such that $a_{ij} \in I$ for all $(i, j) \in [m] \times [n]$. Define $f[A] \in \mathbb{M}(m \times n; \mathbb{R})$ - entrywise - as $f[A]_{ij} := f(a_{ij})$ for all $(i, j) \in [m] \times [n]$.

<ロ > < 団 > < 臣 > < 臣 > 三 3000 46/54

Schur product and the matrix f[A]

Definition Let $\emptyset \neq I \subseteq \mathbb{R}$ and $f : I \longrightarrow \mathbb{R}$ a function. Let $A = (a_{ij}) \in \mathbb{M}(m \times n; \mathbb{R})$ such that $a_{ij} \in I$ for all $(i, j) \in [m] \times [n]$. Define $f[A] \in \mathbb{M}(m \times n; \mathbb{R})$ - entrywise - as $f[A]_{ij} := f(a_{ij})$ for all $(i, j) \in [m] \times [n]$.

Guiding Example The Schur product (or Hadamard product)

 $(a_{ij}) \ast (b_{ij}) := (a_{ij}b_{ij})$

of matrices (a_{ij}) and (b_{ij}) leads to f[A], where $f(x) := x^2$.

Schur product and the matrix f[A]

Definition Let $\emptyset \neq I \subseteq \mathbb{R}$ and $f : I \longrightarrow \mathbb{R}$ a function. Let $A = (a_{ij}) \in \mathbb{M}(m \times n; \mathbb{R})$ such that $a_{ij} \in I$ for all $(i, j) \in [m] \times [n]$. Define $f[A] \in \mathbb{M}(m \times n; \mathbb{R})$ - entrywise - as $f[A]_{ij} := f(a_{ij})$ for all $(i, j) \in [m] \times [n]$.

Guiding Example The Schur product (or Hadamard product)

 $(a_{ij}) \ast (b_{ij}) := (a_{ij}b_{ij})$

of matrices (a_{ij}) and (b_{ij}) leads to f[A], where $f(x) := x^2$.

Remark

The notation "f[A]" is used to highlight the difference between the matrix f(A) originating from the spectral representation of A(for normal matrices A) and the matrix f[A], defined as above !

Grothendieck's identity I

How can we link an NP-hard non-convex Boolean optimisation problem and its convex SDP relaxation?

< □ ▷ < □ ▷ < Ξ ▷ < Ξ ▷ < Ξ ▷ Ξ </p>

Grothendieck's identity I

How can we link an NP-hard non-convex Boolean optimisation problem and its convex SDP relaxation?

Theorem (Grothendieck's identity - T. S. Stieltjes (1889)) Let $-1 \le \rho \le 1$ and $(\xi, \eta)^{\top} \sim N_2(0, \Sigma_{\rho})$, where

$$\Sigma_{\rho} := \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

Grothendieck's identity I

How can we link an NP-hard non-convex Boolean optimisation problem and its convex SDP relaxation?

Theorem (Grothendieck's identity - T. S. Stieltjes (1889)) Let $-1 \le \rho \le 1$ and $(\xi, \eta)^{\top} \sim N_2(0, \Sigma_{\rho})$, where

$$\Sigma_{\rho} := \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

Consider the function sign : $\mathbb{R} \longrightarrow \{-1, 1\}$, defined as sign := $\mathbb{I}_{[0,\infty)} - \mathbb{I}_{(-\infty,0)}$.

Grothendieck's identity I

How can we link an NP-hard non-convex Boolean optimisation problem and its convex SDP relaxation?

Theorem (Grothendieck's identity - T. S. Stieltjes (1889)) Let $-1 \le \rho \le 1$ and $(\xi, \eta)^{\top} \sim N_2(0, \Sigma_{\rho})$, where

$$\Sigma_{\rho} := \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

<ロ > < 団 > < 直 > < 亘 > < 亘 > < 亘 < 2000 47/54

Grothendieck's identity I

How can we link an NP-hard non-convex Boolean optimisation problem and its convex SDP relaxation?

Theorem (Grothendieck's identity - T. S. Stieltjes (1889)) Let $-1 \le \rho \le 1$ and $(\xi, \eta)^{\top} \sim N_2(0, \Sigma_{\rho})$, where

$$\Sigma_{\rho} := \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

Consider the function sign : $\mathbb{R} \longrightarrow \{-1, 1\}$, defined as sign := $\mathbb{I}_{[0,\infty)} - \mathbb{I}_{(-\infty,0)}$. Then $\xi \sim N_1(0,1)$, $\eta \sim N_1(0,1)$, corr $(\xi, \eta) = E[\xi\eta] = \rho$, and

 $\mathbb{E}[\textit{sign}(\xi)\textit{sign}(\eta)]$

<ロ > < 団 > < 直 > < 亘 > < 亘 > < 亘 < 2000 47/54

Grothendieck's identity I

How can we link an NP-hard non-convex Boolean optimisation problem and its convex SDP relaxation?

Theorem (Grothendieck's identity - T. S. Stieltjes (1889)) Let $-1 \le \rho \le 1$ and $(\xi, \eta)^{\top} \sim N_2(0, \Sigma_{\rho})$, where

$$\Sigma_{\rho} := \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

Consider the function sign : $\mathbb{R} \longrightarrow \{-1, 1\}$, defined as sign := $\mathbb{I}_{[0,\infty)} - \mathbb{I}_{(-\infty,0)}$. Then $\xi \sim N_1(0,1)$, $\eta \sim N_1(0,1)$, corr $(\xi, \eta) = E[\xi\eta] = \rho$, and

 $\mathbb{E}[\textit{sign}(\xi)\textit{sign}(\eta)] =$

Grothendieck's identity I

How can we link an NP-hard non-convex Boolean optimisation problem and its convex SDP relaxation?

Theorem (Grothendieck's identity - T. S. Stieltjes (1889)) Let $-1 \le \rho \le 1$ and $(\xi, \eta)^{\top} \sim N_2(0, \Sigma_{\rho})$, where

$$\Sigma_{
ho} := \begin{pmatrix} 1 &
ho \\
ho & 1 \end{pmatrix}$$

Consider the function sign : $\mathbb{R} \longrightarrow \{-1, 1\}$, defined as sign := $\mathbb{I}_{[0,\infty)} - \mathbb{I}_{(-\infty,0)}$. Then $\xi \sim N_1(0,1)$, $\eta \sim N_1(0,1)$, corr $(\xi, \eta) = E[\xi\eta] = \rho$, and

 $\mathbb{E}[sign(\xi)sign(\eta)] = 4\mathbb{P}(\xi \ge 0, \eta \ge 0) - 1$

<ロ > < 団 > < 直 > < 亘 > < 亘 > < 亘 < 2000 47/54

Grothendieck's identity I

How can we link an NP-hard non-convex Boolean optimisation problem and its convex SDP relaxation?

Theorem (Grothendieck's identity - T. S. Stieltjes (1889)) Let $-1 \le \rho \le 1$ and $(\xi, \eta)^{\top} \sim N_2(0, \Sigma_{\rho})$, where

$$\Sigma_{
ho} := \begin{pmatrix} 1 &
ho \\
ho & 1 \end{pmatrix}$$

Consider the function sign : $\mathbb{R} \longrightarrow \{-1,1\}$, defined as sign := $\mathbb{1}_{[0,\infty)} - \mathbb{1}_{(-\infty,0)}$. Then $\xi \sim N_1(0,1)$, $\eta \sim N_1(0,1)$, corr $(\xi,\eta) = E[\xi\eta] = \rho$, and

 $\mathbb{E}[sign(\xi)sign(\eta)] = 4\mathbb{P}(\xi \ge 0, \eta \ge 0) - 1$

Grothendieck's identity I

How can we link an NP-hard non-convex Boolean optimisation problem and its convex SDP relaxation?

Theorem (Grothendieck's identity - T. S. Stieltjes (1889)) Let $-1 \le \rho \le 1$ and $(\xi, \eta)^{\top} \sim N_2(0, \Sigma_{\rho})$, where

$$\Sigma_{\rho} := \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

$$\mathbb{E}[sign(\xi)sign(\eta)] = 4\mathbb{P}(\xi \ge 0, \eta \ge 0) - 1$$
$$= \frac{2}{\pi} \arcsin\left(\mathbb{E}[\xi\eta]\right)$$

Grothendieck's identity I

How can we link an NP-hard non-convex Boolean optimisation problem and its convex SDP relaxation?

Theorem (Grothendieck's identity - T. S. Stieltjes (1889)) Let $-1 \le \rho \le 1$ and $(\xi, \eta)^{\top} \sim N_2(0, \Sigma_{\rho})$, where

$$\Sigma_{\rho} := \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

$$\mathbb{E}[sign(\xi)sign(\eta)] = 4\mathbb{P}(\xi \ge 0, \eta \ge 0) - 1$$
$$= \frac{2}{\pi} \arcsin\left(\mathbb{E}[\xi\eta]\right) =$$

Grothendieck's identity I

How can we link an NP-hard non-convex Boolean optimisation problem and its convex SDP relaxation?

Theorem (Grothendieck's identity - T. S. Stieltjes (1889)) Let $-1 \le \rho \le 1$ and $(\xi, \eta)^{\top} \sim N_2(0, \Sigma_{\rho})$, where

$$\Sigma_{\rho} := \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

$$\mathbb{E}[sign(\xi)sign(\eta)] = 4\mathbb{P}(\xi \ge 0, \eta \ge 0) - 1$$

= $\frac{2}{\pi} \arcsin\left(\mathbb{E}[\xi\eta]\right) = \frac{2}{\pi} \arcsin(\rho)$.

<ロ > < 団 > < 臣 > < 臣 > 臣 3000 48/54

Grothendieck's identity II

Corollary Let $2 \le k \in \mathbb{N}$. Let $\Sigma \in C(k; \mathbb{R})$ an arbitrarily given correlation matrix. Then there exists a Gaussian random vector $\xi \sim N_k(0, \Sigma)$ such that

$$C(k;\mathbb{R}) \ni \frac{2}{\pi} \arcsin[\Sigma]$$

1

・ロト ・ 日 ト ・ 三 ト ・ 三 ・ 2000
48/54

Grothendieck's identity II

Corollary Let $2 \le k \in \mathbb{N}$. Let $\Sigma \in C(k; \mathbb{R})$ an arbitrarily given correlation matrix. Then there exists a Gaussian random vector $\xi \sim N_k(0, \Sigma)$ such that

$$C(k;\mathbb{R})
i rac{2}{\pi} \arcsin[\Sigma] =$$

4 ロ ト 4 団 ト 4 直 ト 4 直 ト 直 48/54
48/54

Grothendieck's identity II

Corollary Let $2 \le k \in \mathbb{N}$. Let $\Sigma \in C(k; \mathbb{R})$ an arbitrarily given correlation matrix. Then there exists a Gaussian random vector $\xi \sim N_k(0, \Sigma)$ such that

$$C(k;\mathbb{R}) \ni \frac{2}{\pi} \arcsin[\Sigma] = \mathbb{E}[\Theta(\xi)],$$

where

$$\Theta(\xi(\omega))_{ij} := sign(\xi_i(\omega))sign(\xi_j(\omega))$$

for all $\omega \in \Omega$, and for all $i, j \in [k]$.

1

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 分 0, 0
48/54

Grothendieck's identity II

Corollary Let $2 \le k \in \mathbb{N}$. Let $\Sigma \in C(k; \mathbb{R})$ an arbitrarily given correlation matrix. Then there exists a Gaussian random vector $\xi \sim N_k(0, \Sigma)$ such that

$$C(k;\mathbb{R}) \ni \frac{2}{\pi} \arcsin[\Sigma] = \mathbb{E}[\Theta(\xi)],$$

where

$$\Theta(\xi(\omega))_{ij} := sign(\xi_i(\omega))sign(\xi_j(\omega))$$

for all $\omega \in \Omega$, and for all $i, j \in [k]$. $\Theta(\xi(\omega))$ is a correlation matrix of rank 1 for all $\omega \in \Omega$, and we have

4 ロ ト 4 団 ト 4 直 ト 4 直 ト 直 48/54
48/54

Grothendieck's identity II

Corollary Let $2 \le k \in \mathbb{N}$. Let $\Sigma \in C(k; \mathbb{R})$ an arbitrarily given correlation matrix. Then there exists a Gaussian random vector $\xi \sim N_k(0, \Sigma)$ such that

$$C(k;\mathbb{R}) \ni \frac{2}{\pi} \arcsin[\Sigma] = \mathbb{E}[\Theta(\xi)],$$

where

$$\Theta(\xi(\omega))_{ij} := \textit{sign}(\xi_i(\omega))\textit{sign}(\xi_j(\omega))$$

for all $\omega \in \Omega$, and for all $i, j \in [k]$. $\Theta(\xi(\omega))$ is a correlation matrix of rank 1 for all $\omega \in \Omega$, and we have

 $\max_{\substack{\Theta \in C(k;\mathbb{R}) \\ rank(\Theta)=1}} |\langle \widehat{A}, \Theta \rangle| \ge \mathbb{E} \left[|\langle \widehat{A}, \Theta(\xi) \rangle| \right] \ge |\langle \widehat{A}, \mathbb{E} \left[\Theta(\xi) \right] \rangle| = \frac{2}{\pi} |\langle \widehat{A}, \arcsin[\Sigma] \rangle|.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Grothendieck's identity III

More generally, we may list the following two "Schoenberg-type" results (applied to non-linear correlation matrix transforms) which are implied by the Schur product theorem:

<ロト</th>
日本
日本<

Grothendieck's identity III

More generally, we may list the following two "Schoenberg-type" results (applied to non-linear correlation matrix transforms) which are implied by the Schur product theorem:

Theorem (Schoenberg (1942), Rudin (1959)) Let $0 \neq f : [-1,1] \longrightarrow \mathbb{R}$ be a function that admits a power series representation $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for some sequence (a_n) of non-negative numbers on [-1,1].

<ロト</th>
日本
日本<

Grothendieck's identity III

More generally, we may list the following two "Schoenberg-type" results (applied to non-linear correlation matrix transforms) which are implied by the Schur product theorem:

Theorem (Schoenberg (1942), Rudin (1959)) Let $0 \neq f : [-1, 1] \longrightarrow \mathbb{R}$ be a function that admits a power series representation $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for some sequence (a_n) of non-negative numbers on [-1, 1]. Then $f[A] \in PSD(m; \mathbb{R})$ for all $A \in PSD(m; [-1, 1])$ and all $m \in \mathbb{N}$.

More generally, we may list the following two "Schoenberg-type" results (applied to non-linear correlation matrix transforms) which are implied by the Schur product theorem:

Theorem (Schoenberg (1942), Rudin (1959)) Let $0 \neq f : [-1, 1] \longrightarrow \mathbb{R}$ be a function that admits a power series representation $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for some sequence (a_n) of non-negative numbers on [-1, 1]. Then $f[A] \in PSD(m; \mathbb{R})$ for all $A \in PSD(m; [-1, 1])$ and all $m \in \mathbb{N}$. In particular, f(1) > 0 and $|f(\rho)| \leq f(1)$ for all $\rho \in [-1, 1]$.

<ロト</th>
日本
日本<

Grothendieck's identity III

More generally, we may list the following two "Schoenberg-type" results (applied to non-linear correlation matrix transforms) which are implied by the Schur product theorem:

Theorem (Schoenberg (1942), Rudin (1959)) Let $0 \neq f : [-1, 1] \longrightarrow \mathbb{R}$ be a function that admits a power series representation $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for some sequence (a_n) of non-negative numbers on [-1, 1]. Then $f[A] \in PSD(m; \mathbb{R})$ for all $A \in PSD(m; [-1, 1])$ and all $m \in \mathbb{N}$. In particular, f(1) > 0 and $|f(\rho)| \leq f(1)$ for all $\rho \in [-1, 1]$. $\frac{1}{f(1)}f$ maps [-1, 1] into [-1, 1].

<ロト</th>
日本
日本<

Grothendieck's identity III

More generally, we may list the following two "Schoenberg-type" results (applied to non-linear correlation matrix transforms) which are implied by the Schur product theorem:

Theorem (Schoenberg (1942), Rudin (1959)) Let $0 \neq f : [-1,1] \longrightarrow \mathbb{R}$ be a function that admits a power series representation $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for some sequence (a_n) of non-negative numbers on [-1,1]. Then $f[A] \in PSD(m;\mathbb{R})$ for all $A \in PSD(m; [-1,1])$ and all $m \in \mathbb{N}$. In particular, f(1) > 0 and $|f(\rho)| \leq f(1)$ for all $\rho \in [-1,1]$. $\frac{1}{f(1)}f$ maps [-1,1] into [-1,1]. Let $k \in \mathbb{N}$ and Σ be an arbitrary $(k \times k)$ -correlation matrix. Then

Let $k \in \mathbb{N}$ and Σ be an arbitrary $(k \times k)$ -correlation matrix. If also $\frac{1}{f(1)}f[\Sigma]$ is a $(k \times k)$ -correlation matrix.

More generally, we may list the following two "Schoenberg-type" results (applied to non-linear correlation matrix transforms) which are implied by the Schur product theorem:

Theorem (Schoenberg (1942), Rudin (1959)) Let $0 \neq f : [-1,1] \longrightarrow \mathbb{R}$ be a function that admits a power series representation $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for some sequence (a_n) of non-negative numbers on [-1,1]. Then $f[A] \in PSD(m; \mathbb{R})$ for all $A \in PSD(m; [-1,1])$ and all $m \in \mathbb{N}$. In particular, f(1) > 0 and $|f(\rho)| \leq f(1)$ for all $\rho \in [-1,1]$. $\frac{1}{f(1)}f$ maps [-1,1] into [-1,1].

Let $k \in \mathbb{N}$ and Σ be an arbitrary $(k \times k)$ -correlation matrix. Then also $\frac{1}{f(1)}f[\Sigma]$ is a $(k \times k)$ -correlation matrix.

Conversely, we have:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Schoenberg (1942), Rudin (1959), Christensen/Ressel (1978))

Let $0 \neq g : [-1, 1] \longrightarrow \mathbb{R}$ be a function such that $g[\Sigma]$ is a $(k \times k)$ -correlation matrix for all $(k \times k)$ -correlation matrices Σ and all $k \in \mathbb{N}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Schoenberg (1942), Rudin (1959), Christensen/Ressel (1978))

Let $0 \neq g : [-1, 1] \longrightarrow \mathbb{R}$ be a function such that $g[\Sigma]$ is a $(k \times k)$ -correlation matrix for all $(k \times k)$ -correlation matrices Σ and all $k \in \mathbb{N}$. Then g(1) = 1 and $|g(\rho)| \le 1$ for all $\rho \in [-1, 1]$, and

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Schoenberg (1942), Rudin (1959), Christensen/Ressel (1978))

Let $0 \neq g : [-1, 1] \longrightarrow \mathbb{R}$ be a function such that $g[\Sigma]$ is a $(k \times k)$ -correlation matrix for all $(k \times k)$ -correlation matrices Σ and all $k \in \mathbb{N}$. Then g(1) = 1 and $|g(\rho)| \le 1$ for all $\rho \in [-1, 1]$, and $g[A] \in PSD(m; \mathbb{R})$ for all $A \in PSD(m; [-1, 1])$ and all $m \in \mathbb{N}$.

<ロト</th>
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日

Theorem (Schoenberg (1942), Rudin (1959), Christensen/Ressel (1978))

Let $0 \neq g : [-1, 1] \longrightarrow \mathbb{R}$ be a function such that $g[\Sigma]$ is a $(k \times k)$ -correlation matrix for all $(k \times k)$ -correlation matrices Σ and all $k \in \mathbb{N}$. Then g(1) = 1 and $|g(\rho)| \le 1$ for all $\rho \in [-1, 1]$, and $g[A] \in PSD(m; \mathbb{R})$ for all $A \in PSD(m; [-1, 1])$ and all $m \in \mathbb{N}$. Moreover, $g : [-1, 1] \longrightarrow [-1, 1]$ has to be a function that admits a power series representation $g(x) = \sum_{n=0}^{\infty} b_n x^n$ for some sequence (b_n) of non-negative numbers on [-1, 1].

A seemingly fruitful approach is the following one:

<ロ > < 団 > < 臣 > < 臣 > 臣 51/54

A seemingly fruitful approach is the following one:

(i) Transform an arbitrarily given correlation matrix Σ_0 non-linearly - and entrywise - to another correlation matrix $\Sigma_1 := \Phi[\Sigma_0]$ for some $\Phi : C(k; \mathbb{R}) \longrightarrow C(k; \mathbb{R})$ such that this non-linear transformation Φ strongly reduces the impact of the arcsin function (up to a given small error).

<ロ > < 団 > < 臣 > < 臣 > 臣 51/54

A seemingly fruitful approach is the following one:

- (i) Transform an arbitrarily given correlation matrix Σ_0 non-linearly - and entrywise - to another correlation matrix $\Sigma_1 := \Phi[\Sigma_0]$ for some $\Phi : C(k; \mathbb{R}) \longrightarrow C(k; \mathbb{R})$ such that this non-linear transformation Φ strongly reduces the impact of the arcsin function (up to a given small error).
- (ii) Apply Grothendieck's identity to the so obtained correlation matrix Σ_1 and apply the estimation above to $\arcsin[\Sigma_1]$.

P

<ロ > < 団 > < 臣 > < 臣 > 王 > 51/54

A seemingly fruitful approach is the following one:

- (i) Transform an arbitrarily given correlation matrix Σ_0 non-linearly - and entrywise - to another correlation matrix $\Sigma_1 := \Phi[\Sigma_0]$ for some $\Phi : C(k; \mathbb{R}) \longrightarrow C(k; \mathbb{R})$ such that this non-linear transformation Φ strongly reduces the impact of the arcsin function (up to a given small error).
- (ii) Apply Grothendieck's identity to the so obtained correlation matrix Σ_1 and apply the estimation above to $\arcsin[\Sigma_1]$.
- (iii) A reiteration of the steps (i) and (ii) could lead to an iterative algorithm which might converge to a "suitable" upper bound of $K_G^{\mathbb{R}}$.

A phrase of G. H. Hardy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

"... at present I will say only that if a chess problem is, in the crude sense, 'useless', then that is equally true of most of the best mathematics; that very little of mathematics is useful practically, and that that little is comparatively dull. The 'seriousness' of a mathematical theorem lies, not in its practical consequences, which are usually negligible, but in the significance of the mathematical ideas which it connects..."

- A Mathematician's Apology (1940)

<ロ > < 団 > < 臣 > < 臣 > 臣 53/54

Only a - very - few references

- [1] N. Alon and A. Naor. Approximating the cut-norm via Grothendieck's inequality. SIAM J. Comput. 35, no. 4, 787-803 (2006).
- [2] J. Briët, F. M. de Oliveira Filho and F. Vallentin.
 The Grothendieck problem with rank constraint.
 Proc. of the 19th Intern. Symp. on Math. Theory of Netw.
 and Syst. MTNS 2010, 5-9 July, Budapest (2010).
- [3] T.S. Stieltjes. Extrait d'une lettre adressé à M. Hermite. Bull. Sci. Math. Ser. 2 13:170 (1889).

[4] B.S. Tsirelson.
 Some results and problems on quantum Bell-type inequalities.
 Hadronic J. Suppl. 8, no. 4, 329-345 (1993).

Thank you for your attention!

Thank you for your attention!

Are there any questions, comments or remarks?

