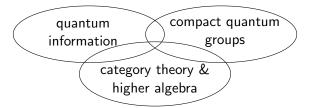
Quantum functions and the Morita theory of quantum graph isomorphisms

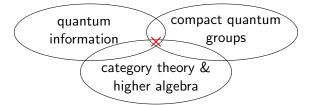
David Reutter

University of Oxford

Combining Viewpoints in Quantum Theory ICMS, Heriot-Watt University

March 20, 2018

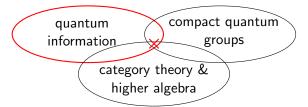




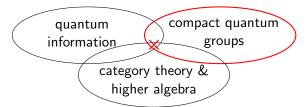
This talk is based on joint work with Ben Musto and Dominic Verdon:

A compositional approach to quantum functions

The Morita theory of quantum graph isomorphisms



quantum graph isomorphisms and their role in pseudo-telepathy [Atserias, Mančinska, Roberson, Šámal, Severini, Varvitsiotis, 2017]

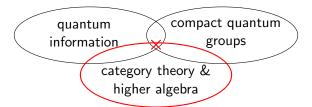


- quantum graph isomorphisms and their role in pseudo-telepathy [Atserias, Mančinska, Roberson, Šámal, Severini, Varvitsiotis, 2017]
- → quantum automorphism groups of graphs [Banica, Bichon and others, 1999–2018]

This talk is based on joint work with Ben Musto and Dominic Verdon:

A compositional approach to quantum functions

The Morita theory of quantum graph isomorphisms



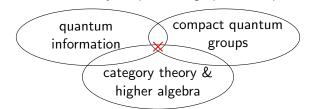
- quantum graph isomorphisms and their role in pseudo-telepathy [Atserias, Mančinska, Roberson, Šámal, Severini, Varvitsiotis, 2017]
- → quantum automorphism groups of graphs [Banica, Bichon and others, 1999–2018]

Seems to fit into a much broaded framework of 'finite quantum set theory'.

This talk is based on joint work with Ben Musto and Dominic Verdon:

A compositional approach to quantum functions

The Morita theory of quantum graph isomorphisms



- quantum graph isomorphisms and their role in pseudo-telepathy [Atserias, Mančinska, Roberson, Šámal, Severini, Varvitsiotis, 2017]
- → quantum automorphism groups of graphs [Banica, Bichon and others, 1999–2018]

Seems to fit into a much broaded framework of 'finite quantum set theory'.

- Part 1: Getting started
- Part 2: Quantum functions
- Part 3: The Morita theory of quantum graph isomorphisms

Part 1 Getting started

```
finite sets
functions
```

fSet

$$\textbf{fSet} \qquad \simeq \left\{ \begin{array}{l} \text{commutative} \\ \text{f.d. } C^*\text{-algebras} \\ \text{*-homomorphisms} \end{array} \right\}^{op}$$

$$^{\circ}$$
 fSet \simeq $(cfdC^*Alg)^{op}$

fSet
$$\simeq$$
 $(\mathbf{cfdC^*Alg})^{op}$ \hookrightarrow $\left\{\begin{array}{l} \text{f.d. } C^*\text{-algebras} \\ *\text{-homomorphisms} \end{array}\right\}^{op}$

$$\mathsf{fSet} \qquad \simeq \qquad \left(\mathsf{cfdC^*Alg}\right)^{op} \quad \hookrightarrow \quad \left(\mathsf{fdC^*Alg}\right)^{op}$$

$$\mathsf{fSet} \qquad \simeq \qquad \left(\mathsf{cfdC^*Alg}\right)^{op} \quad \hookrightarrow \qquad \left(\mathsf{fdC^*Alg}\right)^{op} \, \simeq \mathsf{fqSet}$$

$$\mathsf{fSet} \qquad \simeq \qquad \left(\mathsf{cfdC^*Alg}\right)^{op} \quad \hookrightarrow \qquad \left(\mathsf{fdC^*Alg}\right)^{op} \, \simeq \mathsf{fqSet}$$

set of functions $\mathbf{fSet}(A, B)$

$$\mathsf{fSet} \simeq (\mathsf{cfdC^*Alg})^{op} \hookrightarrow (\mathsf{fdC^*Alg})^{op} \simeq \mathsf{fqSet}$$
 $\mathsf{set} \ \mathsf{of} \ \mathsf{functions} \ \mathsf{fSet}(A,B)$
 $\mathsf{set} \ \mathsf{of} \ \mathsf{maps} \ \mathsf{fqSet}(A,B)$

$$fSet \simeq (cfdC^*Alg)^{op} \hookrightarrow (fdC^*Alg)^{op} \simeq fqSet$$
set of functions $fSet(A, B)$ quantum set of maps $fqSet(A, B)$

$$fSet \simeq (cfdC^*Alg)^{op} \hookrightarrow (fdC^*Alg)^{op} \simeq fqSet$$
set of functions $fSet(A, B)$ quantum set of maps $fqSet(A, B)$

How to 'quantize' morphisms?

fSet
$$\simeq$$
 $(\mathbf{cfdC^*Alg})^{op}$ \hookrightarrow $(\mathbf{fdC^*Alg})^{op}$ \simeq **fqSet** set of functions $\mathbf{fSet}(A,B)$ quantum set of maps $\mathbf{fqSet}(A,B)$

How to 'quantize' morphisms?

Sketch-Definition:

Quantum set of quantum functions \iff internal hom [A, B] in $\mathbf{C}^*\mathbf{Alg}^{op}$

fS
$$X, Y$$
 finite sets. $[X, Y] =$ universal C^* -algebra with generators $\{p_{xy}\}_{x \in X, y \in Y}$ and relations:
set ($p_{xy}^* = p_{xy} = p_{xy}^2 \quad p_{xy}p_{xy'} = \delta_{y,y'}p_{xy} \quad \sum_{y \in Y} p_{xy} = 1$ How to 'c

Sketch-Definition:

Quantum set of quantum functions \iff internal hom [A, B] in $\mathbf{C}^*\mathbf{Alg}^{op}$

$$\begin{array}{c|c} \textbf{fS} & X,Y \text{ finite sets. } [X,Y] = \text{universal } C^*\text{-algebra} \\ & \text{with generators } \{p_{xy}\}_{x \in X, y \in Y} \text{ and relations:} \\ & set \ \emptyset \\ & p_{xy}^* = p_{xy} = p_{xy}^2 \quad p_{xy}p_{xy'} = \delta_{y,y'}p_{xy} \quad \sum_{y \in Y} p_{xy} = 1 \\ & \text{How to `\emptyset} \end{array}$$

Sketch-Definition:

Quantum set of quantum functions \iff internal hom [A, B] in $\mathbf{C}^*\mathbf{Alg}^{op}$

Variant: [1]

Group of bijections $S_n \iff$ internal 'automorphism group' in $\mathbf{C}^*\mathbf{Alg}^{op}$

$$\begin{array}{c|c} \textbf{fS} & X,Y \text{ finite sets. } [X,Y] = \text{universal } C^*\text{-algebra} \\ & \text{with generators } \{p_{xy}\}_{x \in X, y \in Y} \text{ and relations:} \\ & set \ \textbf{c} \\ & p_{xy}^* = p_{xy} = p_{xy}^2 \quad p_{xy}p_{xy'} = \delta_{y,y'}p_{xy} \quad \sum_{y \in Y} p_{xy} = 1 \\ & \text{How to 'c} \\ \end{array} \right)$$

Sketch-Definition:

Quantum set of quantum functions \iff internal hom [A, B] in $\mathbf{C}^*\mathbf{Alg}^{op}$

Variant: [1]

Group of bijections $S_n \iff$ internal 'automorphism group' in $\mathbf{C}^*\mathbf{Alg}^{op}$

internal hom is infinite-dimensional → operator algebras

[1] Wang — Quantum symmetry groups of finite spaces. 1998

$$\begin{array}{c|c} \textbf{fS} & X,Y \text{ finite sets. } [X,Y] = \text{universal } C^*\text{-algebra} \\ & \text{with generators } \{p_{xy}\}_{x \in X, y \in Y} \text{ and relations:} \\ & set \ \textbf{c} \\ & p_{xy}^* = p_{xy} = p_{xy}^2 \quad p_{xy}p_{xy'} = \delta_{y,y'}p_{xy} \quad \sum_{y \in Y} p_{xy} = 1 \\ & \text{How to 'c} \\ \end{array} \right)$$

Sketch-Definition:

Quantum set of quantum functions \iff internal hom [A, B] in $\mathbf{C}^*\mathbf{Alg}^{op}$

Variant: [1]

Group of bijections $S_n \iff$ internal 'automorphism group' in $\mathbf{C}^*\mathbf{Alg}^{op}$

- internal hom is infinite-dimensional → operator algebras
- compositional nature of quantum functions obscured

[1] Wang — Quantum symmetry groups of finite spaces. 1998

$$\begin{array}{c|c} \textbf{fS} & X, Y \text{ finite sets. } [X,Y] = \text{universal } C^*\text{-algebra} \\ & \text{with generators } \{p_{xy}\}_{x \in X, y \in Y} \text{ and relations:} \\ & set \ (\\ p_{xy}^* = p_{xy} = p_{xy}^2 \quad p_{xy}p_{xy'} = \delta_{y,y'}p_{xy} \quad \sum_{y \in Y} p_{xy} = 1 \\ & \text{How to 'c'} \end{array} \right)$$

Sketch-Definition:

Quantum set of quantum functions \iff internal hom [A, B] in $\mathbf{C}^*\mathbf{Alg}^{op}$

Variant: [1]

Group of bijections $S_n \iff$ internal 'automorphism group' in $\mathbf{C}^*\mathbf{Alg}^{op}$

- internal hom is infinite-dimensional → operator algebras
- compositional nature of quantum functions obscured
- physical meaning and applications?

[1] Wang — Quantum symmetry groups of finite spaces. 1998

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Definition (Graph isomorphism game [1])

Let G and H be graphs with vertex sets V(G) and V(H).

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Definition (Graph isomorphism game [1])

Let G and H be graphs with vertex sets V(G) and V(H).

Alice and Bob play against a verifier.

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Definition (Graph isomorphism game [1])

Let G and H be graphs with vertex sets V(G) and V(H).

Alice and Bob play against a verifier.

They cannot communicate once the game has started.

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Definition (Graph isomorphism game [1])

Let G and H be graphs with vertex sets V(G) and V(H).

Alice and Bob play against a verifier.

They cannot communicate once the game has started.

Step 1: The verifier gives Alice and Bob vertices $v_A, v_B \in V(G) \cup V(H)$.

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Definition (Graph isomorphism game [1])

Let G and H be graphs with vertex sets V(G) and V(H).

Alice and Bob play against a verifier.

They cannot communicate once the game has started.

Step 1: The verifier gives Alice and Bob vertices $v_A, v_B \in V(G) \cup V(H)$.

Step 2: They reply with vertices v'_A and v'_B in $V(G) \cup V(H)$.

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Definition (Graph isomorphism game [1])

Let G and H be graphs with vertex sets V(G) and V(H).

Alice and Bob play against a verifier.

They cannot communicate once the game has started.

Step 1: The verifier gives Alice and Bob vertices $v_A, v_B \in V(G) \cup V(H)$.

Step 2: They reply with vertices v'_A and v'_B in $V(G) \cup V(H)$.

Rules: Alice and Bob win if:

(i)
$$v_A \in V(G) \Leftrightarrow v_A' \in V(H)$$
 and $v_B \in V(G) \Leftrightarrow v_B' \in V(H)$

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Definition (Graph isomorphism game [1])

Let G and H be graphs with vertex sets V(G) and V(H).

Alice and Bob play against a verifier.

They cannot communicate once the game has started.

Step 1: The verifier gives Alice and Bob vertices $v_A, v_B \in V(G) \cup V(H)$.

Step 2: They reply with vertices v'_A and v'_B in $V(G) \cup V(H)$.

Rules: Alice and Bob win if:

- (i) $v_A \in V(G) \Leftrightarrow v_A' \in V(H)$ and $v_B \in V(G) \Leftrightarrow v_B' \in V(H)$ Let v_A^G = unique vertex of $\{v_A, v_A'\}$ in G and similarly v_A^H, v_B^G, v_B^H
- (ii) $v_A^G = v_B^G \Leftrightarrow v_A^H = v_B^H$

5 / 23

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Definition (Graph isomorphism game [1])

Let G and H be graphs with vertex sets V(G) and V(H).

Alice and Bob play against a verifier.

They cannot communicate once the game has started.

Step 1: The verifier gives Alice and Bob vertices $v_A, v_B \in V(G) \cup V(H)$.

Step 2: They reply with vertices v'_A and v'_B in $V(G) \cup V(H)$.

Rules: Alice and Bob win if:

- (i) $v_A \in V(G) \Leftrightarrow v_A' \in V(H)$ and $v_B \in V(G) \Leftrightarrow v_B' \in V(H)$ Let v_A^G = unique vertex of $\{v_A, v_A'\}$ in G and similarly v_A^H, v_B^G, v_B^H
- (ii) $v_A^G = v_B^G \Leftrightarrow v_A^H = v_B^H$
- (iii) $v_A^G \sim_G v_B^G \Leftrightarrow v_A^H \sim_H v_B^H$

5 / 23

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Definition (Graph isomorphism game [1])

Let G and H be graphs with vertex sets V(G) and V(H).

Alice and Bob play against a verifier.

They cannot communicate once the game has started.

Step 1: The verifier gives Alice and Bob vertices $v_A, v_B \in V(G) \cup V(H)$.

Step 2: They reply with vertices v'_A and v'_B in $V(G) \cup V(H)$.

Rules: Alice and Bob win if:

- (i) $v_A \in V(G) \Leftrightarrow v_A' \in V(H)$ and $v_B \in V(G) \Leftrightarrow v_B' \in V(H)$ Let v_A^G = unique vertex of $\{v_A, v_A'\}$ in G and similarly v_A^H, v_B^G, v_B^H
- (ii) $v_A^G = v_B^G \Leftrightarrow v_A^H = v_B^H$
- (iii) $v_A^G \sim_G v_B^G \Leftrightarrow v_A^H \sim_H v_B^H$

A perfect winning strategy is a graph isomorphisms.

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Definition (Quantum graph isomorphism game [1])

Let G and H be graphs with vertex sets V(G) and V(H).

Alice and Bob play against a verifier and share an entangled state.

They cannot communicate once the game has started.

Step 1: The verifier gives Alice and Bob vertices $v_A, v_B \in V(G) \cup V(H)$.

Step 2: They reply with vertices v'_A and v'_B in $V(G) \cup V(H)$.

Rules: Alice and Bob win if:

- (i) $v_A \in V(G) \Leftrightarrow v_A' \in V(H)$ and $v_B \in V(G) \Leftrightarrow v_B' \in V(H)$ Let v_A^G = unique vertex of $\{v_A, v_A'\}$ in G and similarly v_A^H, v_B^G, v_B^H
- (ii) $v_A^G = v_B^G \Leftrightarrow v_A^H = v_B^H$
- (iii) $v_A^G \sim_G v_B^G \Leftrightarrow v_A^H \sim_H v_B^H$

A perfect winning strategy is a quantum graph isomorphisms.

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Definition (Quantum graph isomorphism game [1])

Let G and H be graphs with vertex sets V(G) and V(H).

Alice and Bob play against a verifier and share an entangled state.

They cannot communicate once the game has started.

Step 1: The verifier gives Alice and Bob vertices $v_A, v_B \in V(G) \cup V(H)$.

Step 2: They reply with vertices v'_A and v'_B in $V(G) \cup V(H)$.

Rules: Alice and Bob win if:

- (i) $v_A \in V(G) \Leftrightarrow v_A' \in V(H)$ and $v_B \in V(G) \Leftrightarrow v_B' \in V(H)$ Let $v_A^G =$ unique vertex of $\{v_A, v_A'\}$ in G and similarly v_A^H, v_B^G, v_B^H
- (ii) $v_A^G = v_B^G \Leftrightarrow v_A^H = v_B^H$
- (iii) $v_A^G \sim_G v_B^G \Leftrightarrow v_A^H \sim_H v_B^H$

A perfect winning strategy is a quantum graph isomorphisms.

There are graphs that are quantum but not classically isomorphic!

Suppose Alice and Bob share a maximally entangled state on $\mathcal{H} \otimes \mathcal{H}$.

Quantum graph isomorphism = projectors $\{P_{xy}\}_{x\in V(G),y\in V(H)}$ on $\mathcal H$ such that:

$$P_{xy}P_{xy'} = \delta_{y,y'}P_{xy}$$

$$\sum_{y \in V(H)} P_{xy} = id_{\mathcal{H}}$$

$$P_{xy}P_{x'y} = \delta_{x,x'}P_{xy}$$

$$\sum_{x \in V(G)} P_{xy} = id_{\mathcal{H}}$$

If
$$x, x' \in V(G)$$
, $y, y' \in V(H)$ with $x \sim_G x'$ XOR $y \sim_H y'$, then

$$P_{xy}P_{x'y'}=0$$

(II)
$$v_A = v_B \Leftrightarrow v_A = v_B$$

(iii)
$$v_A^G \sim_G v_B^G \Leftrightarrow v_A^H \sim_H v_B^H$$

A perfect winning strategy is a quantum graph isomorphisms.

There are graphs that are quantum but not classically isomorphic!

The stage:

Hilb — the category of finite-dimensional Hilbert spaces and linear maps.

The stage:

Hilb — the category of finite-dimensional Hilbert spaces and linear maps. String diagrams: read from bottom to top.

The stage:

Hilb — the category of finite-dimensional Hilbert spaces and linear maps. String diagrams: read from bottom to top.

Finite Gelfand duality: [1]

finite set $X \iff$ commutative finite-dimensional C^* -algebra $\mathbb{C}X$

The stage:

Hilb — the category of finite-dimensional Hilbert spaces and linear maps. String diagrams: read from bottom to top.

Finite Gelfand duality: [1]

finite set $X \iff$ commutative finite-dimensional C^* -algebra $\mathbb{C}X$

The algebra structure copies and compares the elements of X:

$$:= \sum_{x \in X} (x)^{x}$$

$$\stackrel{\downarrow}{\circ} := \sum_{x \in X} \stackrel{\stackrel{\downarrow}{\circ}}{\circ}$$

The stage:

Hilb — the category of finite-dimensional Hilbert spaces and linear maps. String diagrams: read from bottom to top.

Finite Gelfand duality: [1]

finite set $X \iff$ commutative finite-dimensional C^* -algebra $\mathbb{C}X$

The algebra structure copies and compares the elements of X:

$$:= \sum_{x \in X} (x)^{\dagger} (x)^{\dagger} \qquad \qquad \Rightarrow := \sum_{x \in X} (x)^{\dagger} (x)^{\dagger}$$

This makes $\mathbb{C}X$ into a commutative special †-Frobenius algebra in Hilb.

The stage

Hilb -String

$$ag{b} = \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$$

Finite

This I

$$\bigvee = | = \bigvee$$

The stage:

Hilb — the category of finite-dimensional Hilbert spaces and linear maps. String diagrams: read from bottom to top.

Finite Gelfand duality: [1]

finite set $X \iff$ commutative finite-dimensional C^* -algebra $\mathbb{C}X$

The algebra structure copies and compares the elements of X:

$$:= \sum_{x \in X} (x)^{\dagger} (x)^{\dagger} \qquad \qquad \Rightarrow := \sum_{x \in X} (x)^{\dagger} (x)^{\dagger}$$

This makes $\mathbb{C}X$ into a commutative special †-Frobenius algebra in Hilb.

The stage:

Hilb — the category of finite-dimensional Hilbert spaces and linear maps. String diagrams: read from bottom to top.

Finite Gelfand duality: [1]

finite set $X \iff$ commutative special †-Frobenius algebra $\mathbb{C}X$ in Hilb

The algebra structure copies and compares the elements of X:

$$:= \sum_{x \in X} (x^{\dagger}) (x^{\dagger}) \qquad \qquad \circ := \sum_{x \in X} (x^{\dagger})$$

This makes $\mathbb{C}X$ into a commutative special †-Frobenius algebra in Hilb.

The stage:

Hilb — the category of finite-dimensional Hilbert spaces and linear maps. String diagrams: read from bottom to top.

Finite Gelfand duality: [1]

finite set $X \iff$ commutative special †-Frobenius algebra $\mathbb{C}X$ in Hilb

The algebra structure copies and compares the elements of X:

$$:= \sum_{x \in X} (x^{\dagger}) (x^{\dagger}) \qquad \qquad \circ := \sum_{x \in X} (x^{\dagger})$$

This makes $\mathbb{C}X$ into a commutative special †-Frobenius algebra in Hilb.

Philosophy: Do finite set theory with string diagrams in Hilb.

Part 2 Quantum functions

Function *P* between finite sets:

Quantum function (\mathcal{H}, P) between finite sets:

Quantum function (\mathcal{H}, P) between finite sets:

$$\delta_{y,y'}P_{xy}=P_{xy}P_{xy'}$$

$$\sum_{v} P_{xy} = \mathrm{id}_{\mathcal{H}}$$

$$P_{xy}^{\dagger} = P_{xy}$$

Quantum function (\mathcal{H}, P) between finite sets:

$$\delta_{y,y'}P_{xy} = P_{xy}P_{xy'}$$

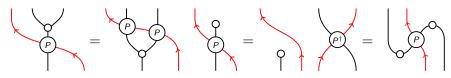
$$\sum_{x} P_{xy} = \mathrm{id}_{\mathcal{H}}$$

$$\sum_{y} P_{xy} = \mathrm{id}_{\mathcal{H}}$$

$$P_{xy}^{\dagger} = P_{xy}$$

generalizes classical functions

Quantum function (\mathcal{H}, P) between finite sets:



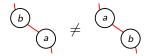
$$\delta_{y,y'}P_{xy} = P_{xy}P_{xy'}$$

$$\sum_{y} P_{xy} = id_{\mathcal{H}}$$

$$\sum_{y} P_{xy} = \mathrm{id}_{\mathcal{H}}$$

$$P_{xy}^{\dagger} = P_{xy}$$

- generalizes classical functions
- Hilbert space wire enforces noncommutativity:



Quantum function (\mathcal{H}, P) between finite sets:

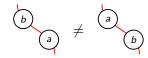
$$\delta_{y,y'}P_{xy} = P_{xy}P_{xy'}$$

$$\sum_{y} P_{xy} = id_{\mathcal{H}}$$

$$\sum_{y} P_{xy} = \mathrm{id}_{\mathcal{H}}$$

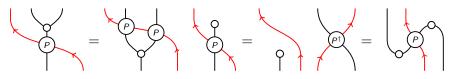
$$P_{xy}^{\dagger} = P_{xy}$$

- generalizes classical functions
- Hilbert space wire enforces noncommutativity:



turns elements of a set into elements of another set

Quantum function (\mathcal{H}, P) between finite sets:



$$\delta_{y,y'}P_{xy} = P_{xy}P_{xy'}$$

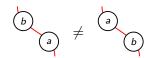
$$\sum_{x} P_{xy} = id_{\mathcal{H}}$$

$$\sum_{y} P_{xy} = \mathrm{id}_{\mathcal{H}}$$

$$P_{xy}^{\dagger} = P_{xy}$$

- generalizes classical functions
- Hilbert space wire enforces noncommutativity:

$$\begin{pmatrix}
b \\
\uparrow \\
\downarrow \\
a
\end{pmatrix} = \begin{pmatrix}
a \\
b
\end{pmatrix}$$



• turns elements of a set into elements of another set using observations on an underlying quantum system

Quantum function (\mathcal{H}, P) between finite sets:

$$\delta_{y,y'}P_{xy} = P_{xy}P_{xy'}$$
 $\sum P_{xy} = id_{\mathcal{H}}$

$$\sum_{\mathbf{y}} P_{\mathbf{x}\mathbf{y}} = \mathrm{id}_{\mathcal{H}}$$

$$P_{xy}^{\dagger} = P_{xy}$$

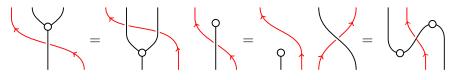
- generalizes classical functions
- Hilber

Recipe:

- 1) take concept or proof from finite set theory
- 2) express it in terms of string diagrams in Hilb
- 3) stick a wire through it

• turns elements of a set into elements of another set using observations on an underlying quantum system

Quantum function (\mathcal{H}, P) between finite sets:



 $\sum P_{xy} = \mathrm{id}_{\mathcal{H}}$

$$\delta_{y,y'}P_{xy} = P_{xy}P_{xy'}$$
• generalizes classical functions

• Hilber

Recipe:

- 1) take concept or proof from finite set theory
- 2) express it in terms of string diagrams in Hilb
- 3) stick a wire through it

 turns elements of a set into elements of another set using observations on an underlying quantum system

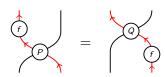
These look like the equations satisfied by a braiding.

This new definition has room for higher structure.

This new definition has room for higher structure.

An intertwiner of quantum functions $(\mathcal{H}, P) \Rightarrow (\mathcal{H}', Q)$ is:

a linear map $f:\mathcal{H}\to\mathcal{H}'$ such that



This new definition has room for higher structure.

An intertwiner of quantum functions $(\mathcal{H}, P) \Rightarrow (\mathcal{H}', Q)$ is:

a linear map $f:\mathcal{H} o \mathcal{H}'$ such that

no interesting intertwiners between classical functions

This new definition has room for higher structure.

An intertwiner of quantum functions $(\mathcal{H}, P) \Rightarrow (\mathcal{H}', Q)$ is:

a linear map $f:\mathcal{H} o \mathcal{H}'$ such that

- no interesting intertwiners between classical functions
- keep track of change on underlying system

This new definition has room for higher structure.

An intertwiner of quantum functions $(\mathcal{H}, P) \Rightarrow (\mathcal{H}', Q)$ is:

a linear map $f:\mathcal{H} o \mathcal{H}'$ such that

- no interesting intertwiners between classical functions
- keep track of change on underlying system

Set(A, B): Set of functions between finite sets A and B

This new definition has room for higher structure.

An intertwiner of quantum functions $(\mathcal{H}, P) \Rightarrow (\mathcal{H}', Q)$ is:

a linear map $f:\mathcal{H} o \mathcal{H}'$ such that

- no interesting intertwiners between classical functions
- keep track of change on underlying system

QSet(A, B): Category of quantum functions between finite sets A and B

This new definition has room for higher structure.

An intertwiner of quantum functions $(\mathcal{H}, P) \Rightarrow (\mathcal{H}', Q)$ is:

a linear map $f:\mathcal{H} o \mathcal{H}'$ such that

- no interesting intertwiners between classical functions
- keep track of change on underlying system

 $\operatorname{QSet}(A, B)$: Category of quantum functions between finite sets A and B

Connection to previous work in noncommutative topology: QSet(A, B) is the category of f.d. representations of the internal hom [A, B]

The 2-category QSet

The 2-category QSet

Definition

The 2-category QSet is built from the following structures:

- **objects** are finite sets A, B, ...;
- 1-morphisms $A \to B$ are quantum functions $(H, P) : A \to B$;
- 2-morphisms $(H, P) \rightarrow (H', P')$ are intertwiners

The composition of two quantum functions $(H, P) : A \to B$ and $(H', Q) : B \to C$ is a quantum function $(H \otimes H', Q \circ P)$ defined as follows:

$$(Q \circ P)$$
 := (P)

2-morphisms compose by tensor product and composition of linear maps.

The 2-category QSet

Definition

The 2-category QSet is built from the following structures:

- **objects** are finite sets A, B, ...;
- 1-morphisms $A \to B$ are quantum functions $(H, P) : A \to B$;
- **2-morphisms** $(H, P) \rightarrow (H', P')$ are intertwiners

The composition of two quantum functions $(H,P):A\to B$ and $(H',Q):B\to C$ is a quantum function $(H\otimes H',Q\circ P)$ defined as follows:

$$(Q \circ P)$$
 := (P) (P)

2-morphisms compose by tensor product and composition of linear maps.

Can be extended to also include quantum sets as objects.

Quantum bijections

Function *P* between finite sets:

Quantum bijections

Bijection *P* between finite sets:

Quantum bijection (\mathcal{H}, P) between finite sets:

Quantum bijection (\mathcal{H}, P) between finite sets:

Quantum bijection (\mathcal{H}, P) between finite sets:

$$\delta_{y,y'}P_{xy} = P_{xy}P_{xy'}$$
 $\sum_{y}P_{xy} = id_{\mathcal{H}}$ $P_{xy}^{\dagger} = P_{xy}$

$$\delta_{x,x'}P_{xy} = P_{xy}P_{x'y}$$
 $\sum_{y}P_{x,y} = id_{\mathcal{H}}$

Quantum bijection (\mathcal{H}, P) between finite sets:

$$\begin{split} \delta_{y,y'}P_{xy} &= P_{xy}P_{xy'} & \sum_y P_{xy} = \mathrm{id}_{\mathcal{H}} & P_{xy}^\dagger = P_{xy} \\ \delta_{x,x'}P_{xy} &= P_{xy}P_{x'y} & \sum_x P_{x,y} = \mathrm{id}_{\mathcal{H}} \end{split}$$

Theorem. Equivalences in QSet are ordinary bijections.

Quantum bijection (\mathcal{H}, P) between finite sets:

$$\delta_{y,y'}P_{xy} = P_{xy}P_{xy'}$$

$$\sum_{y}P_{xy} = id_{\mathcal{H}} \qquad P_{xy}^{\dagger} = P_{xy}$$

$$\sum_{x}P_{x,y} = id_{\mathcal{H}} \qquad \sum_{x}P_{x,y} = id_{\mathcal{H}}$$

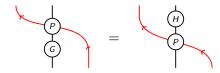
Theorem. Equivalences in QSet are ordinary bijections.

Theorem. Quantum bijections are dagger dualizable quantum functions.

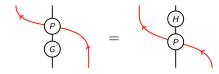
Let G and H be finite graphs with adjacency matrices G and H.

Let G and H be finite graphs with adjacency matrices G and H. A graph isomorphism is a bijection P such that:

Let G and H be finite graphs with adjacency matrices G and H. A quantum graph isomorphism is a quantum bijection P such that:



Let G and H be finite graphs with adjacency matrices G and H. A quantum graph isomorphism is a quantum bijection P such that:



These are *exactly* the quantum graph isomorphisms from pseudo-telepathy.

Let G and H be finite graphs with adjacency matrices G and H. A quantum graph isomorphism is a quantum bijection P such that:

These are *exactly* the quantum graph isomorphisms from pseudo-telepathy.

Definition

The 2-category QGraph is built from the following structures:

- **objects** are finite graphs G, H, ...;
- 1-morphisms $G \rightarrow H$ are quantum graph isomorphisms;
- 2-morphisms are intertwiners

Let G and H be finite graphs with adjacency matrices G and H. A quantum graph isomorphism is a quantum bijection P such that:

These are *exactly* the quantum graph isomorphisms from pseudo-telepathy.

Definition

The 2-category QGraph is built from the following structures:

- **objects** are finite graphs G, H, ...;
- 1-morphisms $G \rightarrow H$ are quantum graph isomorphisms;
- 2-morphisms are intertwiners

Quantum graph isomorphisms are dualizable 1-morphisms.

 QGraph is a semisimple dagger 2-category with dualizable 1-morphisms.

 QGraph is a semisimple dagger 2-category with dualizable 1-morphisms.

• Can take direct sum of quantum functions.

 QGraph is a semisimple dagger 2-category with dualizable 1-morphisms.

- Can take direct sum of quantum functions.
- Every quantum function is a direct sum of simple quantum functions P for which the intertwiners are trivial; $\operatorname{QGraph}(P,P) \cong \mathbb{C}$.

 QGraph is a semisimple dagger 2-category with dualizable 1-morphisms.

- Can take direct sum of quantum functions.
- Every quantum function is a direct sum of simple quantum functions P for which the intertwiners are trivial; $\operatorname{QGraph}(P,P) \cong \mathbb{C}$.

¹With possibly infinitely many simple objects

 QGraph is a semisimple dagger 2-category with dualizable 1-morphisms.

- Can take direct sum of quantum functions.
- Every quantum function is a direct sum of simple quantum functions P for which the intertwiners are trivial; $\operatorname{QGraph}(P,P) \cong \mathbb{C}$.

QAut(G) := QGraph(G, G) — the quantum automorphism category of a graph G — is a fusion¹ category.

Every classical isomorphism is simple.

 QGraph is a semisimple dagger 2-category with dualizable 1-morphisms.

- Can take direct sum of quantum functions.
- Every quantum function is a direct sum of simple quantum functions P for which the intertwiners are trivial; $\operatorname{QGraph}(P,P) \cong \mathbb{C}$.

- Every classical isomorphism is simple.
- Direct sums of isomorphisms form the classical subcategory $\widetilde{\mathrm{Aut}}(G)$.

 QGraph is a semisimple dagger 2-category with dualizable 1-morphisms.

- Can take direct sum of quantum functions.
- Every quantum function is a direct sum of simple quantum functions P for which the intertwiners are trivial; $\operatorname{QGraph}(P,P) \cong \mathbb{C}$.

- Every classical isomorphism is simple.
- Direct sums of isomorphisms form the classical subcategory $\widetilde{\mathrm{Aut}}(G)$.
- \bullet $\widetilde{\mathrm{Aut}}(G)=\mathrm{Hilb}_{\mathrm{Aut}(G)}$, the category of $\mathrm{Aut}(G)$ -graded Hilbert spaces.

 QGraph is a semisimple dagger 2-category with dualizable 1-morphisms.

- Can take direct sum of quantum functions.
- Every quantum function is a direct sum of simple quantum functions P for which the intertwiners are trivial; $\operatorname{QGraph}(P,P) \cong \mathbb{C}$.

- Every classical isomorphism is simple.
- Direct sums of isomorphisms form the classical subcategory $\widetilde{\mathrm{Aut}}(G)$.
- $Aut(G) = Hilb_{Aut(G)}$, the category of Aut(G)-graded Hilbert spaces.
- If $QAut(G) = \widetilde{Aut}(G)$, then G has no quantum symmetries.

¹With possibly infinitely many simple objects

Quantum automorphism groups of graphs have been studied before in the setting of compact quantum groups [1] \rightsquigarrow Hopf C^* -algebra A(G)

Quantum automorphism groups of graphs have been studied before in the setting of compact quantum groups [1] \rightsquigarrow Hopf C^* -algebra A(G) Our $\mathrm{QAut}(G)$ is the category of f.d. representations of A(G).

Quantum automorphism groups of graphs have been studied before in the setting of compact quantum groups [1] \leadsto Hopf C^* -algebra A(G) Our $\mathrm{QAut}(G)$ is the category of f.d. representations of A(G).

We are now at the intersection of:

• higher algebra: QAut(G) is a fusion category.

Quantum automorphism groups of graphs have been studied before in the setting of compact quantum groups [1] \rightsquigarrow Hopf C^* -algebra A(G) Our $\mathrm{QAut}(G)$ is the category of f.d. representations of A(G).

We are now at the intersection of:

- higher algebra: QAut(G) is a fusion category.
- compact quantum group theory: QAut(G) = Rep(A(G))

Quantum automorphism groups of graphs have been studied before in the setting of compact quantum groups [1] \rightsquigarrow Hopf C^* -algebra A(G) Our $\mathrm{QAut}(G)$ is the category of f.d. representations of A(G).

We are now at the intersection of:

- higher algebra: QAut(G) is a fusion category.
- compact quantum group theory: QAut(G) = Rep(A(G))
- pseudo-telepathy: quantum but not classically isomorphic graphs

Quantum automorphism groups of graphs have been studied before in the setting of compact quantum groups [1] \rightsquigarrow Hopf C^* -algebra A(G) Our $\mathrm{QAut}(G)$ is the category of f.d. representations of A(G).

We are now at the intersection of:

- higher algebra: QAut(G) is a fusion category.
- compact quantum group theory: QAut(G) = Rep(A(G))
- pseudo-telepathy: quantum but not classically isomorphic graphs

Can we understand quantum isomorphisms in terms of the quantum automorphism categories QAut(G)?

Part 3 The Morita theory of quantum graph isomorphisms

Morita theory: The study of algebras up to Morita equivalence.

Morita theory: The study of algebras up to Morita equivalence.

Definition

Algebras A, B are Morita equivalent \Leftrightarrow the module categories Mod(A) and Mod(B) are equivalent

Morita theory: The study of algebras up to Morita equivalence.

Definition

Algebras A, B are Morita equivalent \Leftrightarrow the module categories Mod(A) and Mod(B) are equivalent

• isomorphic algebras are Morita equivalent

Morita theory: The study of algebras up to Morita equivalence.

Definition

Algebras A, B are Morita equivalent \Leftrightarrow the module categories Mod(A) and Mod(B) are equivalent

- isomorphic algebras are Morita equivalent
- Morita equivalent commutative algebras are isomorphic

Morita theory: The study of algebras up to Morita equivalence.

Definition

Algebras A, B are Morita equivalent \Leftrightarrow the module categories Mod(A) and Mod(B) are equivalent

- isomorphic algebras are Morita equivalent
- Morita equivalent commutative algebras are isomorphic
- ullet Morita equivalent but non-isomorphic algebras: e.g. $\mathrm{Mat}_n(\mathbb{C})$ and \mathbb{C}

Morita theory: The study of algebras up to Morita equivalence.

Definition

Algebras A, B are Morita equivalent \Leftrightarrow the module categories Mod(A) and Mod(B) are equivalent

- isomorphic algebras are Morita equivalent
- Morita equivalent commutative algebras are isomorphic
- Morita equivalent but non-isomorphic algebras: e.g. $\mathrm{Mat}_n(\mathbb{C})$ and \mathbb{C}

Morita equivalence can be defined in arbitrary monoidal categories.

Morita theory: The study of algebras up to Morita equivalence.

Definition

Algebras A, B are Morita equivalent \Leftrightarrow the module categories Mod(A) and Mod(B) are equivalent

- isomorphic algebras are Morita equivalent
- Morita equivalent commutative algebras are isomorphic
- Morita equivalent but non-isomorphic algebras: e.g. $\mathrm{Mat}_n(\mathbb{C})$ and \mathbb{C}

Morita equivalence can be defined in arbitrary monoidal categories.

Morita classes of Frobenius algebras in fusion categories are well studied.

Pseudo-telepathy and QGraph

Quantum pseudo-telepathy	QGraph

Pseudo-telepathy and QGraph

QGraph
equivalence $\Gamma o \Gamma'$

Pseudo-telepathy and QGraph

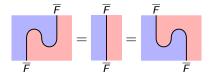
Quantum pseudo-telepathy	QGraph
graph isomorphism $\Gamma\cong\Gamma'$	equivalence $\Gamma o \Gamma'$
quantum graph isomorphism $\Gamma \cong_{\mathcal{Q}} \Gamma'$	dualizable 1-morphism $\Gamma o \Gamma'$

Quantum pseudo-telepathy	QGraph
graph isomorphism $\Gamma\cong\Gamma'$	equivalence $\Gamma o \Gamma'$
quantum graph isomorphism $\Gamma \cong_{\mathcal{Q}} \Gamma'$	dualizable 1-morphism $\Gamma o \Gamma'$

Dualizable $A \xrightarrow{F} B$ in a †-2-cat. \mathbb{B}

Quantum pseudo-telepathy	QGraph
graph isomorphism $\Gamma\cong\Gamma'$	equivalence $\Gamma o \Gamma'$
quantum graph isomorphism $\Gamma\cong_{\mathcal{Q}}\Gamma'$	dualizable 1-morphism $\Gamma o \Gamma'$

Dualizable $A \xrightarrow{F} B$ in a †-2-cat. \mathbb{B}



Quantum pseudo-telepathy	QGraph
graph isomorphism $\Gamma\cong\Gamma'$	equivalence $\Gamma o \Gamma'$
quantum graph isomorphism $\Gamma \cong_{\mathcal{Q}} \Gamma'$	dualizable 1-morphism $\Gamma o \Gamma'$

Dualizable $A \xrightarrow{F} B$ in a †-2-cat. $\mathbb{B} \leadsto \dagger$ -Frobenius algebra $\overline{F}F$ in $\mathbb{B}(A,A)$

Quantum pseudo-telepathy	QGraph
graph isomorphism $\Gamma\cong\Gamma'$	equivalence $\Gamma o \Gamma'$
quantum graph isomorphism $\Gamma \cong_{\mathcal{Q}} \Gamma'$	dualizable 1-morphism $\Gamma o \Gamma'$

Dualizable $A \xrightarrow{F} B$ in a †-2-cat. $\mathbb{B} \leadsto \dagger$ -Frobenius algebra $\overline{F}F$ in $\mathbb{B}(A,A)$

In nice 2-categories, we can recover duals from Frobenius algebras.

Quantum pseudo-telepathy	QGraph
graph isomorphism $\Gamma\cong\Gamma'$	equivalence $\Gamma o \Gamma'$
quantum graph isomorphism $\Gamma \cong_{\mathcal{Q}} \Gamma'$	dualizable 1-morphism $\Gamma o \Gamma'$

Dualizable $A \xrightarrow{F} B$ in a †-2-cat. $\mathbb{B} \leadsto \dagger$ -Frobenius algebra $\overline{F}F$ in $\mathbb{B}(A,A)$

In nice 2-categories, we can recover duals from Frobenius algebras. More precisely: The equivalence class of the object B in $\mathbb B$ can be recovered from the Morita class of the algebra $\overline FF$.

Quantum pseudo-telepathy	QGraph
graph isomorphism $\Gamma\cong\Gamma'$	equivalence $\Gamma o \Gamma'$
quantum graph isomorphism $\Gamma\cong_Q\Gamma'$	dualizable 1-morphism $\Gamma o \Gamma'$

Dualizable $A \xrightarrow{F} B$ in QGraph $\rightarrow \uparrow$ -Frobenius algebra $\overline{F}F$ in QAut(A)

In nice 2-categories, we can recover duals from Frobenius algebras. More precisely: The equivalence class of the object B in \mathbb{B} can be recovered from the Morita class of the algebra FF.

Use this to classify graphs quantum isomorphic to a given graph.

There is a monoidal forgetful functor $F : QAut(G) \rightarrow Hilb$:

There is a monoidal forgetful functor $F : QAut(G) \rightarrow Hilb$:

Definition:

A dagger Frobenius algebra A in QAut(G) is simple if $F(A) \cong End(\mathcal{H})$ for some Hilbert space \mathcal{H} .

There is a monoidal forgetful functor $F : QAut(G) \rightarrow Hilb$:

$$V_G$$
 V_G
 V_G
 \mathcal{H}

Definition:

A dagger Frobenius algebra A in QAut(G) is *simple* if $F(A) \cong End(\mathcal{H})$ for some Hilbert space \mathcal{H} .

Theorem

For a graph G, there is a bijective correspondence between:

• isomorphism classes of graphs H quantum isomorphic to G

There is a monoidal forgetful functor $F : QAut(G) \rightarrow Hilb$:

$$\begin{array}{ccc} \mathcal{H} & \mathcal{V}_G \\ & \mathcal{V}_G & & & \mathcal{H} \end{array}$$

Definition:

A dagger Frobenius algebra A in QAut(G) is *simple* if $F(A) \cong End(\mathcal{H})$ for some Hilbert space \mathcal{H} .

Theorem

For a graph G, there is a bijective correspondence between:

- isomorphism classes of graphs H quantum isomorphic to G
- Morita classes of simple dagger Frobenius algebras in QAut(G) fulfilling a certain commutativity condition

There is a monoidal forgetful functor $F : QAut(G) \to Hilb$:

$$V_G$$
 V_G
 V_G
 V_G
 V_G
 V_G

Definition:

A dagger Frobenius algebra A in QAut(G) is simple if $F(A) \cong End(\mathcal{H})$ for some Hilbert space \mathcal{H} .

Theorem

For a quantum graph G, there is a bijective correspondence between:

- isomorphism classes of quantum graphs H quantum isomorphic to G
- ullet Morita classes of simple dagger Frobenius algebras in $\mathrm{QAut}(G)$

drop commutativity condition was classify quantum graphs [1,2]

[1] Weaver — Quantum graphs as quantum relations. 2015

[2] Duan, Severini, Winter — Zero error communication [...] theta functions. 2010

QAut(G) is too large.

QAut(G) is too large. Let's focus on an easier subcategory:

The classical subcategory $\overline{\operatorname{Aut}}(G)$: direct sums of classical automorphisms

QAut(G) is too large. Let's focus on an easier subcategory: The classical subcategory $\widetilde{Aut}(G)$: direct sums of classical automorphisms

Definition:

A group of central type is a group H with a 2-cocycle $\psi: H \times H \to U(1)$ such that $\mathbb{C}H^{\psi}$ is a simple algebra.

QAut(G) is too large. Let's focus on an easier subcategory:

The classical subcategory $\widetilde{\mathrm{Aut}}(G)$: direct sums of classical automorphisms

Definition:

A group of central type is a group H with a 2-cocycle $\psi: H \times H \to U(1)$ such that $\mathbb{C}H^{\psi}$ is a simple algebra.

Example:

The Pauli matrices make the group $\mathbb{Z}_2 \times \mathbb{Z}_2$ into a group of central type:

$$\mathbb{C}\left(\mathbb{Z}_2\times\mathbb{Z}_2\right)^\psi\to\mathsf{End}(\mathbb{C}^2)$$

$$(a,b)\mapsto X^aZ^b$$

QAut(G) is too large. Let's focus on an easier subcategory:

The classical subcategory $\operatorname{Aut}(G)$: direct sums of classical automorphisms

Definition:

A group of central type is a group H with a 2-cocycle $\psi: H \times H \to U(1)$ such that $\mathbb{C}H^{\psi}$ is a simple algebra.

Example:

The Pauli matrices make the group $\mathbb{Z}_2 \times \mathbb{Z}_2$ into a group of central type:

$$\mathbb{C}\left(\mathbb{Z}_2\times\mathbb{Z}_2\right)^\psi\to\mathsf{End}(\mathbb{C}^2)$$

$$(a,b)\mapsto X^aZ^b$$

Theorem

Morita classes of simple dagger Frobenius algebras in $\widetilde{\mathrm{Aut}}(G)$ are in bijective correspondence with central type subgroups of $\mathrm{Aut}(G)$.

QAut(G) is too large. Let's focus on an easier subcategory:

The classical subcategory $\operatorname{Aut}(G)$: direct sums of classical automorphisms

Definition:

A group of central type is a group H with a 2-cocycle $\psi: H \times H \to U(1)$ such that $\mathbb{C}H^{\psi}$ is a simple algebra.

Example:

The Pauli matrices make the group $\mathbb{Z}_2 \times \mathbb{Z}_2$ into a group of central type:

$$\mathbb{C}\left(\mathbb{Z}_2\times\mathbb{Z}_2\right)^\psi\to\mathsf{End}(\mathbb{C}^2)$$

$$(a,b)\mapsto X^aZ^b$$

Theorem

Morita classes of simple dagger Frobenius algebras in $\widetilde{\mathrm{Aut}}(G)$ are in bijective correspondence with central type subgroups of $\mathrm{Aut}(G)$.

What about the commutativity condition?

Let H be a group of central type with 2-cocycle ψ . Define $\rho(a,b):=\psi(a,b)\overline{\psi}(b,a)$. ρ is a symplectic form on H.

Let H be a group of central type with 2-cocycle ψ . Define $\rho(a,b):=\psi(a,b)\overline{\psi}(b,a)$. ρ is a symplectic form on H. The orthogonal complement of a subgroup $S\subseteq H$ is

$$S^{\perp} = \{ h \in H \mid \rho(s, h) = 1 \ \forall s \in S \cap Z_h \}$$

Let H be a group of central type with 2-cocycle ψ .

Define
$$\rho(a,b) := \psi(a,b)\overline{\psi}(b,a)$$
. ρ is a symplectic The orthogonal complement of a subgroup $S \subseteq H$
$$Z_h = \{s \in H \mid sh = hs\}$$
$$S^{\perp} = \{h \in H \mid \rho(s,h) = 1 \ \forall s \in S \cap Z_h^{\downarrow}\}$$

$$S^{\perp} = \{ h \in H \mid \rho(s, h) = 1 \ \forall s \in S \cap Z_h^{\swarrow} \}$$

Let H be a group of central type with 2-cocycle ψ .

Define
$$\rho(a,b) := \psi(a,b)\overline{\psi}(b,a)$$
. ρ is a symplectic The orthogonal complement of a subgroup $S \subseteq H$
$$Z_h = \{s \in H \mid sh = hs\}$$
$$S^{\perp} = \{h \in H \mid \rho(s,h) = 1 \ \forall s \in S \cap Z_h^{\downarrow}\}$$

$$S^{\perp} = \{ h \in H \mid \rho(s,h) = 1 \ \forall s \in S \cap Z_h \}$$

A subgroup $S \subseteq H$ is coisotropic if $S^{\perp} \subseteq S$.

Let H be a group of central type with 2-cocycle ψ .

Define
$$\rho(a,b) := \psi(a,b)\overline{\psi}(b,a)$$
. ρ is a symplectic The orthogonal complement of a subgroup $S \subseteq H$
$$Z_h = \{s \in H \mid sh = hs\}$$
$$S^{\perp} = \{h \in H \mid \rho(s,h) = 1 \ \forall s \in S \cap Z_h^{\downarrow}\}$$

$$S^{\perp} = \{ h \in H \mid \rho(s,h) = 1 \ \forall s \in S \cap Z_h \}$$

A subgroup $S \subseteq H$ is coisotropic if $S^{\perp} \subseteq S$.

Let G be a graph. A subgroup $H \subseteq Aut(G)$ has coisotropic stabilizers if $\operatorname{Stab}(v) \cap H$ is coisotropic for all vertices v of G.

Let H be a group of central type with 2-cocycle ψ .

Define
$$\rho(a,b) := \psi(a,b)\overline{\psi}(b,a)$$
. ρ is a symplectic The orthogonal complement of a subgroup $S \subseteq H$ $Z_h = \{s \in H \mid sh = hs\}$

$$S^{\perp} = \{h \in H \mid \rho(s,h) = 1 \ \forall s \in S \cap Z_h\}$$

A subgroup $S \subseteq H$ is coisotropic if $S^{\perp} \subseteq S$. Let G be a graph. A subgroup $H \subseteq \operatorname{Aut}(G)$ has coisotropic stabilizers if $\operatorname{Stab}(v) \cap H$ is coisotropic for all vertices v of G.

Theorem

Let H be a central type subgroup of $\operatorname{Aut}(G)$. The corresponding simple dagger Frobenius algebra in $\widetilde{\operatorname{Aut}}(G)$ fulfills the commutativity condition if and only if H has coisotropic stabilizers.

Let H be a group of central type with 2-cocycle ψ .

Define $\rho(a,b) := \psi(a,b)\overline{\psi}(b,a)$. ρ is a symplectic The orthogonal complement of a subgroup $S \subseteq H$ $Z_h = \{s \in H \mid sh = hs\}$

$$S^{\perp} = \{ h \in H \mid \rho(s,h) = 1 \ \forall s \in S \cap Z_h^{\downarrow} \}$$

A subgroup $S \subseteq H$ is coisotropic if $S^{\perp} \subseteq S$.

Let G be a graph. A subgroup $H \subseteq \operatorname{Aut}(G)$ has coisotropic stabilizers if $\operatorname{Stab}(v) \cap H$ is coisotropic for all vertices v of G.

Theorem

Let H be a central type subgroup of $\operatorname{Aut}(G)$. The corresponding simple dagger Frobenius algebra in $\widetilde{\operatorname{Aut}}(G)$ fulfills the commutativity condition if and only if H has coisotropic stabilizers.

Given: A central type subgroup of Aut(G) with coisotropic stabilizers.

Let H be a group of central type with 2-cocycle ψ .

Define $\rho(a,b) := \psi(a,b)\overline{\psi}(b,a)$. ρ is a symplectic The orthogonal complement of a subgroup $S \subseteq H$ $Z_h = \{s \in H \mid sh = hs\}$

$$S^{\perp} = \{ h \in H \mid \rho(s,h) = 1 \ \forall s \in S \cap Z_h^{\downarrow} \}$$

A subgroup $S \subseteq H$ is coisotropic if $S^{\perp} \subseteq S$.

Let G be a graph. A subgroup $H \subseteq \operatorname{Aut}(G)$ has coisotropic stabilizers if $\operatorname{Stab}(v) \cap H$ is coisotropic for all vertices v of G.

Theorem

Let H be a central type subgroup of $\operatorname{Aut}(G)$. The corresponding simple dagger Frobenius algebra in $\widetilde{\operatorname{Aut}}(G)$ fulfills the commutativity condition if and only if H has coisotropic stabilizers.

Given: A central type subgroup of $\mathrm{Aut}(G)$ with coisotropic stabilizers.

Get: A graph G' quantum isomorphic to G.

Let H be a group of central type with 2-cocycle ψ .

Define $\rho(a,b) := \psi(a,b)\overline{\psi}(b,a)$. ρ is a symplectic The orthogonal complement of a subgroup $S \subseteq H$ $Z_h = \{s \in H \mid sh = hs\}$

$$S^{\perp} = \{ h \in H \mid \rho(s,h) = 1 \ \forall s \in S \cap Z_h^{\checkmark} \}$$

A subgroup $S \subseteq H$ is coisotropic if $S^{\perp} \subseteq S$.

Let G be a graph. A subgroup $H \subseteq \operatorname{Aut}(G)$ has coisotropic stabilizers if $\operatorname{Stab}(v) \cap H$ is coisotropic for all vertices v of G.

Theorem

Let H be a central type subgroup of $\operatorname{Aut}(G)$. The corresponding simple dagger Frobenius algebra in $\widetilde{\operatorname{Aut}}(G)$ fulfills the commutativity condition if and only if H has coisotropic stabilizers.

Given: A central type subgroup of Aut(G) with coisotropic stabilizers.

Get: A graph G' quantum isomorphic to G.

If G has no quantum symmetries: get all quantum isomorphic graphs G'

Let G be a graph with vertex set V_G .

Given: An abelian central type subgroup $H \subseteq \operatorname{Aut}(G)$ with corresponding 2-cocycle ψ which has coisotropic stabilizers.

Let G be a graph with vertex set V_G .

Given: An abelian central type subgroup $H \subseteq \operatorname{Aut}(G)$ with corresponding 2-cocycle ψ which has coisotropic stabilizers.

Let G be a graph with vertex set V_G .

Given: An abelian central type subgroup $H \subseteq \operatorname{Aut}(G)$ with corresponding 2-cocycle ψ which has coisotropic stabilizers.

Construct: A graph G' quantum isomorphic to G.

• Let $O \subseteq V_G$ be an H-orbit and let $Stab(O) \subseteq H$ be the stabilizer subgroup of this orbit.

Let G be a graph with vertex set V_G .

Given: An abelian central type subgroup $H \subseteq \operatorname{Aut}(G)$ with corresponding 2-cocycle ψ which has coisotropic stabilizers.

- Let $O \subseteq V_G$ be an H-orbit and let $Stab(O) \subseteq H$ be the stabilizer subgroup of this orbit.
- Let G_O be the graph G restricted to the orbit O.

Let G be a graph with vertex set V_G .

Given: An abelian central type subgroup $H \subseteq \operatorname{Aut}(G)$ with corresponding 2-cocycle ψ which has coisotropic stabilizers.

- Let $O \subseteq V_G$ be an H-orbit and let $Stab(O) \subseteq H$ be the stabilizer subgroup of this orbit.
- Let G_O be the graph G restricted to the orbit O.
- Consider the disjoint union graph $\sqcup_O G_O$.

Let G be a graph with vertex set V_G .

Given: An abelian central type subgroup $H \subseteq \operatorname{Aut}(G)$ with corresponding 2-cocycle ψ which has coisotropic stabilizers.

- Let $O \subseteq V_G$ be an H-orbit and let $Stab(O) \subseteq H$ be the stabilizer subgroup of this orbit.
- Let G_O be the graph G restricted to the orbit O.
- Consider the disjoint union graph $\sqcup_O G_O$.
- For every orbit O pick a 1-cochain ϕ_O on $\operatorname{Stab}(O)$ such that $d\phi_O = \psi|_{\operatorname{Stab}(O)}$.

Let G be a graph with vertex set V_G .

Given: An abelian central type subgroup $H \subseteq \operatorname{Aut}(G)$ with corresponding 2-cocycle ψ which has coisotropic stabilizers.

- Let $O \subseteq V_G$ be an H-orbit and let $Stab(O) \subseteq H$ be the stabilizer subgroup of this orbit.
- Let G_O be the graph G restricted to the orbit O.
- Consider the disjoint union graph $\sqcup_O G_O$.
- For every orbit O pick a 1-cochain ϕ_O on $\operatorname{Stab}(O)$ such that $d\phi_O = \psi|_{\operatorname{Stab}(O)}$.
- For every pair of orbits O and O', consider the 1-cocycle $\phi_O \overline{\phi_{O'}}$ on $\operatorname{Stab}(O) \cap \operatorname{Stab}(O')$. This extends to a 1-cocycle on the group H of the form $\rho(h_{O,O'},-)$ for some $h_{O,O'} \in H$.

Let G be a graph with vertex set V_G .

Given: An abelian central type subgroup $H \subseteq \operatorname{Aut}(G)$ with corresponding 2-cocycle ψ which has coisotropic stabilizers.

- Let $O \subseteq V_G$ be an H-orbit and let $Stab(O) \subseteq H$ be the stabilizer subgroup of this orbit.
- Let G_O be the graph G restricted to the orbit O.
- Consider the disjoint union graph $\sqcup_O G_O$.
- For every orbit O pick a 1-cochain ϕ_O on $\operatorname{Stab}(O)$ such that $d\phi_O = \psi|_{\operatorname{Stab}(O)}$.
- For every pair of orbits O and O', consider the 1-cocycle $\phi_O \overline{\phi_{O'}}$ on $\operatorname{Stab}(O) \cap \operatorname{Stab}(O')$. This extends to a 1-cocycle on the group H of the form $\rho(h_{O,O'},-)$ for some $h_{O,O'} \in H$.
- Reconnect the disjoint components of $\sqcup_O G_O$ as follows:

$$v \in O \sim_{G'} w \in O' \quad \Leftrightarrow \quad h_{O,O} v \sim_G w$$

An example: binary magic squares (BMS)

BMS: a 3×3 square with $\left\{\begin{array}{c} \text{entries in } \{0,1\} \\ \text{rows and columns add up to } 0 \mod 2 \end{array}\right.$

An example: binary magic squares (BMS)

BMS: a 3
$$imes$$
 3 square with $\left\{ \begin{array}{c} \text{entries in } \{0,1\} \\ \text{rows and columns add up to 0} \mod 2 \end{array} \right.$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

BMS: a 3×3 square with $\left\{\begin{array}{c} \text{entries in } \{0,1\} \\ \text{rows and columns add up to } 0 \mod 2 \end{array}\right.$ Define a graph Γ_{BMS} :

$$\begin{pmatrix} 0 & 0 & 0 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 1 & 1 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & \cdot & \cdot \\ 0 & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix}$$

BMS: a 3 \times 3 square with $\left\{\begin{array}{c} \text{entries in } \{0,1\} \\ \text{rows and columns add up to 0} \mod 2 \end{array}\right.$

Define a graph Γ_{BMS} :

• vertices: partial BMS — only one row or column filled — 24 vertices

$$\begin{pmatrix} 0 & 0 & 0 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 1 & 1 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & \cdot & \cdot \\ 0 & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix}$$

• edge between two vertices if the partial BMS contradict each other

BMS: a 3×3 square with $\left\{\begin{array}{c} \text{entries in } \{0,1\} \\ \text{rows and columns add up to } 0 \mod 2 \end{array}\right.$ Define a graph Γ_{BMS} :

• vertices: partial BMS — only one row or column filled — 24 vertices

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

 edge between two vertices if the partial BMS contradict each other Bit-flip symmetries

BMS: a 3×3 square with $\left\{\begin{array}{c} \text{entries in } \{0,1\} \\ \text{rows and columns add up to } 0 \mod 2 \end{array}\right.$ Define a graph Γ_{BMS} :

• vertices: partial BMS — only one row or column filled — 24 vertices

$$\begin{pmatrix} \textbf{0} & \textbf{0} & 0 \\ \textbf{0} & \textbf{0} & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 & \textbf{0} & \textbf{0} \\ \textbf{x} & 1 & \textbf{0} \\ \textbf{x} & \textbf{x} & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & \textbf{x} & \textbf{0} \\ 0 & 1 & 1 \\ 1 & \textbf{0} & \textbf{x} \end{pmatrix}$$

 edge between two vertices if the partial BMS contradict each other Bit-flip symmetries

BMS: a 3×3 square with $\left\{\begin{array}{c} \text{entries in } \{0,1\} \\ \text{rows and columns add up to } 0 \mod 2 \end{array}\right.$ Define a graph Γ_{BMS} :

• vertices: partial BMS — only one row or column filled — 24 vertices

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

 edge between two vertices if the partial BMS contradict each other Bit-flip symmetries

BMS: a 3×3 square with $\left\{\begin{array}{c} \text{entries in } \{0,1\} \\ \text{rows and columns add up to } 0 \mod 2 \end{array}\right.$ Define a graph Γ_{BMS} :

• vertices: partial BMS — only one row or column filled — 24 vertices

$$\begin{pmatrix} 0 & 0 & 0 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 1 & 1 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & \cdot & \cdot \\ 0 & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix}$$

edge between two vertices if the partial BMS contradict each other
 Bit-flip symmetries of this graph

BMS: a 3×3 square with $\left\{\begin{array}{c} \text{entries in } \{0,1\} \\ \text{rows and columns add up to } 0 \mod 2 \end{array}\right.$ Define a graph Γ_{BMS} :

• vertices: partial BMS — only one row or column filled — 24 vertices

$$\begin{pmatrix} \begin{pmatrix} \mathbf{X} & \mathbf{X} & \mathbf{0} \\ \mathbf{X} & \mathbf{X} & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \mathbf{X} & \mathbf{X} \\ \mathbf{X} & \cdot & \mathbf{X} \\ \mathbf{X} & \mathbf{X} & \mathbf{0} \end{pmatrix} \qquad \begin{pmatrix} 1 & \mathbf{X} & \mathbf{X} \\ 0 & \cdot & \cdot \\ 1 & \mathbf{X} & \mathbf{X} \end{pmatrix}$$

edge between two vertices if the partial BMS contradict each other
 Bit-flip symmetries of this graph

BMS: a 3×3 square with $\left\{\begin{array}{c} \text{entries in } \{0,1\} \\ \text{rows and columns add up to } 0 \mod 2 \end{array}\right.$ Define a graph Γ_{BMS} :

• vertices: partial BMS — only one row or column filled — 24 vertices

$$\begin{pmatrix} 1 & 1 & 0 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & \cdot & \cdot \\ 0 & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix}$$

edge between two vertices if the partial BMS contradict each other
 Bit-flip symmetries of this graph

BMS: a 3×3 square with $\left\{\begin{array}{c} \text{entries in } \{0,1\} \\ \text{rows and columns add up to } 0 \mod 2 \end{array}\right.$ Define a graph Γ_{BMS} :

• vertices: partial BMS — only one row or column filled — 24 vertices

generators:
$$\begin{pmatrix} \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \mathbf{X} & \mathbf{X} \end{pmatrix}$$

• edge between two vertices if the partial BMS contradict each other Bit-flip symmetries of this graph form a subgroup $(\mathbb{Z}_2)^4 \leq \operatorname{Aut}(\Gamma_{BMS})$.

BMS: a 3×3 square with $\left\{\begin{array}{c} \text{entries in } \{0,1\} \\ \text{rows and columns add up to } 0 \mod 2 \end{array}\right.$ Define a graph Γ_{BMS} :

```
generators:  \begin{pmatrix} \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \mathbf{X} & \mathbf{X} \end{pmatrix}
```

- edge between two vertices if the partial BMS contradict each other Bit-flip symmetries of this graph form a subgroup $(\mathbb{Z}_2)^4 \leq \operatorname{Aut}(\Gamma_{BMS})$.
 - \Rightarrow $(\mathbb{Z}_2)^4$ is a group of central type with coisotropic stabilizers

BMS: a 3×3 square with $\left\{\begin{array}{c} \text{entries in } \{0,1\} \\ \text{rows and columns add up to } 0 \mod 2 \end{array}\right.$ Define a graph Γ_{BMS} :

```
generators:  \begin{pmatrix} \mathbf{x} & \mathbf{x} & \cdot \\ \mathbf{x} & \mathbf{x} & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \mathbf{x} & \mathbf{x} \\ \cdot & \mathbf{x} & \mathbf{x} \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \mathbf{x} & \mathbf{x} & \cdot \\ \mathbf{x} & \mathbf{x} & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \mathbf{x} & \mathbf{x} \\ \cdot & \mathbf{x} & \mathbf{x} \end{pmatrix}
```

- edge between two vertices if the partial BMS contradict each other Bit-flip symmetries of this graph form a subgroup $(\mathbb{Z}_2)^4 \leq \operatorname{Aut}(\Gamma_{BMS})$.
 - \Rightarrow $(\mathbb{Z}_2)^4$ is a group of central type with coisotropic stabilizers
 - \Rightarrow classification gives graph Γ' quantum isomorphic to Γ

BMS: a 3×3 square with $\left\{\begin{array}{c} \text{entries in } \{0,1\} \\ \text{rows and columns add up to } 0 \mod 2 \end{array}\right.$ Define a graph Γ_{BMS} :

```
generators:  \begin{pmatrix} \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \mathbf{X} & \mathbf{X} \end{pmatrix}
```

- edge between two vertices if the partial BMS contradict each other Bit-flip symmetries of this graph form a subgroup $(\mathbb{Z}_2)^4 \leq \operatorname{Aut}(\Gamma_{BMS})$.
 - \Rightarrow $(\mathbb{Z}_2)^4$ is a group of central type with coisotropic stabilizers
 - \Rightarrow classification gives graph Γ' quantum isomorphic to Γ
 - \Rightarrow Γ' coincides with a graph in [1] coming from the Mermin-Peres square

BMS: a 3×3 square with $\left\{\begin{array}{c} \text{entries in } \{0,1\} \\ \text{rows and columns add up to } 0 \mod 2 \end{array}\right.$ Define a graph Γ_{BMS} :

```
generators:  \begin{pmatrix} \mathbf{x} & \mathbf{x} & \cdot \\ \mathbf{x} & \mathbf{x} & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \mathbf{x} & \mathbf{x} \\ \cdot & \mathbf{x} & \mathbf{x} \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \mathbf{x} & \mathbf{x} & \cdot \\ \mathbf{x} & \mathbf{x} & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \mathbf{x} & \mathbf{x} \\ \cdot & \mathbf{x} & \mathbf{x} \end{pmatrix}
```

- edge between two vertices if the partial BMS contradict each other Bit-flip symmetries of this graph form a subgroup $(\mathbb{Z}_2)^4 \leq \operatorname{Aut}(\Gamma_{BMS})$.
 - \Rightarrow $(\mathbb{Z}_2)^4$ is a group of central type with coisotropic stabilizers
 - \Rightarrow classification gives graph Γ' quantum isomorphic to Γ
 - \Rightarrow Γ' coincides with a graph in [1] coming from the Mermin-Peres square
- \Rightarrow Pseudo-telepathy from the symmetries of classical magic squares

We have

described a framework for finite quantum set and graph theory

We have

- described a framework for finite quantum set and graph theory
- which links compact quantum group theory, fusion category theory and quantum information

We have

- described a framework for finite quantum set and graph theory
- which links compact quantum group theory, fusion category theory and quantum information
- and applied it to classify quantum isomorphic graphs.

We have

- described a framework for finite quantum set and graph theory
- which links compact quantum group theory, fusion category theory and quantum information
- and applied it to classify quantum isomorphic graphs.

Many open questions:

Other physical applications?

We have

- described a framework for finite quantum set and graph theory
- which links compact quantum group theory, fusion category theory and quantum information
- and applied it to classify quantum isomorphic graphs.

Many open questions:

- Other physical applications?
- Other theories based on finite quantum sets? Quantum orders?

We have

- described a framework for finite quantum set and graph theory
- which links compact quantum group theory, fusion category theory and quantum information
- and applied it to classify quantum isomorphic graphs.

Many open questions:

- Other physical applications?
- Other theories based on finite quantum sets? Quantum orders?
- Quantum combinatorics?

We have

- described a framework for finite quantum set and graph theory
- which links compact quantum group theory, fusion category theory and quantum information
- and applied it to classify quantum isomorphic graphs.

Many open questions:

- Other physical applications?
- Other theories based on finite quantum sets? Quantum orders?
- Quantum combinatorics?
- ...

We have

- described a framework for finite quantum set and graph theory
- which links compact quantum group theory, fusion category theory and quantum information
- and applied it to classify quantum isomorphic graphs.

Many open questions:

- Other physical applications?
- Other theories based on finite quantum sets? Quantum orders?
- Quantum combinatorics?
- ...

Thanks for listening!