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This talk combines two aspects:
I The relation of quantales to C*-algebras and thereby to quantum theory

[Mulvey 1986];

I R(A) for a C*-algebra A, with multiplication of closed right ideals instead of
intersection [several authors];

I MaxA for a C*-algebra A (all closed linear subspaces) [Mulvey 1989];
I Functor from unital C*-algebras to unital involutive quantales which is a

complete invariant [Kruml–R 2004];
I MaxA is a stably Gelfand quantale [R 2018b].
I Stably Gelfand quantales have many embedded locales, and also many

pseudogroups (and corresponding étale groupoids) attached to them [R
2018a];

I In the case of MaxA these are locally compact and locally Hausdorff
topological groupoids.

I Quantales viewed as algebraic logics;

I Propositional intuitionist logic is interpreted in locales;
I Birkhoff and Von Neumann quantum logic modeled after the projection

lattice of a Hilbert space — loses distributivity;
I Quantum logic (modeled after C*-algebras) is based on quantales — keeps

distributivity, becomes a substructural logic;
I Intuitive interpretations may vary — e.g., propositional linear logic

interpreted in commutative quantales is a resource logic [Girard 1987];
I Here a physical interpretation in terms of the philosophical notion of

quale/qualia — resembles finite observations on computational systems as
in [Abramsky–Vickers 1993, R 2001, R–Vickers 2003]
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1. Classical observers and their local symmetries

I Let A be a C*-algebra.

I Abelian sub-C*-algebras B ⊂ A correspond to classical observers.

I B automatically carries many local symmetries induced by A.

I Example:

A = M2(C) (the algebra of a qubit)

B = D2(C) (the 2× 2 diagonal matrices)

B ∼= C2 ∼= C({|0〉, |1〉})
The local symmetries are the partial bijections on the set {|0〉, |1〉}.
(Still haven’t explained how they are induced by A.)

I Definition: Let X be a topological space. A partial homeomorphism on X
is a homeomorphism between two open subsets of X .

The partial bijections on X form the symmetric pseudogroup I(X ).
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1. Classical observers and their local symmetries

I Definition: An inverse of an element s of a semigroup S is an element t
such that sts = s and tst = t.

An inverse semigroup is a semigroup S such that each s ∈ S has a unique
inverse s−1.

The set of idempotents of S is a meet semilattice E(S) with e ∧ f = ef .

I Example: The symmetric pseudogroup I(X ) is an inverse semigroup
[Wagner–Preston Theorem: every inverse semigroup S can be represented
in I(S)]

The idempotents are the identity maps idY on open subsets Y ⊂ X :

E(I(X )) ∼= Ω(X )

I Definition: A (spatial) pseudogroup is an inverse semigroup satisfying
additional conditions (completeness and infinite distributivity) that in
particular make E(S) a (spatial) locale.

I Definition: A locale is a complete lattice satisfying the law

a ∧ sup
i

bi = sup
i

a ∧ bi

I Example: The topology Ω(X ) of a topological space X (spatial locale).
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additional conditions (completeness and infinite distributivity) that in
particular make E(S) a (spatial) locale.

I Definition: A locale is a complete lattice satisfying the law

a ∧ sup
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bi = sup
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a ∧ bi

I Example: The topology Ω(X ) of a topological space X (spatial locale).
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1. Classical observers and their local symmetries

I Let A be a C*-algebra.

I MaxA is the set of all the norm-closed linear subspaces [Mulvey 1989].

I Let V ,W ∈ MaxA and (Vi ) a family in MaxA:

V &W = span{ab | a ∈ V , b ∈W } V ∗ = {a∗ | a ∈ V }

sup
i

Vi = span
⋃
i

Vi

I These operations make MaxA an involutive quantale (= involutive
semigroup in the monoidal category of sup-lattices):

U & (V &W ) = (U &V ) &W (Associativity)
V ∗∗ = V (Involution)

(V &W )∗ = W ∗&V ∗ (Semigroup involution)
V & (supi Wi ) = supi V &Wi (Distributivity law 1)
(supi Wi ) &V = supi Wi &V (Distributivity law 2)

(supi Vi )
∗ = supi V

∗
i (Distributivity law 3)

I MaxA is stably Gelfand: V &V ∗&V ⊂ V ⇐⇒ V &V ∗&V = V
[R 2018b]
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1. Classical observers and their local symmetries

I Let A be a C*-algebra and B ⊂ A an abelian sub-C*-algebra.

I (B) = { V ∈ MaxA |V ⊂ B ,

V &B ⊂ V ,

B &V ⊂ V }

I I (B) is a locale: I (B) ∼= Ω(Σ(B)) (Gelfand–Naimark Theorem)

I Now a slight change of definition:

S(B) = { V ∈ MaxA |V &V ∗ ⊂ B ,

V ∗&V ⊂ B ,

V &B ⊂ V ,

B &V ⊂ V }

I Theorem: [R 2018a] S(B) is a spatial pseudogroup and E(S(B)) = I (B).

I Back to the qubit example: If A = M2(C) and B = D2(C) then

S(B) ∼= I({|0〉, |1〉})
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1. Classical observers and their local symmetries

I In the qubit example S(B) ∼= I(ΣB) [ΣB = spectrum of B].

I But in general S(B) 6∼= I(ΣB).

I There is always a canonical homomorphism [action of S(B) on ΣB]:

ρB : S(B)→ I(ΣB)

I The image of ρB is the Weyl pseudogroup W (B) (terminology of [Renault
2008]).

I W (B) is a quotient of S(B), so in general contains less information.
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2. Groupoids

I Another way of describing local symmetries is by means of groupoids.

I Definition: A groupoid G is a small category all of whose arrows are
isomorphisms:

G = G2
m // G1

i

�� r //

d
// G0uoo

G2 = {(g , h) ∈ G1 × G1 | d(g) = r(h)} (pullback of d and r)

Convention: Identify G ≡ G1 and consider G0 ⊂ G , so u(x) = x ,

i(g) = g−1, m(g , h) = gh, d(g) = g−1g , r(g) = gg−1

I Definition (cont.): A topological groupoid is the above in Top,

and G is étale if d is a local homeomorphism (sheaf).

I From here on G is always a topological étale groupoid.
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2. Groupoids

I The topology Ω(G) is a unital stably Gelfand quantale with unit G0 (and
also a locale):

U &V = {gh | (g , h) ∈ G2 ∩ U × V } U∗ = U−1 sup
i

Ui =
⋃
i

Ui

I Taking G0 as projection in Ω(G) we get the spatial pseudogroup “S(G0)”:

I(Ω(G)) := {U ∈ Ω(G) | UU∗ ⊂ G0, U∗U ⊂ G0}

I Every spatial pseudogroup arises in this way (up to isomorphism).

I The quantales Ω(G) are the spatial inverse quantal frames = unital stably
Gelfand quantales Q that are also spatial locales such that sup I(Q) = 1Q .

I Example: X a set, G = X × X , G0 = ∆X (pair groupoid):

(x , y)(y , z) = (x , z) (x , y)−1 = (y , x) d(x , y) = y r(x , y) = x

Ω(G) = 2X×X I(2X×X ) = I(X )
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I Every spatial pseudogroup arises in this way (up to isomorphism).
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I Example: X a set, G = X × X , G0 = ∆X (pair groupoid):

(x , y)(y , z) = (x , z) (x , y)−1 = (y , x) d(x , y) = y r(x , y) = x
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3. Groupoid C*-algebras

From here on G is second countable, locally compact and Hausdorff.

I Convolution algebra Cc(G) = {φ : G → C | supp f is compact}

φ ∗ ψ(g) =
∑
g=hk

φ(h)ψ(k) φ∗(g) = φ(g−1)

I Example: Cc({1, . . . , n} × {1, . . . , n}) ∼= Mn(C)

I Notation: Cc(U) = {φ ∈ Cc(G) | suppφ ⊂ U} (U ∈ Ω(G))

I Compatible C*-norm (e.g., ‖ ‖r ≤ ‖ ‖ ≤ ‖ ‖f ) [R 2018b]

‖φ‖ ≥ ‖φ‖∞
‖φ‖ = ‖φ‖∞ if φ ∈ Cc(U) for some U ∈ I(Ω(G))

I A compatible completion is the completion of Cc(G) in a compatible
C*-norm.
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3. Groupoid C*-algebras

I A faithful completion is a compatible completion embedded in C(G).

I A way of defining the reduced C*-algebra of G :

Proposition: [R 2018b] C∗r (G) is the only faithful completion of Cc(G).

I B := Cc(G0) is an abelian sub-C*-algebra. [B ∼= C0(G0)]

I Using W (B) instead of S(B):

Theorem: [Renault 2008] There is a bijective correspondence (up to
isomorphisms) between twisted topologically principal groupoids and
C*-algebras A equipped with Cartan subalgebras B.
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4. Diagonals of C*-algebras

I Let A be a compatible completion of Cc(G) and B := Cc(G0)

I If a classical observer has symmetries described by G then A is a
“quantization” that in general adds new symmetries (contrary to the qubit
example), since I(Ω(G)) embeds into S(B).

I More general situation than the qubit example (also without adding new
symmetries):

Theorem: [R 2018 b] If A is faithful and G is compact and topologically
principal (e.g., an equivalence relation) then S(B) ∼= I(Ω(G)) ∼= W (B).

Proof sketch: Cc(−) : Ω(G)→ MaxA is an injective homomorphism of
involutive quantales [R 2018b], and it has a left adjoint
suppo : MaxA→ Ω(G) (open support) defined by
suppo(V ) =

⋃
a∈V int supp a which is symmetry preserving:

suppo(S(B)) = I(Ω(G)).

Compactness is only a sufficient condition and probably can be replaced by
something weaker.



4. Diagonals of C*-algebras

I Let A be a compatible completion of Cc(G) and B := Cc(G0)

I If a classical observer has symmetries described by G then A is a
“quantization” that in general adds new symmetries (contrary to the qubit
example), since I(Ω(G)) embeds into S(B).

I More general situation than the qubit example (also without adding new
symmetries):

Theorem: [R 2018 b] If A is faithful and G is compact and topologically
principal (e.g., an equivalence relation) then S(B) ∼= I(Ω(G)) ∼= W (B).

Proof sketch: Cc(−) : Ω(G)→ MaxA is an injective homomorphism of
involutive quantales [R 2018b], and it has a left adjoint
suppo : MaxA→ Ω(G) (open support) defined by
suppo(V ) =

⋃
a∈V int supp a which is symmetry preserving:

suppo(S(B)) = I(Ω(G)).

Compactness is only a sufficient condition and probably can be replaced by
something weaker.



4. Diagonals of C*-algebras

I Let A be a compatible completion of Cc(G) and B := Cc(G0)

I If a classical observer has symmetries described by G then A is a
“quantization” that in general adds new symmetries (contrary to the qubit
example), since I(Ω(G)) embeds into S(B).

I More general situation than the qubit example (also without adding new
symmetries):

Theorem: [R 2018 b] If A is faithful and G is compact and topologically
principal (e.g., an equivalence relation) then S(B) ∼= I(Ω(G)) ∼= W (B).

Proof sketch: Cc(−) : Ω(G)→ MaxA is an injective homomorphism of
involutive quantales [R 2018b], and it has a left adjoint
suppo : MaxA→ Ω(G) (open support) defined by
suppo(V ) =

⋃
a∈V int supp a which is symmetry preserving:

suppo(S(B)) = I(Ω(G)).

Compactness is only a sufficient condition and probably can be replaced by
something weaker.



4. Diagonals of C*-algebras

I Let A be a compatible completion of Cc(G) and B := Cc(G0)

I If a classical observer has symmetries described by G then A is a
“quantization” that in general adds new symmetries (contrary to the qubit
example), since I(Ω(G)) embeds into S(B).

I More general situation than the qubit example (also without adding new
symmetries):

Theorem: [R 2018 b] If A is faithful and G is compact and topologically
principal (e.g., an equivalence relation) then S(B) ∼= I(Ω(G)) ∼= W (B).

Proof sketch: Cc(−) : Ω(G)→ MaxA is an injective homomorphism of
involutive quantales [R 2018b], and it has a left adjoint
suppo : MaxA→ Ω(G) (open support) defined by
suppo(V ) =

⋃
a∈V int supp a which is symmetry preserving:

suppo(S(B)) = I(Ω(G)).

Compactness is only a sufficient condition and probably can be replaced by
something weaker.



4. Diagonals of C*-algebras

Idea: Consider the whole image 4 of Cc(−) rather than just B.

Definition: (For the sake of the talk)

Let A be a C*-algebra and B ⊂ A an abelian sub-C*-algebra.

Denote by 4 the (necessarily involutive and unital) subquantale of MaxA
generated by S(B).

Call B (or 4) a diagonal of A if

1. 4 is a regular locale under the order of MaxA and

2. 4 is closed under arbitrary intersections (in particular 14 = A, i.e., B is
regular), so that a closure operator σ : MaxA→4 (∼ suppo) exists.

These conditions imply that 4 is isomorphic to Ω(G) for a locally compact
Hausdorff étale groupoid G , and that I(4) = S(B).
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4. Diagonals of C*-algebras

Question: Comparison to Cartan subalgebras:

I Is maximality of B dropped?

I Can G be more general than topologically principal?

I On the other hand, does the existence of σ place restrictions that do not
exist in Renault’s theorem? (cf. aforementioned compactness of G)



5. Summary

So far:

I MaxA is a stably Gelfand quantale.

I Diagonals 4 ⊂ MaxA correspond to classical observers represented by
locally compact Hausdorff étale groupoids G .

I Each diagonal 4 is an actual classical (intuitionistic) logic attached to
MaxA, which itself is non-classical because it lacks distributivity.
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6. A logical interpretation

I A quantale can be regarded as a logic of finite observations
[Abramsky–Vickers 1993, R 2001, R–Vickers 2003].

I A finite (run-time) observation is the exchange of a finite amount of
information between an observer and a system:

OBSERVER oo finite

information
// SYSTEM

Examples:

I Measure the spin of a electron along the z axis using a Stern–Gerlach
apparatus;

I Press a keyboard and watch something appear on the computer screen, etc.

I a& b means a and then b (noncommutative and nonidempotent
conjunction).

I a ∨ b means a or b (disjunction).

I More generally,
∨

i ai means ai for some i (infinitary disjunction).

I Will address involution later.

I In a diagonal 4 we have a& a = a and a& b = b & a = a ∧ b:
intuitionistic logic of classical observers.



6. A logical interpretation

I A quantale can be regarded as a logic of finite observations
[Abramsky–Vickers 1993, R 2001, R–Vickers 2003].

I A finite (run-time) observation is the exchange of a finite amount of
information between an observer and a system:

OBSERVER oo finite

information
// SYSTEM

Examples:

I Measure the spin of a electron along the z axis using a Stern–Gerlach
apparatus;

I Press a keyboard and watch something appear on the computer screen, etc.

I a& b means a and then b (noncommutative and nonidempotent
conjunction).

I a ∨ b means a or b (disjunction).

I More generally,
∨

i ai means ai for some i (infinitary disjunction).

I Will address involution later.

I In a diagonal 4 we have a& a = a and a& b = b & a = a ∧ b:
intuitionistic logic of classical observers.



6. A logical interpretation

I A quantale can be regarded as a logic of finite observations
[Abramsky–Vickers 1993, R 2001, R–Vickers 2003].

I A finite (run-time) observation is the exchange of a finite amount of
information between an observer and a system:

OBSERVER oo finite

information
// SYSTEM

Examples:

I Measure the spin of a electron along the z axis using a Stern–Gerlach
apparatus;

I Press a keyboard and watch something appear on the computer screen, etc.

I a& b means a and then b (noncommutative and nonidempotent
conjunction).

I a ∨ b means a or b (disjunction).

I More generally,
∨

i ai means ai for some i (infinitary disjunction).

I Will address involution later.

I In a diagonal 4 we have a& a = a and a& b = b & a = a ∧ b:
intuitionistic logic of classical observers.



6. A logical interpretation

I A quantale can be regarded as a logic of finite observations
[Abramsky–Vickers 1993, R 2001, R–Vickers 2003].

I A finite (run-time) observation is the exchange of a finite amount of
information between an observer and a system:

OBSERVER oo finite

information
// SYSTEM

Examples:
I Measure the spin of a electron along the z axis using a Stern–Gerlach

apparatus;

I Press a keyboard and watch something appear on the computer screen, etc.

I a& b means a and then b (noncommutative and nonidempotent
conjunction).

I a ∨ b means a or b (disjunction).

I More generally,
∨

i ai means ai for some i (infinitary disjunction).

I Will address involution later.

I In a diagonal 4 we have a& a = a and a& b = b & a = a ∧ b:
intuitionistic logic of classical observers.



6. A logical interpretation

I A quantale can be regarded as a logic of finite observations
[Abramsky–Vickers 1993, R 2001, R–Vickers 2003].

I A finite (run-time) observation is the exchange of a finite amount of
information between an observer and a system:

OBSERVER oo finite

information
// SYSTEM

Examples:
I Measure the spin of a electron along the z axis using a Stern–Gerlach

apparatus;
I Press a keyboard and watch something appear on the computer screen, etc.

I a& b means a and then b (noncommutative and nonidempotent
conjunction).

I a ∨ b means a or b (disjunction).

I More generally,
∨

i ai means ai for some i (infinitary disjunction).

I Will address involution later.

I In a diagonal 4 we have a& a = a and a& b = b & a = a ∧ b:
intuitionistic logic of classical observers.



6. A logical interpretation

I A quantale can be regarded as a logic of finite observations
[Abramsky–Vickers 1993, R 2001, R–Vickers 2003].

I A finite (run-time) observation is the exchange of a finite amount of
information between an observer and a system:

OBSERVER oo finite

information
// SYSTEM

Examples:
I Measure the spin of a electron along the z axis using a Stern–Gerlach

apparatus;
I Press a keyboard and watch something appear on the computer screen, etc.

I a& b means a and then b (noncommutative and nonidempotent
conjunction).

I a ∨ b means a or b (disjunction).

I More generally,
∨

i ai means ai for some i (infinitary disjunction).

I Will address involution later.

I In a diagonal 4 we have a& a = a and a& b = b & a = a ∧ b:
intuitionistic logic of classical observers.



6. A logical interpretation

I A quantale can be regarded as a logic of finite observations
[Abramsky–Vickers 1993, R 2001, R–Vickers 2003].

I A finite (run-time) observation is the exchange of a finite amount of
information between an observer and a system:

OBSERVER oo finite

information
// SYSTEM

Examples:
I Measure the spin of a electron along the z axis using a Stern–Gerlach

apparatus;
I Press a keyboard and watch something appear on the computer screen, etc.

I a& b means a and then b (noncommutative and nonidempotent
conjunction).

I a ∨ b means a or b (disjunction).

I More generally,
∨

i ai means ai for some i (infinitary disjunction).

I Will address involution later.

I In a diagonal 4 we have a& a = a and a& b = b & a = a ∧ b:
intuitionistic logic of classical observers.



6. A logical interpretation

I A quantale can be regarded as a logic of finite observations
[Abramsky–Vickers 1993, R 2001, R–Vickers 2003].

I A finite (run-time) observation is the exchange of a finite amount of
information between an observer and a system:

OBSERVER oo finite

information
// SYSTEM

Examples:
I Measure the spin of a electron along the z axis using a Stern–Gerlach

apparatus;
I Press a keyboard and watch something appear on the computer screen, etc.

I a& b means a and then b (noncommutative and nonidempotent
conjunction).

I a ∨ b means a or b (disjunction).

I More generally,
∨

i ai means ai for some i (infinitary disjunction).

I Will address involution later.

I In a diagonal 4 we have a& a = a and a& b = b & a = a ∧ b:
intuitionistic logic of classical observers.



6. A logical interpretation

I A quantale can be regarded as a logic of finite observations
[Abramsky–Vickers 1993, R 2001, R–Vickers 2003].

I A finite (run-time) observation is the exchange of a finite amount of
information between an observer and a system:

OBSERVER oo finite

information
// SYSTEM

Examples:
I Measure the spin of a electron along the z axis using a Stern–Gerlach

apparatus;
I Press a keyboard and watch something appear on the computer screen, etc.

I a& b means a and then b (noncommutative and nonidempotent
conjunction).

I a ∨ b means a or b (disjunction).

I More generally,
∨

i ai means ai for some i (infinitary disjunction).

I Will address involution later.

I In a diagonal 4 we have a& a = a and a& b = b & a = a ∧ b:
intuitionistic logic of classical observers.



6. A logical interpretation

I A quantale can be regarded as a logic of finite observations
[Abramsky–Vickers 1993, R 2001, R–Vickers 2003].

I A finite (run-time) observation is the exchange of a finite amount of
information between an observer and a system:

OBSERVER oo finite

information
// SYSTEM

Examples:
I Measure the spin of a electron along the z axis using a Stern–Gerlach

apparatus;
I Press a keyboard and watch something appear on the computer screen, etc.

I a& b means a and then b (noncommutative and nonidempotent
conjunction).

I a ∨ b means a or b (disjunction).

I More generally,
∨

i ai means ai for some i (infinitary disjunction).

I Will address involution later.

I In a diagonal 4 we have a& a = a and a& b = b & a = a ∧ b:
intuitionistic logic of classical observers.



6. A logical interpretation

I Operational (positivist) interpretation.

I Also “slightly realist” in the sense that laws (regularities) can be expressed
by means of conditions imposed on a quantale.

I Problem: this interpretation relies on undefined (or hard to define)
concepts: system and observer.

I This brings about derived problems, such as, if by observer we mean
human observer, that of making the interpretation anthropocentric.
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7. Qualia

Wikipedia reads:

In philosophy and certain models of psychology, qualia (singular form: quale)
are claimed to be individual instances of subjective, conscious experience.

Clarence Irving Lewis, in his book Mind and the World Order (1929), was the
first to use the term “qualia” in its generally agreed upon modern sense:

There are recognizable qualitative characters of the given, which may
be repeated in different experiences, and are thus a sort of universals;
I call these “qualia”. But although such qualia are universals, in the
sense of being recognized from one to another experience, they must
be distinguished from the properties of objects.

Such a concept seems to correspond to a fundamental observable phenomenon,
yet it does not appear in any theories of physics!



7. Qualia

An attempt at a definition of qualia (again from Wikipedia):

Daniel Dennett identifies four properties that are commonly ascribed to qualia.
According to these, qualia are:

I ineffable; that is, they cannot be communicated, or apprehended by any
other means than direct experience.

I intrinsic; that is, they are non-relational properties, which do not change
depending on the experience’s relation to other things.

I private; that is, all interpersonal comparisons of qualia are systematically
impossible.

I directly or immediately apprehensible in consciousness; that is, to
experience a quale is to know one experiences a quale, and to know all
there is to know about that quale.

Regardless of whether or not one enjoys such a definition on intuitive grounds,
a mathematical description is hard to find!



7. Qualia

Alternatively, do NOT attempt to explain what a single quale is, but rather ask:

WHAT IS A “SPACE OF QUALIA”?

Analogy: a vector is defined to be an element of a vector space.



8. The space of qualia

I Let us denote the “space” of all qualia by Q, and let us assume that this
is a set.

I (This could contain the qualia perceived by a particular single organism, or
by a collection of organisms.)

I What structure may Q have?

I Meet two qualia: RED FLASH and BLUE FLASH.

I For organisms with a minimal amount of cognitive ability the “raw feeling”
of perceiving two things may exist: for instance,

RED FLASH and then BLUE FLASH

I So let us endow Q with a multiplication (a, b) 7→ a& b:

a& b is read “a and then b”

I This can be a total operation (later we’ll add the impossible quale 0, so
a& b = 0 will mean that “a and then b” does not exist).

I Let us also assume & is associative, so that Q is a semigroup.
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8. The space of qualia

I The extent to which such a mathematical structure is justified can be
examined from several viewpoints: philosophy, cognitive sciences,
neuroscience...

I Implicit in this structure there is an intrinsic notion of (psychological) time!

I The time arrow is a convention, so a& b could equally well be thought of
as “b and then a”.

I Let us write a∗ for such a time reversed version of a, so that we should
have

(a& b)∗ = b∗& a∗ and a∗∗ = a

I In this way Q is an involutive semigroup.

I The existence of such time reversed qualia is less easy to justify (how do
we interpret, say, a& a∗?) but we shall keep it for mathematical
convenience.
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8. The space of qualia

I What is a possible definition of concept?

I The concept RED may be defined to be the subset of Q consisting of all
qualia associated to the color red (such as RED FLASH, or INTENSE
RED FLASH, WEAK RED FLASH, RED FACE, RED SHIRT, PALE RED,
STRONG RED, etc.)

I Each concept should be describable by a finite amount of information!

I The set of all the possible concepts definable in terms of Q can be defined
to be a topology.

I (A similar idea appeared in computer science in the 90s in order to
describe “finitely observable properties”, or “finite observations”, on
computational systems.)

I ∅ is the impossible concept, and Q is the trivial concept.
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8. The space of qualia

I We shall assume that the multiplication and the involution are continuous,
so that Q is a topological involutive semigroup.

I We shall also assume that Q is a T0 space.

I The specialization (partial) order of the topology is defined by

a ≤ b ⇐⇒ a ∈ {b}

I Any concept that applies to a also applies to b, so a is a more specific
quale than b; for instance, INTENSE RED FLASH is more specific than
RED FLASH, which in turn is more specific than just a FLASH.

I Any quale a for which a& a∗& a ≤ a can be regarded as being
“reversible”, since a& a∗& a is a particular way of “feeling” a. However,
the reversal of a is truly untraceable only if a& a∗& a = a.

I Q is called stably Gelfand if such untraceable irreversibility is the only
possible kind of irreversibility:

a& a∗& a ≤ a ⇐⇒ a& a∗& a = a

As with some of our previous choices, the validity of this law can be
debated, but, at least for now, we shall assume it due to mathematical
convenience and because it holds in our examples.
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8. The space of qualia

I Let a and b be two qualia, and suppose the supremum a ∨ b exists in the
specialization order: a ∨ b is the most specific quale which is less specific
than both a and b. Think of it as a disjunction, to be read a or b.

I We shall assume that the supremum
∨

S = sup S exists for each S ⊂ Q.
In particular the impossible quale is 0 =

∨
∅.

I Let D ⊂ Q be a directed set, and let U be a concept. Each d ∈ D is a
finite approximation of

∨
D and, in line with the idea that concepts

convey finite information, it should be impossible for U to distinguish
∨

D
from every d ∈ D. So if

∨
D ∈ U we shall require that d ∈ U for some

d ∈ D. In other words, the net (d)d∈D converges to
∨

D.

I Hence, axiom: the topology Ω(Q) is contained in the Scott topology of Q.

I The continuity of & and (−)∗ implies that these operations are distributive
over directed joins. In fact we shall require distributivity over arbitrary
joins.

I Summary: Q is a topological stably Gelfand quantale.

I Example: MaxA with the lower Vietoris topology.
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convey finite information, it should be impossible for U to distinguish
∨

D
from every d ∈ D. So if

∨
D ∈ U we shall require that d ∈ U for some

d ∈ D. In other words, the net (d)d∈D converges to
∨

D.

I Hence, axiom: the topology Ω(Q) is contained in the Scott topology of Q.

I The continuity of & and (−)∗ implies that these operations are distributive
over directed joins. In fact we shall require distributivity over arbitrary
joins.

I Summary: Q is a topological stably Gelfand quantale.

I Example: MaxA with the lower Vietoris topology.
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9. Qualia and diagonals

I If a ∈ Q is more specific than b ∈ Q but “compatible” with b put
a& b = a = b & a (“proceeding by approximations”).

I Collections of such pairwise compatible qualia can naturally be taken to be
locales 40 ⊂ Q satisfying a ∧ b = a& b.

I Consider these as the “base locales” ↓e of diagonals 4 ⊂ Q.

I MaxA versus qualia?

I Example (again the qubit): Each diagonal 4 ⊂ MaxM2(C) is
isomorphic to 2X×X where X = {|0〉, |1〉}.

I For instance take 4x and 4z to correspond to spin measurements of a
spin-1/2 particle along the x and the z axis.

I These diagonals are obtained from the abelian subalgebras Bx and Bz

generated by the observables σx and σz , respectively:

σx =

(
0 1
1 0

)
σz =

(
1 0
0 −1

)
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9. Qualia and diagonals

Bx = X↓ ∨ X↑ Bz = Z↓ ∨ Z↑

X↓ X↑ Z↓ Z↑

0

Bx =

〈(
1 0
0 1

)
,

(
0 1
1 0

)〉
X↑ =

〈(
1 1
1 1

)〉
X↓ =

〈(
1 −1
−1 1

)〉
Bz = D2(C) =

〈(
1 0
0 1

)
,

(
1 0
0 −1

)〉
Z↑ =

〈(
1 0
0 0

)〉
Z↓ =

〈(
0 0
0 1

)〉



9. Qualia and diagonals

Bx = X↓ ∨ X↑ Bz = Z↓ ∨ Z↑

X↓ X↑ Z↓ Z↑

0

X↑&X↓ = 0 IMPOSSIBLE

X↑&X↑ = X↑ REDUNDANT

X↑&Bx = X↑ GENERIC x-SPIN QUESTION

X↑&Z↑ 6= 0 POSSIBLE

X↑&Z↓ 6= 0 POSSIBLE

X↑&Bz 6= 0 GENERIC z-SPIN QUESTION...

X↑&Bz = X↑&Z↑ ∨ X↑&Z↓ ... HAS TWO POSSIBLE ANSWERS



9. Qualia and diagonals

I Write ΣBx = {|x↑〉, |x↓〉}

I This is also the spectrum of the locale

Bx

X↓ X↑

0

I Do the “states” |x↑〉 and |x↓〉 “really” exist?

I If the only “existence” is that of qualia (direct subjective experience), such
state spaces are “ghosts” perceived due to focusing on certain stable
collections of qualia.

I No collapse...

I No many worlds...
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Conclusion

I Tentative physical principle: If a phenomenon is described by a
C*-algebra A then the subjective experience associated with it is
ultimately subject to the rules imposed by MaxA.

I Mathematically this is just another “quantum logic” that addresses QM,
so far mainly based on [R 2018a] and [R 2018b].

I More can be said, e.g., concerning classical and quantum probabilities.

I The “physical” interpretation of the logic in terms of qualia should be
tested.

I Unification of realism and positivism?

I If qualia are physical phenomena surely they cannot be redundant.
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