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The spectrum

For this talk, a spectrum is an assignment

{commutative algebras} → {spaces}

Example: For a commutative ring R, its Zariski spectrum is

Spec(R) = {prime ideals of R},

where an ideal P ⊆ R is called prime if 1 /∈ P and

ab ∈ P =⇒ a ∈ P or b ∈ P.

It carries a Zariski topology, and is nonempty if R 6= 0 (by Zorn’s lemma).

This is not enough to recover R from Spec(R), but in algebraic geometry
it is equipped with a structure sheaf to produce a scheme, whose ring of
global sections is Γ(Spec(R),OSpec(R)) ∼= R.
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Further examples of spectra

Ex. 2: For a (unital) commutative C*-algebra A, its Gelfand spectrum is

Spec(A) = {maximal ideals of A},

where an ideal M is maximal if it is maximal with respect to 1 /∈ M. This
is a compact Hausdorff space, and we may recover A from this spectrum
as C (Spec(A)) = C (Spec(A),C) ∼= A.

Ex. 3: For a Boolean algebra B, its Stone spectrum is

Spec(B) = {prime ideals of B} ∼= {ultrafilters of B},

where P ⊆ B is an ideal if it is non-empty, ∨-closed down-set, and it is
prime if a ∧ b ∈ P =⇒ a ∈ P or b ∈ P. This is a compact 0-dimensional
space, from which we can recover B as the lattice of clopen sets.
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Spectrum as a link to noncommutative geometry

Thus we have:

Commutative rings: Spec(R) = {prime ideals of R}
Commutative C*-algebras: Spec(A) = {max. ideals of A}
Boolean algebra: Spec(B) = {prime ideals of B}

Each of these spectra is a (contravariant) functor: each algebra morphism
f : A→ B yields a geometric map Spec(B)→ Spec(A) by P 7→ f −1(P).

This partly motivates noncommutative geometry of various flavors:

{noncommutative algebras}! {“noncommutative spaces”}

In recent decades, NCG proceeds without bothering to construct an actual
noncommutative space. . .
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A noncommutative spectrum?

Question: What is the actual “noncommutative space” corresponding to
a noncommutative algebra?

Why do I care?

A solution would yield a rich invariant for noncommutative rings.

Help us “see” which rings are “geometrically nice” (e.g., smooth).

Quantum modeling: what is the “noncommutative phase space” of a
quantum system?

I believe that these and other related questions could benefit if we had an
actual “spatial” object to refer to when thinking geometrically about rings.
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Modeling all rings via “spaces”?

Question: What is the “noncommutative space” corresponding to a
noncommutative algebra?

To make this a rigorous problem, we should first set some ground rules:

(A) Keep the classical construction if the ring is commutative.
(Let’s not tell “commutative” geometers how to do their own job!)

(B) Make it a functorial construction.
(To ensure it’s truly geometric, and to aid computation.)

These rules provide us us with:

Obstructions proving that certain constructions are impossible;

Sharpened ideas on how to progress toward useful constructions.
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Taking commutative subalgebras seriously

(A) Keep the usual construction if the ring is commutative.

(B) Make it a functorial construction.

Applying the criteria: look at commutative subalgebras C of any
noncommutative algebra A. (Associativity of A ⇒ “many” C ⊆ A)

Suppose F : Ringop → {“spaces”} is a “spectrum functor.”

(A) means that we understand the F (C ) very well.

(B) gives us maps F (A)→ F (C ), compatible on intersections.

To me, this is reminiscent of the situation in quantum physics:

A ! algebra of observables for quantum system

C ! “classical viewpoints” of the quantum system

Manny Reyes (Bowdoin) Toward a quantum spectrum March 20, 2018 8 / 50



Taking commutative subalgebras seriously

(A) Keep the usual construction if the ring is commutative.

(B) Make it a functorial construction.

Applying the criteria: look at commutative subalgebras C of any
noncommutative algebra A. (Associativity of A ⇒ “many” C ⊆ A)

Suppose F : Ringop → {“spaces”} is a “spectrum functor.”

(A) means that we understand the F (C ) very well.

(B) gives us maps F (A)→ F (C ), compatible on intersections.

To me, this is reminiscent of the situation in quantum physics:

A ! algebra of observables for quantum system

C ! “classical viewpoints” of the quantum system

Manny Reyes (Bowdoin) Toward a quantum spectrum March 20, 2018 8 / 50



Can we begin with a set of points?

Naive (and old) idea: Maybe we should assign to each ring a topological
space and a sheaf of noncommutative rings. To begin this process, we
would need a nonempty underlying set.

There are several candidates for “primes” in noncommutative rings, but:

Problem: Every existing notion of a noncommuative “prime ideal” is either
(i) not functorial in any obvious way or (ii) empty for some R 6= 0.

Have we just been unlucky? Could this be fixed by choosing a different
spectrum? No!

Theorem (R., 2012): Any functor Ringop → Set whose restriction to the
full subcategory cRingop is isomorphic to Spec must assign the empty set
to Mn(C) for n ≥ 3. (Same holds for Gelfand spectrum of C*-algebras.)

Manny Reyes (Bowdoin) Toward a quantum spectrum March 20, 2018 9 / 50



Can we begin with a set of points?

Naive (and old) idea: Maybe we should assign to each ring a topological
space and a sheaf of noncommutative rings. To begin this process, we
would need a nonempty underlying set.

There are several candidates for “primes” in noncommutative rings, but:

Problem: Every existing notion of a noncommuative “prime ideal” is either
(i) not functorial in any obvious way or (ii) empty for some R 6= 0.

Have we just been unlucky? Could this be fixed by choosing a different
spectrum?

No!

Theorem (R., 2012): Any functor Ringop → Set whose restriction to the
full subcategory cRingop is isomorphic to Spec must assign the empty set
to Mn(C) for n ≥ 3. (Same holds for Gelfand spectrum of C*-algebras.)

Manny Reyes (Bowdoin) Toward a quantum spectrum March 20, 2018 9 / 50



Can we begin with a set of points?

Naive (and old) idea: Maybe we should assign to each ring a topological
space and a sheaf of noncommutative rings. To begin this process, we
would need a nonempty underlying set.

There are several candidates for “primes” in noncommutative rings, but:

Problem: Every existing notion of a noncommuative “prime ideal” is either
(i) not functorial in any obvious way or (ii) empty for some R 6= 0.

Have we just been unlucky? Could this be fixed by choosing a different
spectrum? No!

Theorem (R., 2012): Any functor Ringop → Set whose restriction to the
full subcategory cRingop is isomorphic to Spec must assign the empty set
to Mn(C) for n ≥ 3. (Same holds for Gelfand spectrum of C*-algebras.)

Manny Reyes (Bowdoin) Toward a quantum spectrum March 20, 2018 9 / 50



Proving the obstruction

Theorem: Any functor F : Ringop → Set whose restriction to cRingop is
isomorphic to Spec has F (Mn(C)) = ∅ for n ≥ 3.

Why? Suppose F (R) 6= ∅ for some R, so there exists q ∈ F (R).

Commutative subrings C ⊆ D ⊆ R yield “compatible” primes:

F (R)→ F (D)→ F (C )

q 7→ pD 7→ pC = pD ∩ C

So q yields a subset p =
⋃
pC ⊆ R such that, for each commutative

subring C ⊆ R, we have p ∩ C = pC ∈ Spec(C ).

Def: A subset p as above is a prime partial ideal of R, and the set of all
prime partial ideals of R is p-Spec(R). (Note: p-Spec is a functor.)
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Colorings from prime partial ideals

Thus: Every F extending Spec maps F (R) = ∅ ⇐⇒ p-Spec(R) = ∅

New goal: p-Spec(Mn(C)) = ∅ for n ≥ 3.

What if there were some p ∈ p-Spec(M3(C))?

Lemma: If q1 + q2 + q3 = I is a sum of orthogonal projections in M3(C),
then two qi lie in p, exactly one lies outside.

Observation: Any prime partial ideal induces a “010-coloring” on the
projections Proj(M3(C)) (those in p are “0” and those outside are “1”).

A surprise: This type of coloring has been studied in quantum physics!

The physical motivation was to obstruct hidden-variable theories of
quantum mechanics, under the assumption of non-contextuality.
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The Kochen-Specker Theorem

Q: (Roughly) Can all observables be simultaneously given definite values,
which are independent of the device used to measure them?

Observables: self-adjoint matrices Mn(C)sa

Definite values: function Mn(C)sa → R
“Yes-No” observable: projection p = p2 = p∗ ∈Mn(C), values {0, 1}

Def: A function f : Proj(Mn(C))→ {0, 1} is a Kochen-Specker coloring
if, whenever p1 + · · ·+ pr = In, we have f (pi ) = 0 for all but one i .

Equivalently: f is “Boolean whenever there is no uncertainty”:

1 f (0) = 0 and f (1) = 1;

2 f (p ∧ q) = f (p) ∧ f (q) and f (p ∨ q) = f (p) ∨ f (q) if p and q are
“commeasurable” (commute).
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The Kochen-Specker Theorem

Q: (Roughly) “Can all observables be simultaneously given definite values,
independent of the device used to measure them?” No!

Kochen-Specker Theorem (1967)

There is no Kochen-Specker coloring of Proj(Mn(C)) for n ≥ 3.

(Proof used clever vector geometry to find a finite uncolorable set.)

Corollary: For n ≥ 3, p-Spec(Mn(C)) = ∅.

And as outlined above, this directly proves:

Theorem: Any functor F : Ringop → Set whose restriction to cRingop is
isomorphic to Spec has F (Mn(C)) = ∅ for n ≥ 3.
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Further observations on spectrum functors

Theorem: Any functor F : Ringop → Set whose restriction to cRingop is
isomorphic to Spec has F (Mn(C)) = ∅ for n ≥ 3.

Question 1: How many rings have this kind of obstruction?

Cor: For F as above and any C-algebra R, F (Mn(R)) = ∅ for n ≥ 3.

Proof: C→ R yields Mn(C)→Mn(R), and thus a function
F (Mn(R))→ F (Mn(C)) = ∅.
The only set that maps to ∅ is ∅, so F (Mn(R)) = ∅ as well.

Question 2: What happens for M2(C)?

Proposition: For the functor F = p-Spec : Ringop → Set that extends
Spec, the set F (M2(C)) has cardinality 2c = 22

ℵ0 . (It’s huge!)
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Replacing C with Z

Theorem: Any functor F : Ringop → Set whose restriction to cRingop is
isomorphic to Spec must assign F (Mn(C)) = ∅ for n ≥ 3.

What is so special about C? What about other fields? Or universally:

Q: For F as above, must F (Mn(Z)) = ∅ for n ≥ 3?

As before, reduce to the “universal” functor F = p-Spec.

As before, any p ∈ p-Spec(M3(Z)) yields a Kochen-Specker coloring
of the idempotent integer matrices.

Q’: Is there an “integer-valued” Kochen-Specker theorem? Yes!

KS uncolorable vector configurations in the physics literature often use real
matrices with irrational entries. So there was real work to be done here.
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Functoriality of colorability

Handy obseration: Can think of a KS coloring of idempotents as a
morphism Idpt(R)→ {0, 1} in a certain category of partial Boolean
algebras (again, “Boolean when there is no uncertainty).

Lemma: Suppose that there exists a ring homomorphism R → S .

If Idpt(S) has a KS coloring, then Idpt(R) has a KS coloring.

If Idpt(R) is KS uncolorable, then Idpt(S) is KS uncolorable.

Follows by composing partial Boolean algebra morphisms:

Idpt(R)→ Idpt(S)→ {0, 1}

Similar result holds for Proj(Mn(R)) = {symmetric idempotents} and
Proj(Mn(S)) given a cRing morphism R → S .
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Colorability of projections over various rings

Initial idea: Would suffice for the partial ring M3(Z)sym of symmetric
matrices to have empty partial spectrum, for which it would suffice to
show Proj(M3(Z[1/N])) uncolorable for two relatively prime values of N.

Theorem (Ben-Zvi, Ma, R. 2017):

ring R prime p Proj(M3(R)) p-Spec(M3(R)sym)

Z[1/30] uncolorable empty

Fp p ≥ 5 uncolorable empty

Fp p = 2, 3 colorable nonempty

Z (colorable) nonempty /

Idea of proof: J. Bub (1996), using observation of Schütte, produced an
uncolorable set of integer vectors v such that all ‖v‖2 divide 30. Analyze
Fp for p = 2, 3, 5 as special cases. Functoriality does the rest.
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Z[1/30] uncolorable empty

Fp p ≥ 5 uncolorable empty

Fp p = 2, 3 colorable nonempty

Z (colorable) nonempty /

Idea of proof: J. Bub (1996), using observation of Schütte, produced an
uncolorable set of integer vectors v such that all ‖v‖2 divide 30. Analyze
Fp for p = 2, 3, 5 as special cases. Functoriality does the rest.
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Colorability of idempotents in various rings

The chart told us we needed to study non-symmetric idempotent matrices.

A clever counting argument in the non-symmetric case yields:

Theorem (Chirvasitu): Idpt(M3(Fp)) is uncolorable for p ≡ 2 (mod 3).

There exists a set S of 28 idempotents in M3(Z) that are lifts of
{rank-1 idempotents} ⊆M3(F2).

But some orthogonality relations are not preserved, so the proof of
uncolorability does not lift.

Nevertheless, a case-splitting argument shows that S is uncolorable!

Theorem (Ben-Zvi, Ma, R. 2017) There is no Kochen-Specker coloring
of Idpt(Mn(Z)) for any n ≥ 3.
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Finishing the spectrum obstruction

Theorem (Ben-Zvi, Ma, R.): There is no Kochen-Specker coloring of
Idpt(Mn(Z)) for any n ≥ 3.

As mentioned before, this directly implies:

Theorem: Given any functor F : Ringop → Set extending Spec as before,
we have F (Mn(Z)) = ∅ for any integer n ≥ 3.

Even better:

Corollary: Let R be any ring, and let n ≥ 3.

There is no KS coloring of the idempotents of Mn(R).

p-Spec(Mn(R)) = ∅.

We also get F (Mn(R)) = ∅ for any F as above.
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Topology without points

We can’t find a spectrum built out of points. But there are “point-free”
ways to do topology!

topological spaces sets

“pointless” spaces

categories of sheaves

Perhaps points are the real problem, so that one of these more exotic
approaches could bypass the obstruction?
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Avoiding the obstruction with pointless topology?

Pointless topology treats spaces and sheaves purely in terms of their
lattices of open subsets, called locales, forming a category Loc

The category Loc of locales has:

Objects: upper-complete lattices satisfying a ∧ (
∨

bi ) =
∨

(a ∧ bi ).

Morphisms: f : L1 → L2 is a function f ∗ : L2 → L1 that preserves
finite meets and arbitrary joins.

Can we avoid the obstruction by “throwing away points?”

No!

Theorem (van den Berg & Heunen, 2012): Any functor
Ringop → Loc whose restriction to cRingop is isomorphic to Spec
(considered as a locale) must assign the trivial locale to Mn(R) for any
ring R with C ⊆ R and any n ≥ 3. (The same holds for C*-algebras.)

Cor: [Ben-Zvi, Ma, R.] This obstruction still holds with any ring R.
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Further “point-free” obstructions

There are several other routes in point-free topology that one might hope
to use to escape the obstructions, but which we now know cannot work:

Viewing Spec(A) as a quantale (van den Berg & Heunen)

Replacing Spec(A) with its topos of sheaves (van den Berg & Heunen)

Upgrading the structure sheaf to a ring object in a category (R. 2014)

Extending the “big Zariski topology” on cRingop to a compatible
Grothendieck topology on Ringop (R. 2014)

The first two above still follow from Kochen-Specker.

The last two already fail for M2(k) with any ring k . Rather than giving
details, I will discuss the inspiration: a simple diagram in Ring that’s
rather strange when interpreted geometrically.
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Pullbacks and preimages

Categorical trick in geometry: Suppose that f : X → Y is a function (of
sets, spaces,. . . ) and let y ∈ Y be a point.

We get the following commutative diagram:

f −1(y) //
� _

��

{y}� _

��
X

f // Y

This diagram is a pullback in our favorite category of spaces: the preimage
f −(y) is the universal object making the diagram commute.
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A strange diagram of “spaces”

Fact: The pushout of C πi← C× C d→M2(C) in Ring is zero, where πi
projects to the ith component and d embeds diagonally.

Let’s draw the opposite spectral diagrams, writing Spec(M2(C)) for the
imaginary noncommutative space:

Spec(0) //

��

Spec(C)

��

∅

��

// {∗}

��
Spec(M2(C)) // Spec(C2) ?? // {?, •}

Opposite diagrams are pullbacks, so ∅ is the “preimage” of either point.

Colorful interpretation: The “quantum space” Spec(M2(C)) maps to
the two-point space, without hitting either point!!

This is far from a theorem, but the sheaf obstructions make it precise.
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1 Do noncommutative rings have a spectrum?

2 From points to contextuality in noncommutative geometry

3 Projection lattices as spectral invariants

4 Toward a quantum spectrum for noncommutative algebras
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A toy problem

Is there is really no noncommutative spectrum functor after all? I’m not
ready to belive so. We simply need some creativity in how we interpret
Spec!

To illustrate, here’s an example of a successful noncommutative spectrum.

I’ll try to convince you that for a certain class of commutative C*-algebras,
the Boolean algebra of projections (p = p2 = p∗) is just as good as its
spectrum.

Then we will see how to extend this complete invariant to a kind of
“noncommutative Boolean algebra.”
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C*-algebras with many projections

Recall that Proj(A) = {p ∈ A | p = p2 = p∗} is partially ordered by
p ≤ q ⇐⇒ p = pq, has orthocomplement p⊥ = 1− p.

W*-algebras (or von Neumann algebras) are famously rich in projections,
but there is a larger class, defined algebraically, with similar properties.

Definition: (Kaplansky 1951) An AW*-algebra is a C*-algebra A that
satisfies the following equivalent conditions:

Every maximal commutative ∗-subalgebra is the closure of the linear
span of its projections, and Proj(A) is a complete lattice;

The left annihilator of any subset of A is of the form Ap for some
p ∈ Proj(A).

For these algebras, Proj(A) is complete orthomodular lattice, and a
complete Boolean algebra when A is commutative.
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Category of AW*-algebras

Def: AWstar is the category of AW*-algebras with ∗-homomorphisms
that restrict to complete lattice morphisms on projections.

Fact: A commutative C*-algebra A is an AW*-algebra iff Spec(A) is
Stonean: closure of each open set is (cl)open.

Combining Stone duality
with Gelfand duality yields a (covariant) equivalence:

cAWstar
∼−→ Stoneanop ∼−→ CBoolean

Thus Proj(A) is a complete invariant for commutative AW*-algebras!

For noncommutative A, the OML structure of Proj(A) is not a complete
invariant: there are anti-isomorphic but not ∗-isomorphic algebras with
isomorphic Proj(A).

So we would like a “more noncommutative” invariant than Proj(A). . .
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In search of “noncommutative Boolean algebras”

Two perspectives on the problem:

OML viewpoint: How can we enrich Proj(A) to form a complete
invariant for AW*-algebras?

Spectral viewpoint: If we “skip the space,” can we find “quantum
complete Boolean algebras” to act as a spectrum for noncommutative
AW*-algebras?

cAWstar
∼ //� _

��

Stoneanop ∼ // CBoolean� _

��
AWstar // ???

Answer (Heunen, R. 2014): Yes!!
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How can we “quantize” Boolean algebras?

Say B = Proj(A) for a commutative AW*-algebra A with p, q ∈ B:

p ∧ q = pq;

p ∨ q = p + q − pq;

“symmetric difference” p∆q = (p ∨ q)− (p ∧ q) = p + q − 2pq gives
an abelian group structure (“addition” operation in the Boolean ring).

We can encode the last one in the unitary group of A via p ↔ 1− 2p:

(1− 2p)(1− 2q) = 1− 2(p + q − 2pq) = 1− 2(p∆q).

Idea: Think of the noncommutative product (1− 2p)(1− 2q) as a
“quantum symmetric difference,” even though it need not have the form
1− 2p′ for any projection p′ ∈ A.
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Active lattices

Definition (roughly): An active lattice consists of the following data:

A complete orthomodular lattice P

A group G with an injection P ↪→ G onto a generating set of
“reflections” (plus an embedding G ↪→ A(P) in a “partial algebra”)

With an action of G on P

Morphisms are pairs of OML morphisms and group morphisms, compatible
with the action.

For each AW*-algebra A, we get an active lattice AProj(A) with:

Lattice P = Proj(A)

Group of symmetries G = Sym(A) = 〈1− 2p | p ∈ Proj(A)〉
Action of G on P, where s = 1− 2p acts by conjugation in A:
s(q) = sqs−1 = sqs.

This gives us a functor AProj : AWstar→ Active
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Active lattices determine AW*-algebras

Theorem (Heunen and R., 2014): AProj : AWstar→ Active is a full
and faithful embedding, i.e., there is a bijection between AWstar
morphisms A→ B and active lattice morphisms AProj(A)→ AProj(B).

Some ideas behind the proof:

Prove a “Sym(A)-equivariant” version of Dye’s theorem to extend
Proj(A)→ Proj(B) to a Jordan ∗-homomorphism A→ B if there are
no type I2 summands.

Use multiplicativity of the map on Sym(A) to show the Jordan
morphism is multiplicative on Proj(A). Implies multiplicativity for all
of A since it is the closed linear span of Proj(A)!

Treat the type I2 case A = M2(C ) with algebraic techniques,
inspecting Sym(A)-action arising from a set of matrix units.
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Coordinatizing active lattices?

Theorem: AProj : AWstar→ Active is a full and faithful embedding.

Unfortunately, the result does not show us how to directly recover an
algebra from its active lattice.

In fact, it seems likely that there are active lattices that do not arise from
an AW*-algebra, but we don’t have an explicit example.

This leads to a coordinatization problem for active lattices:

Question: Which active lattices L satisfy L ∼= AProj(A) for some
AW*-algebra A? (Equivalently, what is the essential image of AProj?)
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In search of “noncommutative sets”

The obstructions suggest to me that we don’t yet understand discrete
noncommutative spaces.

If we strip a “commutative” space of its geometry, we are left with its
underlying set. But if we strip a noncommutative space of its geometry,
then what noncommutative discrete structure remains?

{commutative algebras} Spec //
� _

��

{spaces} U // {sets}� _

��
{noncommutative algebras} // {???}

What category should fill in blank above?
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Noncommutative sets via function algebras

Observation 1: The assignment

X 7→ `∞(X ) = {bounded discrete functions X → C}

is an equivalence between Setop and a full subcategory of cAWstar.
If we are serious about noncommutative geometry, we might expect:

{“noncommutative sets”}op ↔ {suitable noncommutative algebras}

Observation 2: The algebra of continuous functions on space X embeds in
the algebra of bounded discrete functions as C (X ) ⊆ `∞(X ).

Q: Does C (X ) 7→ `∞(X ) extend to a functor F : Cstar→ Alg, with
natural embeddings A→ F (A), for some category of ∗-algebras Alg?

Manny Reyes (Bowdoin) Toward a quantum spectrum March 20, 2018 37 / 50



Noncommutative sets via function algebras

Observation 1: The assignment

X 7→ `∞(X ) = {bounded discrete functions X → C}

is an equivalence between Setop and a full subcategory of cAWstar.
If we are serious about noncommutative geometry, we might expect:

{“noncommutative sets”}op ↔ {suitable noncommutative algebras}

Observation 2: The algebra of continuous functions on space X embeds in
the algebra of bounded discrete functions as C (X ) ⊆ `∞(X ).

Q: Does C (X ) 7→ `∞(X ) extend to a functor F : Cstar→ Alg, with
natural embeddings A→ F (A), for some category of ∗-algebras Alg?

Manny Reyes (Bowdoin) Toward a quantum spectrum March 20, 2018 37 / 50



Noncommutative sets via function algebras

Observation 1: The assignment

X 7→ `∞(X ) = {bounded discrete functions X → C}

is an equivalence between Setop and a full subcategory of cAWstar.
If we are serious about noncommutative geometry, we might expect:

{“noncommutative sets”}op ↔ {suitable noncommutative algebras}

Observation 2: The algebra of continuous functions on space X embeds in
the algebra of bounded discrete functions as C (X ) ⊆ `∞(X ).

Q: Does C (X ) 7→ `∞(X ) extend to a functor F : Cstar→ Alg, with
natural embeddings A→ F (A), for some category of ∗-algebras Alg?
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Discretization of C*-algebras

Q: Does C (X ) 7→ `∞(X ) extend to a functor F : Cstar→ Alg, with
natural embeddings A→ F (A), for some category of ∗-algebras Alg.

Necessary condition: Applying such a functor F to an arbitrary
commutative subalgebra C (X ) ∼= C ⊆ A induces a commuting square

A M = F (A)

C (X ) `∞(X ) = F (C (X ))

φ

φC

where φC is a morphism in Alg.

Def: A morphism φ : A→ M with factorizations φC as above is called a
discretization of A (relative to the category Alg).
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Discretization of C*-algebras

A M = F (A)

C (X ) `∞(X )

φ

φC

Theorems [Heunen & R., 2017]:

Every C*-algebra embeds into a non-functorial discretization.

There is a “profinite completion” functor that discretizes all algebras
embedding in Mn(C (X )).

Alg above cannot be the category of AW*-algebras, otherwise every
discretization functor gives F (B(H)) = 0 for infinite-dimensional H.

But the general question remains open. . .
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What are noncommutative sets “made of”?

If we are replacing sets with algebras of functions, we are still not actually
“seeing” our noncommutative sets:

{commutative algebras} Spec //
� _

��

{sets}� _

��
{noncommutative algebras} // {???}

What might these objects “look like” in practice? Here is a proposal in the
setting of algebras over an arbitrary field k.

Disclaimer: It’s a bit of a “toy model,” as it only extends the maximal
spectrum, and only works for “mildly noncommutative” algebras.

(Apologies in advance for the onslaught of algebraic geometry. . . )
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From sets to “quantum sets”

A cue from the superposition principle: If X is our set of “states,” we
should also allow linear combinations of states: X ; kX = Span(X )

http://qoqms.phys.strath.ac.uk/research_qc.html

To stick to our “ground rules,” we need to a way to recover X from kX as
a kind of distinguished basis. . .
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“Quantum sets” for algebras over a field

This vector space Q = kX carries the structure of a coalgebra:

Comultiplication ∆: Q → Q ⊗ Q given by x 7→ x ⊗ x

Counit η : Q → k given by x 7→ 1

Coalgebra maps correspond to set maps: Set(X ,Y ) ∼= Coalg(kX , kY ).
Gives a full and faithful embedding Set ↪→ Coalg.

Therefore: We view a coalgebra (Q,∆, η) as a “quantum set” (over k).
Its algebra of observables is the dual algebra Obs(Q) = Q∗.

History: Coalgebras were considered as “discrete objects” by Takeuchi
(1974), and in the noncommutative context by Kontsevich-Soibelman
(noncommutative thin schemes) and Le Bruyn.
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Coalgebras in commutative geometry

Every scheme over k has an “underlying coalgebra.”

Motivating fact: The underlying set |X | of a Hausdorff space X is the
directed limit of its finite discrete subspaces.

Observation: A scheme S finite over k is of the form S ∼= Spec(B) for f.d.
algebra B. The functor S 7→ Γ(S ,OS)∗ ∼= B∗ is an equivalence

{finite schemes over k} ∼→ {f.d. cocomm. coalg’s}

Def: For a k-scheme X , the coalgebra of distributions is

Dist(X ) = lim−→ Γ(S ,OS)∗,

where S ranges over the closed subschemes of X that are finite over k.
This gives a functor Dist : Schk → Coalg.
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Local nature of distributions

It’s best to restrict to the case where X is (locally) of finite type over k .

Distributions supported at a closed point x of such X have been defined in
the literature on algebraic groups:

Dist(X , x) = lim−→(OX ,x/m
n
x)∗.

This is dual to the completion: Obs(Dist(X , x)) ∼= ÔX ,x .

Theorem: Suppose X is of finite type over k , and let X0 be its set of
closed points.

1 There is an isomorphism of coalgebras Dist(X ) ∼=
⊕

x∈X0
Dist(X , x)

2 If k = k , then Dist(X ) has a subcoalgebra isomorphic to kX0.

Moral: Dist(X ) linearizes the set of closed points, and includes the formal
neighborhood of each point.
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Distributions in the affine case

Suppose X = Spec(A) with A a finitely generated commutative k-algebra.
Distributions given by the Sweedler dual coalgebra

Dist(Spec(A)) ∼= A◦ := lim−→(A/I )∗

where I ranges over all ideals of finite codimension.

Thesis: For “nice” finitely generated algebras over k, then the functor
A 7→ A◦ is a suitable candidate for a quantized maximal spectrum.

Examples: “Nice” means “many f.d. representations”

Finitely generated, noetherian algebras satisfying a polynomial identity
(including algebras which have a “large,” finitely generated center)

In particular, lots of “quantum algebras” at roots of unity, such as
(algebraic) quantum groups Oq(G ) and quantum planes
kq[x , y ] = k〈x , y | yx = qxy〉 where qn = 1
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Glimpses of some quantum spectra

Ex: The ring of dual numbers A = k[t]/(t2) has A◦ = kx ⊕ kε with

∆(x) = x ⊗ x and ∆(ε) = x ⊗ ε+ ε⊗ x

η(x) = 1 and η(ε) = 0

Here x is like a point and ε is like an “infinitesimal tangent vector.”

Eisenbud & Harris, The Geometry of Schemes

This is closer to the geometers’ picture than Spec(A) = Max(A) = {pt}!
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Glimpses of some quantum spectra

Ex: The qubit over k is the matrix coalgebra M2 = (M2(k))◦, which has
k-basis {E 11,E 12,E 21,E 22} and structure given by

∆(E ij) = E i1 ⊗ E 1j + E i2 ⊗ E 2j

η(E ij) = δij

There are no “points,” but there is a morphism the classical bit:

M2 → Dist(Spec(k2)) = k{0, 1},

given by sending the E ii to the two points and E 12,E 21 7→ 0.

(But we have many morphisms to the bit, one for every basis of k2!)

This lets us “see” the dual maps from the qubit to its “classical
perspectives”
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Glimpses of some quantum spectra

Similarly, each matrix algebra has a dual matrix coalgebra Mn = (Mn)∗.

Ex: Suppose X is a scheme of finite type over k , with coordinate ring
k[X ]. Then A = Mn(k[X ]) has dual coalgebra

A◦ ∼= Mn ⊗ Dist(X ).

Thus we are seeing both quantum and spatial information in the same
spectral object!

Note that the Morita equivalent algebras k[X ] and Mn(k[X ]) seem to
have a kind of “Morita equivalence” between their spectral coalgebras.
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More questions than answers

Work currently in progress:

Developing strategies to compute A◦

Describing the underlying coalgebra of a “noncommutative Proj(S),”
still assuming that S has “many” f.d. representations.

Several questions that eventually need to be addressed:

Doing geometry with coalgebras: how to “topologize” them and
define sheaves?

What is a “quantum scheme of finite type over k” in this context?

Could this approach extend to algebras that are not residually finite?

Could it even extend to rings that are not algebras over a field?
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Thank you! (And some references)
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