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A portrait of A. Grothendieck




A. Grothendieck lecturing at IHES
(1958-1970)
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@® Grothendieck’s inequality in matrix formulation
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Grothendieck’s inequality in matrix
form |

Theorem (Lindenstrauss-Pelczynski (1968))

LetF € {R,C} andm,n € N. Then there exists a universal
constant K > 0 - not depending on m and n - such that for all
matrices A = (a;;) € M(m x n;F), for all F-Hilbert spaces H, for

all unit vectors uy, . .., upy, vy, ...,v, € Sy the following inequality
is satisfied:

m n m n
‘ZZaij<ui,vj~>H‘ S K max{‘ ZZaijpiqj‘ :p,',qj S {—1, 1}} .

i=1 j=1 i=1 j=1
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The smallest possible value of the corresponding constant K is
denoted by K. Itis called Grothendieck’s constant.
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Grothendieck’s inequality in matrix
form |

Theorem (Lindenstrauss-Pelczynski (1968))

LetF € {R,C} andm,n € N. Then there exists a universal
constant K > 0 - not depending on m and n - such that for all
matrices A = (a;;) € M(m x n;F), for all F-Hilbert spaces H, for
all unit vectors uy, . .., upy, vy, ...,v, € Sy the following inequality
is satisfied:

m n m n
‘ZZaij<ui,vj~>H‘ S K max{‘ ZZaijpiqj‘ :p,',qj S {—1, 1}} .

i=1 j=1 i=1 j=1

The smallest possible value of the corresponding constant K is
denoted by K. Itis called Grothendieck’s constant. Computing
the exact numerical value of this constant is an open problem
(unsolved since 1953)!
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Grothendieck’s inequality in matrix
form Il

Theorem (R. E. Rietz (1974), H. Niemi (1983))

LetF € {R,C} and H be an arbitrary Hilbert space overF. Let
n € N. Let KL, denote the Grothendieck constant, derived from
Grothendieck’s inequality “restricted” to the set of all positive
semidefinite n x n-matrices overF. Then
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s

R
KGHZE
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Theorem (R. E. Rietz (1974), H. Niemi (1983))

LetF € {R,C} and H be an arbitrary Hilbert space overF. Let
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semidefinite n x n-matrices overF. Then

Koy = % and
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Grothendieck’s inequality in matrix
form Il

Theorem (R. E. Rietz (1974), H. Niemi (1983))

LetF € {R,C} and H be an arbitrary Hilbert space overF. Let
n € N. Let KL, denote the Grothendieck constant, derived from
Grothendieck’s inequality “restricted” to the set of all positive
semidefinite n x n-matrices overF. Then

T 4
KE, == and K5, =—.
GH = 5 GH = —
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Grothendieck’s inequality in matrix
form Il

Theorem (R. E. Rietz (1974), H. Niemi (1983))

LetF € {R,C} and H be an arbitrary Hilbert space overF. Let
n € N. Let KL, denote the Grothendieck constant, derived from
Grothendieck’s inequality “restricted” to the set of all positive
semidefinite n x n-matrices overF. Then

s C 4
From now on are going to consider the real case (i.e., F = R)

only. Nevertheless, we allow an unrestricted use of all matrices
A € M(m x n;R) forany m,n € Nin GT.
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Grothendieck’s inequality in matrix
form Il

Until present the following encapsulation of K& holds, primarily
due to R. E. Rietz (1974), J. L. Krivine (1977), and most
recently, M. Braverman, K. Makarychev, Y. Makarychev, and A.
Naor (4-author paper from 2011, available on the arXiv):

13 7Ex
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Grothendieck’s inequality in matrix
form Il

Until present the following encapsulation of K& holds, primarily
due to R. E. Rietz (1974), J. L. Krivine (1977), and most
recently, M. Braverman, K. Makarychev, Y. Makarychev, and A.
Naor (4-author paper from 2011, available on the arXiv):

") T
1,676 < K& < ~1,782.
7 2In(1+2)

Screening these numbers we might be tempted to guess the
following

Conjecture
IsK: = /7~ 1,7727

13 7Ex



@ Grothendieck’s inequality rewritten
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Grothendieck’s inequality rewritten |

By transforming Grothendieck’s inequality into an equivalent
inequality between traces of matrix products (respectively
Hilbert-Schmidt inner products) we are lead to a surprising
interpretation which reveals deep links to combinatorial (binary)
optimisation, semidefinite programming (SDP) and multivariate
statistics, built on suitable non-linear mappings between
correlation matrices.
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Grothendieck’s inequality rewritten |

By transforming Grothendieck’s inequality into an equivalent
inequality between traces of matrix products (respectively
Hilbert-Schmidt inner products) we are lead to a surprising
interpretation which reveals deep links to combinatorial (binary)
optimisation, semidefinite programming (SDP) and multivariate
statistics, built on suitable non-linear mappings between
correlation matrices.

We will sketch this approach which might lead to a constructive

™

improvement of Krivine’s upper bound TRV At least it also
can be reproduced in this approach.
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Grothendieck’s inequality rewritten |l
Let m,n € NJA € M(m x m;R), u:= (uy,...,u,)" €S% and
vi=(vi,...,v,) € S, be given, where Sy := {w € H : |w| = 1}
denotes the unit sphere in H.
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Grothendieck’s inequality rewritten |l
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ZZaU (Ui, vi)w = tr(A Ly (u, l)) = (A, y(u,v)),
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inner product) of the matrices A € M(m x n;R) and
Cy(u,v) € M(m x n;R), where
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Let m,n € NJA € M(m x m;R), u:= (uy,...,u,)" €S% and
vi=(vi,...,v,) € S, be given, where Sy := {w € H : |w| = 1}
denotes the unit sphere in H.
Firstly, note that

ZZ% (Ui, vi)w = tr(A Ly (u, l)) = (A, y(u,v)),

i=1 j=l1

is precisely the Hilbert-Schmidt inner product (or the Frobenius
inner product) of the matrices A € M(m x n;R) and
Cy(u,v) € M(m x n;R), where

(wi,vi)m  (wi,v2)u .. (U1, va)u

(up,vi)g (uz,vo)g ... (uz,va)m
Iy(u,v) = . !

<”m- Vl>ll <”m- VZ>I/ cee <”m¢ Vn>ll
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Grothendieck’s inequality rewritten Il

Letm,n € NJA € M(m x n;R),p:= (p1,....pm) " € (So)m and
q:=(q1,---,q2)" € (S°)" be given, where §° := {—1,1}
denotes the unit “sphere” in R = RO+!,

Similarly as before, we obtain

m n
SO agpigi =tr(AT Tulp.q)) = (A, Tx(p.q),
i=1 j=1

where now

+1 F1 ... =+l
Tr(p.q) :==pq' = fl fl N fl
L1OFL L. £l

1A /K4



Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors
Uy, Up, .., Uy, Vi, V2, ..., v, € H and represent them as
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors

Uy, Up, .., Uy, Vi, V2, ..., v, € H and represent them as
(ur,vi)  (ui,v2) ... (u1,vp)
(ug,vi) (up,va) ... (uz,vp)
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17 /84



Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors

Uy, Up, .., Uy, Vi, V2, ..., v, € H and represent them as
(ur,vi)  (ur,v2) oo (U, vp)
(uz,v1> <u2,V2> e <Lt2,vn>
<l/tm,V1> <I/tm,V2> cee <Mmavn>

Does this matrix look familiar to you?
It is a part of something larger...
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors

Uy, Up, .., Uy, Vi, V2, ..., v, € H and represent them as
(ur,vi)  (ur,v2) oo (U, vp)
(uz,v1> <u2,V2> e <Lt2,v,,>
<I/tm,V1> <I/tm,V2> cee <Mmavn>

Does this matrix look familiar to you?
It is a part of something larger...
Namely:

17 /84



Block matrix representation |

<u1,\11> <u1,V2> (ul,vn>
(ug,vi)  (up,vay ... (ua,vy)
<um.,v1) <um;v2> coo (thmy V)

(uy,vi)  Aup,va) oo (ug,vm)

<M2,V1> (uz,V2> <I/t2,vn>

<unn Vl) <um7 V2> . <um7 Vn>

12 /54



Block matrix representation |

(up,vi) (ur,va) ... (up,vy)
(up,vi) (ua,va) ... (up,vy)
(tmyv1) (s va) oo (U, Vi)

(ur,vi) (uz,vi) ... (um,v1)

(ui,va) (ua,v2) ... (um,v2)

<u1,'v,,) <u2,.vn> e (umyvn)

18/



Block matrix representation |

(up,vi) (ur,va) ... (up,vy)
(up,vi) (ua,va) ... (up,vy)
(tmyv1) (s va) oo (U, Vi)

(vi,ur) (viyup) ... (Vi Um)

(vo,ury  (va,up) ... (vo,up)

<v,,,'u1) <vn,.u2> coe (Vs )

20 /84



Block matrix representation |l

<M1,M1> <M1,M2> <u1,um> (ul,v1> <Lt1,V2>
(ug,ur)  (up,up) ... (up,uy) (upg,vi) (uz,va) ...
(U ur) (U un) oo (s tt) (U, V1) (U, v2) ...
(viyur) (viyua) oo (visum)  (vi,vi) o (viova) Ll
(vo,u1)  (va,up) .. (vo,um)  (va,vi) (va,va) ...
Gt i) e i) omvi) v
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Block matrix representation Il

1 <M1,M2> <Lt1,Ltm> <M1,V1> <u1,V2> (ul,vn>
(up, uy) 1 coo (uayuy) (uayvi)  (ua,v2) oo {ua,vn)
(yur)  (um,up) ... 1 (um, vi) (tum,v2) oo (s vn)
(vi,ur) (viyup) ... (Vi up) 1 (vi,va) .. (Vi,vn)
(va,u1) (va,un) ... (va,um)y  (v2,vi) 1 oo (v,
<Vnu M1> <Vn7 u2> cee <Vn7 um> <Vi17 V1> <Vma V2> cee 1

29 IEA



A refresher of a few definitions |

Let n € N. We put

PSD(n;R) :={S: S € M(n x n;R) and S is positive semidefinite}.
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Recall that PSD(n;R) is a closed convex cone which (by
definition!) consists of symmetric matrices only.
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A refresher of a few definitions |

Let n € N. We put
PSD(n;R) :={S: S € M(n x n;R) and S is positive semidefinite}.

Recall that PSD(n;R) is a closed convex cone which (by
definition!) consists of symmetric matrices only.

Moreover, we consider the set

C(n;R) := {S € PSD(n;R) such that S;; = 1 for all i € [n]}.

22 /84



A refresher of a few definitions Il

Letd,k € Nand (H, (-,-)) be an arbitrary d-dimensional Hilbert
space (i.e, H = 1§). Let wi,ws, ..., w; € H. Put
wi=(wi,...,w) " € H and S := (wiiwal ... twy) €

M(d x k;R). The matrix I';;(w,w) € PSD(k; R), defined as

Tr(w,w)i = (wi, wy) = (ST5) (i,j €[kl :=={1,2,...,k})

i

is called Gram matrix of the vectors wy,...,w, € H.
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A refresher of a few definitions Il

Letd,k € Nand (H, (-,-)) be an arbitrary d-dimensional Hilbert
space (i.e, H = 1§). Let wi,ws, ..., w; € H. Put
wi=(w,...,w)" € H*and § := (wllwzl Iwk) €

M(d x k;R). The matrix I';;(w,w) € PSD(k; R), defined as

Ca(w,w)i = (wi,wj) = (STS)’./

is called Gram matrix of the vectors wy,...,w, € H.
Observe that
(ur,vi) (ui,v2) ... (u1,vn)
(ug,vi) (up,va) ... (uz,vp)
(Umsv1)  (Umsv2) oo (U Vi)

is not a Gram matrix!
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A refresher of a few definitions Il
Let n € N. Fix a probability space (2, 7,P) and let
€:=(£,6,...,&)" : Q — R" be a random vector. Let
pi=(p1, 2, ..., ) €R"and C € PSD(n; R).
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A refresher of a few definitions Il

Let n € N. Fix a probability space (2, 7,P) and let
€:=(£,6,...,&)" : Q — R" be a random vector. Let
pi=(p1, 2, ..., ) €R"and C € PSD(n; R).

Recall that ¢ is an n-dimensional Gaussian random vector with
respect to the “parameters” ;1 and C (short: £ ~ N, (i, C)) if and
only if for all a € R”" there exists 1, ~ N;(0, 1) such that

n

(a,&) = Za,{i = (a, p) + /{a,Ca)n,

i=1
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A refresher of a few definitions Il

Let n € N. Fix a probability space (2, 7,P) and let
€:=(£,6,...,&)" : Q — R" be a random vector. Let

w= (1, p2, -, pn) " € R"and C € PSD(n; R).

Recall that ¢ is an n-dimensional Gaussian random vector with
respect to the “parameters” ;1 and C (short: £ ~ N, (i, C)) if and
only if for all a € R”" there exists 1, ~ N;(0, 1) such that

n

(a,&) = Za,{i = (a,p) + /{a,Ca) n,

i=1

Note that we don’t require here that C is invertible!
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A refresher of a few definitions Il

Let n € N. Fix a probability space (2, 7,P) and let
€:=(£,6,...,&)" : Q — R" be a random vector. Let
pi=(p1, 2, ..., ) €R"and C € PSD(n; R).

Recall that ¢ is an n-dimensional Gaussian random vector with
respect to the “parameters” ;1 and C (short: £ ~ N, (i, C)) if and
only if for all a € R”" there exists 1, ~ N;(0, 1) such that

n

(a,&) = Za,{i = (a, p) + /{a,Ca)n,

i=1

Note that we don’t require here that C is invertible! Following
Feller, the matrix V(¢) defined as

V(&) = E[&§] — E[&GIE[S] o Cy  (irj € [n])

is known as the variance matrix of the Gaussian random vector
£.

25 /K5A



Structure of correlation matrices |

Corollary
Letn e N and s = (o) € M(n x n; R). TFAE:
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Structure of correlation matrices |

Corollary
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Corollary
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(iii) ojj = cos(yp;j) for some ¢;; € [0, | for all i,j € [n]. Thereby,
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(iv) ¥ =V(¢) is a correlation matrix, induced by some
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Structure of correlation matrices |

Corollary
Letn e Nand ¥ = (o) € M(n x n;R). TFAE:
(i) e C(mR).
(i) $ =Tp(x,x) for somex = (x,...,x,)" € (s"1)".

(iii) ojj = cos(yp;j) for some ¢;; € [0, | for all i,j € [n]. Thereby,
wii =0 for alli € [n].

(iv) ¥ =V(¢) is a correlation matrix, induced by some
n-dimensional Gaussian random vector £ ~ N,(0,Y).
In particular, condition (i) implies that o;; € [—1,1] for all i, j € [n].

24 /84



Structure of correlation matrices Il

Observation
Letk € N. Then the sets {S: S = xx' for somex € {—1,1}}}
and {©: © € C(k;R) and rk(©) = 1} coincide.
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Observation
Letk € N. Then the sets {S: S = xx' for some x € {—1,1}}}
and {©: © € C(k;R) and rk(©) = 1} coincide.

Proposition (K. R. Parthasarathy (2002))

Letk € N. C(k;R) is a compact and convex subset of the
k?-dimensional vector space M(k x k;R). Any k x k-correlation
matrix of rank 1 is an extremal point of the set C(k;R).
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Structure of correlation matrices Il

Observation
Letk € N. Then the sets {S: S = xx' for some x € {—1,1}}}
and {©: © € C(k;R) and rk(©) = 1} coincide.

Proposition (K. R. Parthasarathy (2002))

Letk € N. C(k;R) is a compact and convex subset of the
k?-dimensional vector space M(k x k;R). Any k x k-correlation
matrix of rank 1 is an extremal point of the set C(k;R).

In particular, the (finite) set of all k x k-correlation matrices of
rank 1 is not convex.

Let k € N. Put

Ci(k;R) :={©:0 € C(k;R) and rk(©) = 1}.

27 /84



Canonical block injection of A

A naturally appearing question is the following:
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Canonical block injection of A

A naturally appearing question is the following:

Having gained - important - additional structure by “enlarging”
the m x n-matrix I'y(u, v) to a (m + n) x (m + n)-correlation
matrix, how could this gained information be used to rewrite
Grothendieck’s inequality accordingly?
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Canonical block injection of A

A naturally appearing question is the following:

Having gained - important - additional structure by “enlarging”
the m x n-matrix I'y(u, v) to a (m + n) x (m + n)-correlation
matrix, how could this gained information be used to rewrite
Grothendieck’s inequality accordingly? To answer this question,
let us also “embed” the m x n-matrix A suitably!

Definition

Let m,n € Nand A € M(m x n;R) arbitrary. Put

~ 1(0 A
A‘_z(AT o)

Let us call M((m + n) x (m +n); R) 3 A the canonical block
injection of A.
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Canonical block injection of A

A naturally appearing question is the following:

Having gained - important - additional structure by “enlarging”
the m x n-matrix I'y(u, v) to a (m + n) x (m + n)-correlation
matrix, how could this gained information be used to rewrite
Grothendieck’s inequality accordingly? To answer this question,
let us also “embed” the m x n-matrix A suitably!

Definition
Let m,n € Nand A € M(m x n;R) arbitrary. Put

~ 1(0 A
A'_2<AT o)

Let us call M((m + n) x (m +n); R) 3 A the canonical block
injection of A.

Observe that A is symmetric, implying that A = AT .

29 /8A



A further equivalent rewriting of GT |

Proposition

Let H be an arbitrary Hilbert space overR. Let m,n € N and
A = (a;) € M(m x n;R). LetK > 0. TFAE:
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A further equivalent rewriting of GT |

Proposition

Let H be an arbitrary Hilbert space overR. Let m,n € N and
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A further equivalent rewriting of GT |

Proposition
Let H be an arbitrary Hilbert space overR. Let m,n € N and
A = (a;) € M(m x n;R). LetK > 0. TFAE:

(i)

m n
Z Z a;ipiq;

i=1 j=1

m n
sup ‘ ZZaU(ui’V1>H‘ <K max

(uv)esyxSy 2y =1 (pg)e{-1,1 " x{-1,1}"

(i)
sp [AD) <K max |, 0)].

SEC(m+n;R) R
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A further equivalent rewriting of GT Il

Proposition
Let H be an arbitrary Hilbert space overR. Let m,n € N and
A = (a;) € M(m x n;R). LetK > 0. TFAE:

(i)

max MHV] ’ max
(enespxsy | & (P)e{-11}mx{~1.1}"

m n
2.2 pid-
i=1 j=1

(ii)
max |(A,X)| <K max [(A,0)].
YeC(m+nmR) O€eC, (m+n;R)
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A further equivalent rewriting of GT Il

Proposition
Let H be an arbitrary Hilbert space overR. Let m,n € N and
A = (a;) € M(m x n;R). LetK > 0. TFAE:

(i)

max
(u,v)ESH xS}

m n
DD apid;
i—1 j—=1

m n
a;iui, v; H‘ <K max
;; ol ) (P.a)e{~ 1,1} x{~1,1}"

(ii) N
max |(A,X)| <K max [(A,0)].
YeC(m+nmR) O€eC, (m+n;R)
We don’t know whether condition (ii) holds for all matrices in

M((m +n) x (m+ n);R).
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GT versus NP-hard optimisation

Observation

On the left side of GT: a convex conic optimisation problem
(since it is SDP) and hence of polynomial worst-case
complexity (P)):

max _|(A,5)
YeC(m+nR)
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GT versus NP-hard optimisation

Observation
On the left side of GT: a convex conic optimisation problem
(since it is SDP) and hence of polynomial worst-case
complexity (P)):
max  |(A,2)]

YeC(m+nR)
On the right side: an NP-hard, non-convex combinatorial
(Boolean) optimisation problem:

~

max [(A, ©)]
©cC(m+mR)
rk(©)=1
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GT versus NP-hard optimisation

Observation
On the left side of GT: a convex conic optimisation problem
(since it is SDP) and hence of polynomial worst-case
complexity (P)):
max  |(A,2)]

YeC(m+nR)
On the right side: an NP-hard, non-convex combinatorial
(Boolean) optimisation problem:

max [(A, ©)]
©cC(m+mR)
rk(©)=1
Thus, Grothendieck’s constant K3 is precisely the “integrality
gap’”; i.e., the maximum ratio between the solution quality of
the NP-hard Boolean optimisation on the right side of GT and

of its SDP relaxation on the left side!
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@ Grothendieck’s inequality and its relation to non-locality in
quantum mechanics
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Modelling quantum correlation |
Following Tsirelson’s approach we consider two sets, the set of
all “classical” (local) (m x n)-cross-correlation matrices and the
set of all (m x n)-quantum correlation matrices:
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Modelling quantum correlation |
Following Tsirelson’s approach we consider two sets, the set of
all “classical” (local) (m x n)-cross-correlation matrices and the
set of all (m x n)-quantum correlation matrices:

(i) Let (2, F,P) be a (Kolmogorovian) probability space. Let
A= (aij) € M(m x n;R). A € Cioc(m x n: R) iff
a;j = Ep[X;Y;j], where X;, ¥; : Q@ — [—1, 1] are random
variables - all defined on the same given probability space
(Q, F,P).
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Modelling quantum correlation |

Following Tsirelson’s approach we consider two sets, the set of
all “classical” (local) (m x n)-cross-correlation matrices and the
set of all (m x n)-quantum correlation matrices:

(i)

Let (©2, F,P) be a (Kolmogorovian) probability space. Let
A= (aij) € M(m x n;R). A € Cioc(m x n: R) iff

a;j = Ep[X;Y;j], where X;, ¥; : Q@ — [—1, 1] are random
variables - all defined on the same given probability space
(Q, F,P).

Let A = (a;) € M(m x n;R). A € OC(m x n: R) iff there are
k,l € N, a density matrix p on B(H,), where

Hy, := Ck® C!, and linear operators A; € B(C*), B; € B(C')
such that ||A;|| < 1, |Bj|| < 1 and

aj = (p,Ai@B;) = tr(p(A; @ B;)) = tr(p(A; @ 1d") (1d") @ B)))

for all (i,j) € [m] x [n].
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Modelling quantum correlation |l

Is there a link between QC(m x n; R) and the left side of GT?
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Modelling quantum correlation |l

Is there a link between QC(m x n; R) and the left side of GT?

Theorem (Tsirelson (1987, 1993))
LetA = (a;;) € M(m x n;R). TFAE:
(i) A € QC(m x n:R).
(i) A =Ty(u,v) for some k € N and some u  (s*~')" and
vE (Sk_l)n.
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Modelling quantum correlation Il|

(uy,vi) (up,va) ... {ur,vn)
Flg(u, ) = (uz,.vl) <u2,-v2> coo (up,vp)
(s v1)  (Umyv2) oo (s vn)
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Modelling quantum correlation Il|

(uy,vi) (up,va) ... {ur,vn)
Flé»(u, ) = (ug,vi) (up,va) ... (ug,-vn)
(s v1)  (Umyv2) oo (s vn)

Ty (u,v) = UV is the product of the matrices U : % — 1" and
Vil — 5, where

25 /A



Modelling quantum correlation IV

Hence, we see that if u € S} and v € S}, one can canonically
associate a linear operator to the (m x n)-matrix I'y (u, v) which
factors through the Hilbert space H := /5 such that

Ty (u,v) = UV for some (m x k)-matrix U and some

(k x n)-matrix V, satisfying

1 (Cr(u,v)) < [|Ull2eo - VI <1
g

\/
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Modelling quantum correlation V

Theorem (Grothendieck (1953), Tsirelson (1987), Pisier
(2001))

Let H be a separable Hilbert space and m,n € N. Let
w:=(ug,...,un)" €Spandv:=(vy,...,v,)" €8t Then

Ty(u,v) € K ex({pg" :pe{-1,1}",q€ {-1,1}"})
= Kg Cioc(m x m;R) .
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Modelling quantum correlation V

Theorem (Grothendieck (1953), Tsirelson (1987), Pisier
(2001))

Let H be a separable Hilbert space andm,n € N. Let
wi=(ui,...,uy)" €Sfandv:=(vi,...,v,)" €Sp. Then

Tu(u,v) € Ko CX({qu pe{-11}" qe{-1,1}"})
= Kg Cioc(m x m;R) .
Corollary (Tsirelson (1987, 1993))
Letm,n € N. Then
QC(m x m;R) € K¢ Crog(m x m;R).

Moreover, Cjoc(m x n;R) C QC(m x n;R). The latter set
inclusion is strict.
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Bell’'s inequalities and GT |

It is well-known that it is also experimentally verified that
entangled composite quantum systems violate certain relations
between correlations - known as Bell's inequalities.
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Bell’s inequalities and GT |

It is well-known that it is also experimentally verified that
entangled composite quantum systems violate certain relations
between correlations - known as Bell's inequalities.

Purely in terms of a very elementary application of classical
Kolmogorovian probability theory and a bit of elementary
algebra - and completely independent of any modelling
assumptions in physics - Bell's inequalities can be represented
in form of an inequality originating from J. £ Clauser, M. A.
Horne, A. Shimony and R. A. Holt in 1969.
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Bell’s inequalities and GT |

It is well-known that it is also experimentally verified that
entangled composite quantum systems violate certain relations
between correlations - known as Bell's inequalities.

Purely in terms of of a very elementary application of classical
Kolmogorovian probability theory and a bit of elementary
algebra - and “without the annoying adherence to physics” (as
we have learnt from Niel ©) - Bell's inequalities can be
represented in form of an inequality originating from J. F.
Clauser, M. A. Horne, A. Shimony and R. A. Holt in 1969.
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Bell’s inequalities and GT Il

Lemma (BCHSH Inequality)

Let (2, F,P) be an arbitrary probability space. Let X;, X,, X3 and
X4 be arbitrary random variables with values in [—1, 1] P-a.s., all
defined on ). Then

|EP[XZ'X2] — EP[XZ'X3]| <1-— EP[X2X3] for alli € {1,4}
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Lemma (BCHSH Inequality)

Let (2, F,P) be an arbitrary probability space. Let X;, X,, X3 and
X4 be arbitrary random variables with values in [—1, 1] P-a.s., all
defined on ). Then

|EP[XZ'X2] — EP[XZ'X3]| <1- EP[X2X3] for alli {1,4}
and

‘EP[XiXQ] + E]}D[XiX3” <1+ E]}D[X2X3] for alli € {1,4} .
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Lemma (BCHSH Inequality)

Let (2, F,P) be an arbitrary probability space. Let X;, X,, X3 and
X4 be arbitrary random variables with values in [—1, 1] P-a.s., all
defined on ). Then

|Ep[X;iXs] — Ep[X;X3)| < | — Ep[XoX5] foralli € {1,4}
and

|Ep[X:Xa] + Ep[X:X3]| < 1+ Ep[XoX3] foralli € {1,4}.
In particular,

|EP[X1X2] + E]]I[X]X3] + EP[X4X2] — E]}»[X4X3” <2.
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Bell’s inequalities and GT Il

Lemma (BCHSH Inequality)

Let (2, F,P) be an arbitrary probability space. Let X;, X,, X3 and
X4 be arbitrary random variables with values in [—1, 1] P-a.s., all
defined on ). Then

|Ep[X;iXs] — Ep[X;X3)| < | — Ep[XoX5] foralli € {1,4}
and

|Ep[X:Xa] + Ep[X:X3]| < 1+ Ep[XoX3] foralli € {1,4}.
In particular,

|EP[X1X2] + E]]I[X]X3] + EP[X4X2] — E]}»[X4X3” <2.

In other words:
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Bell’s inequalities and GT Il

Observation (BCHSH Inequality in matrix form)

Let (Q, F,P) be an arbitrary probability space (in the sense of
Kolmogorov).
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Observation (BCHSH Inequality in matrix form)

Let (Q, F,P) be an arbitrary probability space (in the sense of
Kolmogorov).

Put

Ahad . — (} _11> (= V2- Hadamard matrix ~» “quantum gate”)
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Bell’s inequalities and GT Il

Observation (BCHSH Inequality in matrix form)

Let (Q, F,P) be an arbitrary probability space (in the sense of
Kolmogorov).

Put

Ahad . — (} _11> (= V2- Hadamard matrix ~» “quantum gate”)

Then

(A7, T)] = |tr(A"™T)| < 2 for all T € Cioo(2 x 2 R).

491 /84



Bell’s inequalities and GT IV

Let us turn to the left “quantum correlation side” of GT!
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Bell’s inequalities and GT IV

Let us turn to the left “quantum correlation side” of GT!

Theorem (Tsirelson (1980))
Let H be an arbitrary Hilbert space, u € S?, andv € S%. Then

(AHY Ty (u,v))] = [tr(A"R Ty (u,v))| < 22

A9 /K4



Bell’s inequalities and GT IV

Let us turn to the left “quantum correlation side” of GT!
Theorem (Tsirelson (1980))
Let H be an arbitrary Hilbert space, u € S}, andv € S3,. Then

(AHY Ty (u,v))] = [tr(A"R Ty (u,v))| < 22

Even more holds!

To this end, we recall the main ideas underlying the
EPR/Bell-CHSH experiment.
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Bell’s inequalities and GT IV

Let us turn to the left “quantum correlation side” of GT!

Theorem (Tsirelson (1980))
Let H be an arbitrary Hilbert space, u € S?, andv € S%. Then

(AHY Ty (u,v))] = [tr(A"R Ty (u,v))| < 22

Even more holds!

To this end, we recall the main ideas underlying the
EPR/Bell-CHSH experiment.

Bear also Rui’s talk in mind!
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Bell’'s inequalities and GT V

A source emits in opposite directions two spin % particles
created from one particle of spin 0. By rotating magnets
perpendicular to the directions of the two spin % particles, both,
Alice and Bob measure the spin in 2 different directions, leading
to angles -5 < oy, < 7 for Alice and —75 < 3y, 3, < 5 for
Bob. Only one angle per measurement can be chosen on both
sides. The outcome of this experiment is a “random” pair of
observables belonging to the set

{(A],B]), (AI,B2)7 (A27Bl)7 (A27B2)} .

Any of these observables takes its values in {—1,+1}.
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Bell’'s inequalities and GT V

A source emits in opposite directions two spin % particles
created from one particle of spin 0. By rotating magnets
perpendicular to the directions of the two spin % particles, both,
Alice and Bob measure the spin in 2 different directions, leading
to angles -5 < oy, < 7 for Alice and —75 < 3y, 3, < 5 for
Bob. Only one angle per measurement can be chosen on both
sides. The outcome of this experiment is a “random” pair of
observables belonging to the set

{(A],B]), (AI,B2)7 (A27Bl)7 (A27B2)} .

Any of these observables takes its values in {—1,+1}.
Describing this experiment purely in terms of mathematics we
immediately recognise that the Bell-Tsirelson constant 2v/2 is
attained by the Hadamard matrix, since:
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Bell’s inequalities and GT VI

Theorem (EPR/Bell-CHSH violates Bell and attains 2v/2)

Consider the Hilbert space H := C?> @ C?. Let
H>x:= % (e1 ® e1 + €2 ® e2) (“entangled Bell state”).
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Bell’s inequalities and GT VI

Theorem (EPR/Bell-CHSH violates Bell and attains 2v/2)
Consider the Hilbert space H := C?> @ C?. Let
H>x:= (e1®e1+ex®er) (‘entangled Bell state’). Let

™
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Bell’s inequalities and GT VI

Theorem (EPR/Bell-CHSH violates Bell and attains 2v/2)
Consider the Hilbert space H := C?> @ C?. Let
H>x:= (e1®e1+ex®er) (‘entangled Bell state’). Let

3

ap =

T T
,ap =0, f; ::Zandﬁzzz—z.

[\

Put EPR ((x,(A1®Bl)x>H <x,(A1®Bz)x>H>

(x, (Az & Bl)x>H <x, (A2 ® B2)X>H

where A; := R(«), Bj :== R(f;) and

O(2;R) 2 R(p) := (Z?;((j)) _Siclz)(s(?;)) (‘rotary reflections”) .
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Bell’s inequalities and GT VI

Theorem (EPR/Bell-CHSH violates Bell and attains 2v/2)
Consider the Hilbert space H := C?> @ C?. Let
H>x:= (e1®e1+ex®er) (‘entangled Bell state’). Let

3

ap =

T T
,ap =0, f; ::Zandﬁzzz—z.

[\

Put EPR ((x,(A1®Bl)x>H <x,(A1®Bz)x>H>

(x, (Az & Bl)x>H <x, (A2 ® B2)X>H

where A; := R(«), Bj :== R(f;) and

O(2;R) 2 R(p) := (Z?;((j)) _Siclz)(s(?;)) (‘rotary reflections”) .

ThenTEPR ¢ 9C(2 x 2;R) and
|<AHad, FEPH>’ _ |tr(AHadFEPR)| _ 2\6 > 2.
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@ Towards a determination of Grothendieck’s constant K%
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Schur product and the matrix f[A]

Definition
Let® #1 CRandf: I — R afunction. Let
A = (a;) € M(m x n;R) such that a; € I for all (i,j) € [m] x [n].
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Schur product and the matrix f[A]

Definition

Let® #1 CRandf:I— R afunction. Let

A = (a;) € M(m x n;R) such that a; € I for all (i,j) € [m] x [n].
Define f[A] € M(m x n;R) - entrywise - as f[A];; := f(a;;) for all
(i,7) € [m] x [n].
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Schur product and the matrix f[A]

Definition

Let() #1 C R andf: 1 — R a function. Let

A = (a;;) € M(m x n;R) such that a; € I for all (i, ) € [m] x [n].
Define f[A] € M(m x n;R) - entrywise - as f[A];; := f(a;;) for all

(i,j) € [m] x [n].

Guiding Example
The Schur product (or Hadamard product)

(ajj) * (by) := (ayby)

of matrices (a;;) and (b;) leads to f[A], where f(x) := x°.
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Schur product and the matrix f[A]

Definition

Let® #1 CRandf: I — R afunction. Let

A = (a;;) € M(m x n;R) such that a; € I for all (i, ) € [m] x [n].
Define f[A] € M(m x n;R) - entrywise - as f[A];; := f(a;;) for all

(i,7) € [m] x [n].
Guiding Example
The Schur product (or Hadamard product)
(aij)  (byj) = (ayby)
of matrices (a;) and (b;) leads to f[A], where f(x) := x*.

Remark

The notation “f[A]” is used to highlight the difference between
the matrix f(A) originating from the spectral representation of A
(for normal matrices A) and the matrix f|A], defined as above !
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Grothendieck’s identity |

How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?
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How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<1land(&n)" ~Ny0,%,), where

_ (L p
s (1)

A7 /84



Grothendieck’s identity |

How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<1land(&n)" ~Ny0,%,), where

_ (L p
s (1)

Consider the function sign: R — {—1, 1}, defined as
sign = 11[0700) — 11(,0070).
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Grothendieck’s identity |
How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<tland(&n)' ~Ny(0,%,), where

_ (L p
s (1)

Consider the function sign: R — {—1, 1}, defined as
sign := 1 o) — I_c0)- Then & ~ N1(0,1),m ~ N1(0,1),
corr(§,m) = E[¢n] = p, and
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Grothendieck’s identity |
How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<tland(&n)' ~Ny(0,%,), where

Consider the function sign: R — {—1, 1}, defined as
sign := 1 o) — I_c0)- Then & ~ N1(0,1),m ~ N1(0,1),
corr(§,m) = E[¢n] = p, and

E[sign(&)sign(n)]
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How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<tland(&n)' ~Ny(0,%,), where

Consider the function sign: R — {—1, 1}, defined as
sign := 1 o) — I_c0)- Then & ~ N1(0,1),m ~ N1(0,1),
corr(§,m) = E[¢n] = p, and

E(sign(§)sign(n)] =

A7 /84



Grothendieck’s identity |
How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<tland(&n)' ~Ny(0,%,), where

Consider the function sign: R — {—1, 1}, defined as
sign := 1 o) — I_c0)- Then & ~ N1(0,1),m ~ N1(0,1),
corr(§,m) = E[¢n] = p, and

Elsign(¢)sign(n)] = 4P(§=0,n>0) 1
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Consider the function sign: R — {—1, 1}, defined as
sign := 1 o) — I_c0)- Then & ~ N1(0,1),m ~ N1(0,1),
corr(§,m) = E[¢n] = p, and
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Grothendieck’s identity |

How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<tland(&n)' ~Ny(0,%,), where

Consider the function sign: R — {—1, 1}, defined as
sign := 1 o) — I_c0)- Then & ~ N1(0,1),m ~ N1(0,1),
corr(§,m) = E[¢n] = p, and

Elsign(¢)sign(n)] = 4P(§=0,n>0) 1
= % arcsin (E[¢n])
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Grothendieck’s identity |

How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<tland(&n)' ~Ny(0,%,), where

Consider the function sign: R — {—1, 1}, defined as
sign := 1 o) — I_c0)- Then & ~ N1(0,1),m ~ N1(0,1),
corr(§,m) = E[¢n] = p, and

Elsign(¢)sign(n)] = 4P(§=0,n>0) 1
= %arcsin (El¢n]) =
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Grothendieck’s identity |

How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<tland(&n)' ~Ny(0,%,), where

Consider the function sign: R — {—1, 1}, defined as
sign := 1 o) — I_c0)- Then & ~ N1(0,1),m ~ N1(0,1),
corr(§,m) = E[¢n] = p, and

Elsign(¢)sign(n)] = 4P(§=0,n>0) 1
= %arcsin (El¢n]) = % arcsin(p) .
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Grothendieck’s identity

Corollary

Let2 <k e N. Let> € C(k;R) an arbitrarily given correlation
matrix. Then there exists a Gaussian random vector

& ~ Ni(0,%) such that

2
C(k;R) > — arcsin[>]
™
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Grothendieck’s identity

Corollary

Let2 <k e N. Let> € C(k;R) an arbitrarily given correlation
matrix. Then there exists a Gaussian random vector

& ~ Ni(0,%) such that

2
C(k;R) > — arcsin[X] =
™
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Grothendieck’s identity

Corollary

Let2 <k e N. Let> € C(k;R) an arbitrarily given correlation
matrix. Then there exists a Gaussian random vector
& ~ Ni(0,%) such that

C(k;R) > %arcsin[E] =E[0()],

where
O(&(w))yj := sign(&i(w))sign(§;(w))

for allw € 2, and for all i,j € [k].
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Grothendieck’s identity

Corollary

Let2 <k e N. Let> € C(k;R) an arbitrarily given correlation
matrix. Then there exists a Gaussian random vector
& ~ Ni(0,%) such that

C(k;R) > 2 arcsin[X] = E[©(¢)]

™

where
O(&(w))yj := sign(&i(w))sign(§;(w))

forallw € Q, and for all i,j € [k]. ©({(w)) is a correlation matrix
of rank 1 for all w € €2, and we have
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Grothendieck’s identity

Corollary

Let2 <k e N. Let> € C(k;R) an arbitrarily given correlation
matrix. Then there exists a Gaussian random vector
& ~ Ni(0,%) such that

C(k;R) > 2 arcsin[X] = E[©(¢)]
™
where
O(&(w))yj := sign(&i(w))sign(&j(w))
forallw € 2, and for all i,j € [k]. ©({(w)) is a correlation matrix
of rank 1 for all w € Q, and we have

max [(3,0)] > B|A.0()] > |, E[0©])] = 2| arcsin[})].
rank(@j:l
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Grothendieck’s identity I

More generally, we may list the following two “Schoenberg-type”
results (applied to non-linear correlation matrix transforms)
which are implied by the Schur product theorem:
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Grothendieck’s identity I
More generally, we may list the following two “Schoenberg-type”
results (applied to non-linear correlation matrix transforms)
which are implied by the Schur product theorem:

Theorem (Schoenberg (1942), Rudin (1959))

Let0 # f : [-1,1] — R be a function that admits a power
series representation f(x) = >_.2, a,x" for some sequence (a,)
of non-negative numbers on [—1, 1|. Then f[A] € PSD(m;R) for
allA € PSD(m;[—1,1]) and allm € N. In particular, f(1) > 0 and
f(p)| < f(1) forall p € [—1,1].

7y maps [~1,1] into [~1,1].

Letk € N and X be an arbitrary (k x k)-correlation matrix. Then
also 7y f[%] is a (k x k)-correlation matrix.

Conversely, we have:
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Grothendieck’s identity IV

Theorem (Schoenberg (1942), Rudin (1959),
Christensen/Ressel (1978))

Let0 # g : [—1,1] — R be a function such that g[%] is a

(k x k)-correlation matrix for all (k x k)-correlation matrices ¥
and all k € N.
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Theorem (Schoenberg (1942), Rudin (1959),
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Let0 # g : [-1,1] — R be a function such that g[%] is a
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Grothendieck’s identity IV

Theorem (Schoenberg (1942), Rudin (1959),
Christensen/Ressel (1978))

Let0 # g : [-1,1] — R be a function such that g[%] is a

(k x k)-correlation matrix for all (k x k)-correlation matrices ¥
and allk e N. Theng(1) =1 and|g(p)| <1 forall p € [-1,1],
and g[A] € PSD(m;R) for all A € PSD(m;[—1,1]) and allm € N.
Moreover, g : [-1,1] — [—1, 1] has to be a function that admits
a power series representation g(x) = Y > b,x" for some
sequence (b,) of non-negative numbers on [—1, 1].
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Grothendieck’s identity V

A seemingly fruitful approach is the following one:
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A seemingly fruitful approach is the following one:

(i) Transform an arbitrarily given correlation matrix >
non-linearly - and entrywise - to another correlation matrix
Y = ®[X] for some @ : C(k;R) — C(k; R) such that this
non-linear transformation ® strongly reduces the impact of
the arcsin function (up to a given small error).

(i) Apply Grothendieck’s identity to the so obtained correlation
matrix X; and apply the estimation above - to arcsin[X;].
(iii) A reiteration of the steps (i) and (ii) could lead to an

iterative algorithm which might converge to a “suitable” -
upper - bound of K.
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A phrase of G. H. Hardy

“.. at present | will say only that if a chess problem is, in the
crude sense, ‘useless’, then that is equally true of most of the
best mathematics; that very little of mathematics is useful
practically, and that that little is comparatively dull. The
'seriousness’ of a mathematical theorem lies, not in its practical
consequences, which are usually negligible, but in the
significance of the mathematical ideas which it connects...”

— A Mathematician’s Apology (1940)
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Thank you for your attention!
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Thank you for your attention!

Are there any questions, comments or remarks?
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