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Many-Valued Logics and their algebras: every 30 years

I 1920’s: Polish school:  Lukasiewicz , Tarski , Post.

I 1950’s: R. McNaughton, C.C. Chang (MV Algebras)

I 1980’s: D. Mundici, et.al.
I MV-Algebras: rich algebraic, topological, & geometric theory.
I Closely related to (AF) C*-algebras (Bratteli, Elliott).
I Deep connections with analysis, alg. geometry & topology.

I 2010–:
I Sheaf Representation: Dubuc/Poveda (2010), Gehrke (2014).
I Toposes, Morita Equiv. & MV-algebras (Caramello: 2014–),
I  Lukasiewicz µ-calculus, M. Mio & A. Simpson (2013)
I Coordinatization (Lawson-Scott, Wehrung, Mundici ) (2015-)

(via Boolean Inverse Monoids)



What are MV Algebras? (C.C. Chang, 1950’s)

MV algebras are structures M = 〈M,⊕,¬, 0〉 satisfying:

I 〈M,⊕, 0〉 is a commutative monoid.

I ¬ is an involution: ¬¬x = x , for all x ∈ M.

I 1 := ¬0 is absorbing: x ⊕ 1 = 1 , for all x ∈ M.

I ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x .
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Example: a Boolean algebra B = (B,∨, ( ), 0), where we define
x ⊕ y := x ∨ y and ¬x = x . The last equation says: x ∨ y = y ∨ x



What are MV Algebras?

MV algebras are structures M = 〈M,⊕,¬, 0〉 satisfying:

I 〈M,⊕, 0〉 is a commutative monoid. M. Kolaŕık (2013)
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Fundamental Example of an MV Algebra: [0, 1]

For x , y ∈ [0, 1], define:

1. ¬x = 1− x

2. x ⊕ y = min(1, x + y)

Similarly consider the same operations on:

I Q ∩ [0, 1] and Qdyad ∩ [0, 1].

I Finite MV algebras Mn = {0, 1
n−1 ,

2
n−1 , · · · ,

n−2
n−1 , 1}

(subalgebras of [0,1]). Note: M2 = {0, 1}.
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Example 2: Lattice-Ordered Abelian Groups

I Let 〈G ,+,−, 0,6〉 be a partially ordered abelian group, i.e.
an abelian group with translation invariant partial order.

I If G is lattice-ordered, call G an `-group, G+ its positive cone.

I If G is an `-group, an order unit u ∈ G is an element
satisfying ∀g ∈ G , ∃n ∈ N+ s.t. g 6 nu.

I If G is an `-group with order unit u, define the G -interval

[0, u]G = {g ∈ G | 0 6 g 6 u} (just a poset)

G -Chain: totally ordered G -interval [0, u].
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G -interval MV algebras

G an `-group. Γ(G , u) = ([0, u]G ,⊕,⊗, ∗, 0, 1) is an MV algebra:

x ⊕ y := u ∧ (x + y)

x∗ := u − x

x ⊗ y := (x∗ ⊕ y∗)∗

0 := 0G and 1 := u
All previous examples
are special cases

Let MV = the category of MV-algebras and MV-morphisms.
`Gu = the category of `-groups and structure preserving homs.

Theorem (Mundici I, 1986)

Γ induces an equivalence of categories `Gu ∼=MV : G 7→ [0, u]G

∴ For each MV algebra A, there exists `-group G with order unit u,
unique up to iso, s.t. A ∼= [0, u]G and |G | 6 max(ℵ0, |A|).
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Some Theorems of Infinite  Lukasiewicz logic

Theorem (Chang Completeness, 1955-58)

1. Every MV algebra is a subdirect product of MV Chains.

2. An MV equation holds in [0, 1] iff it holds in all MV algebras.

Corollary (Existence of Free MV-Algebras)

The free MV algebra Fκ on κ free generators is the smallest
MV-algebra of functions [0, 1]κ → [0, 1] containing all projections
(as generators) and closed under the pointwise operations.

Theorem (McNaughton, 1950: earlier than Chang!)

The free MV algebra Fn is exactly the algebra of McNaughton
Functions: continuous, piecewise (affine-)linear polynomial
functions (in n vbls, with integer coefficients): [0, 1]n → [0, 1].

Corollary: an MV equation holds in [0, 1] iff it holds in [0, 1] ∩Q
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Some Algebra of MV algebras

Analogs of all standard algebra in MV form:

1. Usual theory of ideals/kernels/congruence/HSP theorems, etc.

2. Direct & sub-direct products, tensor products, ultra products,
limits, colimits.

3. Radical Ideals, spectral spaces, etc.



Some Geometry of MV-Algebras

Mundici & colleagues (Marra, Cabrer, Spada, et.al.) have shown
deep connections to algebraic geometry and topology.

1. If P ⊆ Rn, the convex hull
conv(P) = {

∑
i rivi | vi ∈ P, ri ∈ R+,

∑
i ri = 1}.

2. P is called:

2.1 convex iff P = conv(P).
2.2 a polytope iff P = conv(F ), F ⊆ Rn finite.
2.3 a rational polytope iff it’s a polytope and F ⊆ Qn.
2.4 a (compact) polyhedron iff it’s a union of finitely many

polytopes in Rn.
2.5 a rational polyhedron iff it’s a union of finitely many rational

polytopes. (These are subsets of Rn definable by MV-terms.)

What about maps between rational polyhedra?



Some Geometry of MV-Algebras

I For P ⊆ Rn, f : P → R is a Z-map if it’s a McNaughton
Function into R (instead of [0, 1])). Ditto, if P,Q ⊆ Rn,

P
f−→ Q is a Z-map if its components are. (These are the

continuous transformations of polyhedra definable by tuples of
MV terms!)

Theorem (Marra& Spada, APAL, 2012)

The category of finitely presented MV-algebras and homs is
equivalent to the opposite of the category of rational polyhedra
and Z-maps: MVfp

∼= Polyop
Q

There is a strong analogy with a remarkable independent series of
papers by the algebraic topologist W. M. Beynon (1974-77) on
related topological dualities for `-groups.



Typical Beynon Theorem

Theorem (Beynon, 1977)

The full subcategory of the category of finitely generated
lattice-ordered Abelian groups consisting of projective
lattice-ordered Abelian groups is equivalent to the dual of the
category whose objects are rational Euclidean closed polyhedral
cones, and whose morphisms are piecewise homogeneous linear
maps with integer coefficients.

1. W. M. Beynon, Combinatorial aspects of piecewise linear
maps, J. London Math. Soc. (2) (1974), 719-727.

2. W. M. Beynon: Duality theorems for finitely generated vector
lattices, Proc. London Math. Soc. (3) 31 (1975), 114-128.

3. W. M. Beynon, Applications of Duality in the theory of finitely
generated lattice-ordered abelian groups, Can.J. Math, 1977
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From Marra & Mundici, 2003: MV- vs `−

	  

Lukasiewicz logic in action 161 

MV 

Chang's Theorem (1959) [22J Weinberg's Theorem (1963) [102J 

The variety of MV algebras The variety of i-groups is 
is generated by [0,11 n Q. generated by Z. 
(Corollary 3.3.) (Corollary 5.5.) 

McNaughton's Theorem (1951) [67J Beynon's Theorem, I (1974) [13J 

Every McNaughton function Every i-function of n 
of n variables belongs to Mn. variables belongs to An. 
(Theorem 8.1.) (Subsection 4.4, passim.) 

Free representation (1951-59) [22,67} Free representation (1963-74) [102, 13} 

Mn is the free MV algebra An is the free i-group 
over n free generators, over n free generators, 
i.e. projection functions. i.e. projection functions. 
(Subsection 3.1, passim.) (Subsection 4.4, passim.) 

MV Nullstellensatz (1959) [104, 22J i-Nullstellensatz (1975) [14J 

TFAE: TFAE: 
1. A is fin. gen. semisimple. 1. G is fin. gen. Archimedean. 
2. H(V(J)) = J if A Mn/J. 2. H(V(o)) = 0 ifG 
(Theorem 3.2.) (Subsection 4.4, passim.) 

W6jcicki's Theorem (1973) [103} Baker's Theorem (196B) [9J 

Every finitely presented Every finitely presented 
MV algebra is semisimple. i-group is Archimedean. 
(Theorem 3.4.) (Subsection 4.4, passim.) 

? ? Beynon's Theorem, II (1977) [IS} 

? Every finitely presented 
i-group is projective. 

(Cf. footnote 22.) (Subsection 4.4, passim.) 

Table 1. A synopsis of the geometric representation theory of MV algebras and i-groups. 
The references in parentheses should aid the reader in locating statements within the body 
of this paper. 



Effect Algebras: quantum effects

Let H be a complex Hilbert space of a quantum system S. In the
theory of quantum measurement, effects represent certain kinds of
measurements.



Effect Algebras (of Quantum Effects)

Foulis & Bennet (1994): an abstraction of algebraic structure of
(quantum effects).

An Effect Algebra is a partial algebra 〈E ; 0, 1,
∼⊕〉 satisfying:

∀a, b, c ∈ E (Using Kleene directed equality �� )

1. a
∼⊕ b �� b

∼⊕ a.

2. If a
∼⊕ b ↓ then (a

∼⊕ b)
∼⊕ c �� a

∼⊕ (b
∼⊕ c)

3. 0
∼⊕ a ↓ and 0

∼⊕ a = a

 PCM

4. ∀a∈E ∃!a′∈E such that a
∼⊕ a′ = 1.

5. a
∼⊕ 1 ↓ implies a = 0.

}
Orthocomp. & 0-1 Law

Eastern European School: Dvurecenskij, Jenca, Pulmannova, . . .

Nijmegen: Bart Jacobs and his school (Effectus Theory)
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Posetal Examples of Effect Algebras

I Boolean Algebras: Let B = (B,∧,∨, ( ), 0, 1) be a Boolean
algebra. For x , y ∈ B, define x ′ = x and

x
∼⊕ y =

{
x ∨ y if x ∧ y = 0

↑ else

I Orthomodular Lattices:

Bounded lattices L with an operation ( )⊥ : L → L satisfying:
1. x 6 y implies y⊥ 6 x⊥.
2. x⊥⊥ = x
3. x ∨ x⊥ = 1
4. x 6 y implies x ∨ (x⊥ ∧ y) = y .

For x , y ∈ L, define x
∼⊕ y = x ∨ y , if x 6 y⊥; undefined else.



More Examples of Effect Algebras

I Interval Effect Algebras: Let (G ,G+, u) be an ordered
abelian group with order unit u. Consider

G+[0, u] = {a ∈ G | 0 6 a 6 u}.

For a, b ∈ G+[0, u], set a
∼⊕ b := a + b if a + b 6 u; otherwise

undefined. Also set a′ := u − a. e.g. [0,1] as a partial algebra.

I E.g.: Standard Effect Algebra E(H) of a quantum system.

G := Bsa(H), (self-adj) bnded linear operators on H,
G+ := the positive operators. Let O = constant zero ,
I = identity. E(H) := G+[O, I].

I A ∈ E(H) represent unsharp (fuzzy) measurements
I Projections P(H) ⊂ E(H) represent sharp measurements



Effect Algebras of Predicates (B. Jacobs, 2012-2015)

Predicates in C: let C be a category with “good” finite coprods
and terminal object 1. Define PredC(X ) := C(X , 1 + 1) .

Proposition (Jacobs)

If C satisfies reasonable p.b. conditions on +, PredC(X ), X ∈ C,
forms an effect algebra. (Such a C is called an “effectus”). Get an
indexed category Pred : Cop → Eff .

Examples:

I Predicates on Kleisli categories of various distribution monads
(e.g. Discrete, Continuous, etc.)

I Predicates on various concrete categories:
Set, SemiRingop, Ringop, DLop, (C ∗PU)op, . . . .
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Effect Algebras: Additional Properties

Let E be an effect algebra. Let a, b, c ∈ E . Denote a′ by a⊥ or a∗.

1. Partial Order: a 6 b iff for some c , a
∼⊕ c = b.

2. 0 6 a 6 1, ∀a ∈ E .

3. a⊥⊥ = a.

4. 0⊥ = 1 and 1⊥ = 0.

5. a 6 b implies b⊥ 6 a⊥

6. (Cancellation) a
∼⊕ c1 = a

∼⊕ c2 implies c1 = c2.

7. (Positivity / conical) a
∼⊕ b = 0 implies a = b = 0



Effect Algebras: Morphisms

Effect Algebras form a category Eff.

A function f : A → B is a morphism if:

1. f preserves 1.

2. If a
∼⊕ b is defined, then also f (a)

∼⊕ f (b) is defined, and
f (a
∼⊕ b) = f (a)

∼⊕ f (b).

I Such maps automatically preserve 0 and ( )⊥.



MV versus Effect Algebras I

I An effect algebra satisfies RDP (Riesz Decomposition
Property) iff

a 6 b1 ⊕ b2 ⊕ · · · ⊕ bn ⇒ ∃a1, . . . , an s.t.

a = a1 ⊕ a2 ⊕ · · · ⊕ an with ai 6 bi , i 6 n

Proposition (Bennett & Foulis, 1985)

An effect algebra is an MV-effect algebra iff it is lattice ordered
and has RDP.

But morphisms are different!

|HomMV([0, 1], [0, 1]) | = 1, |HomMV([0, 1]2, [0, 1]) | = 2

|HomEA([0, 1], [0, 1]) | = 1, |HomEA([0, 1]2, [0, 1]) | = 2ℵ0
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Universal Groups of Effect Algebras: Mundici Anew

I If (E ,+, 0, 1) is an effect algebra with RDP, there is a
universal monoid E ↪→ ME . This (total) monoid ME is
abelian, cancellative, satisfies a universal property.

I Every cancellative abelian monoid M has a Grothendieck
group M ↪→ GM satisfying a universal property (essentially
the INT construction yielding Z from N).

Theorem (Ravindran,1996)

Let E be an effect algebra with RDP and E
γ−→ GE its universal

(Groth.) group. Then GE satisfies:

1. (i) GE is partially ordered,

2. (ii) u = γ(1) is an order unit and (iii) γ : E ∼= [0, u]GE
.

3. If E is an MV-algebra, then GE is an `-group (cf. Mundici).
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Ravindran’s Theorem–some details

Essentially an independent approach to Mundici’s theorem, via
effect algebras. Technique goes back to R. Baer (1949).

Theorem
Let E be an effect algebra satisfying RDP. Then it is an interval
effect algebra, with universal group an interpolation group.

Let E+ be the free (word) semigroup on E . Take the smallest
congruence ∼ such that the word (a, b) ∼ (a⊕ b), whenever
(a⊕ b) ↓. i.e. Take the congruence relation on words generated as:
(a1, a2, · · · an) ∼ (a1, a2, · · · , ak−1, ak ⊕ ak+1, ak+2, · · · , an),
whenever ak ⊕ ak+1 ↓. Then E+/∼ is a positive abelian monoid
(get commutativity for free!) with RDP. Its Grothendieck Group is
its universal group. If E satisfies RDP, this is the universal group
γ : E → GE of the effect algebra, which is a po-group with
u = γ(1) an order unit. If E is MV, then [0, u] is lattice and GE is
an `−group.



Matrix algebras and AF C*-algebras: Mundici II

(Notes on Real and Complex C*-algebras by K. R. Goodearl.)

I A finite dimensional C*-algebra is one isomorphic (as a
*-algebra) to a direct sum of matrix algebras over C:
∼= Mm(1)(C)⊕ · · · ⊕Mm(k)(C).

I The ordered list (m(1), · · · ,m(k)) is an invariant.

I (Bratteli, 1972) An AF C*-algebra (approximately finite
C*-algebra) is a countable colimit

lim→ (A1
α1−→ A2

α2−→ A3
α3−→ · · · )

of finite-dimensional C*-algebras and *-algebra maps.

Bratteli showed AF C*-algebras have a standard form:



Matricial C*-algebras: standard maps

A := Mm(1)(C)⊕ · · · ⊕Mm(k)(C) and
B := Mn(1)(C)⊕ · · · ⊕Mn(l)(C) .

I Define *-algebra maps A → Mn(i)(C)

(A1, · · · ,Ak) 7→ DIAGn(i)(

si1︷ ︸︸ ︷
A1, · · · ,A1,

si2︷ ︸︸ ︷
A2, · · · ,A2, · · · ,

sik︷ ︸︸ ︷
Ak , · · · ,Ak)

determined by sik ∈ N where si1m(1) + · · ·+ sikm(k) = n(i) .

I A standard ∗-map A → B is an l-tuple of such DIAGs:

(A1, · · · ,Ak) 7→ (DIAGn(1)(· · · ), . . . ,DIAGn(l)(· · · ))

determined by l × k matrix (sij) s.t.
∑k

j=1(sijm(j)) = n(i),



Bratteli’s Theorem

Theorem (Bratteli)

Any AF C*-algebra is isomorphic (as a C*-algebra) to a colimit of
a system of matricial C*-algebras and standard maps.

Bratteli introduced an important graphical language to handle the
difficult combinatorics: Bratteli Diagrams.



Bratteli’s Diagrams: a combinatorial structure
A Bratteli diagram as an infinite directed multigraph B = (V ,E ),
where V = ∪∞i=0V (i) and E = ∪∞i=0E (i).

I Assume V (0) has one vertex, the root.

I Edges are only defined from V (i) to V (i + 1).

V (i)

(Zk ,(m(1),··· ,m(k)))︷ ︸︸ ︷
m(1) m(2) · · · m(k)

V (i + 1) n(1) n(2) · · · n(l)

Draw sij -many edges between m(j) to n(i) . (Of course, for
adjacent levels, the sij must satisfy the combinatorial
conditions.)

I Vertices now assigned `ABu groups (Zk , u).

Colimits along standard maps induces colimits of associated Zk ,
called dimension groups.
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K0: Grothendieck group functors

A very general construction:

I K0: Ring→ Ab and K0 : AF→ Po-Abu

I Roughly: turn the isomorphism classes (of idempotents) in the
Karoubi Envelope into an abelian cancellative monoid and
then by INT into an abelian group.

I Tricky for AF C*-algebras: technicalities of self-adjoint
idempotents (= projections)



AF C*-algebras & Mundici’s Theorem II

Approx. finite (AF) C*-algebras classified in deep work of G. Elliott
(studied further by Effros, Handelman, Goodearl, et. al).

Theorem (Mundici)

Let `AFu = category of AF-algebras, st K0(A) is lattice-ordered
with order unit. Let MVω = countable MV-algebras.

We can extend Γ : `Gu ∼=MV to a functor Γ̂ : `AFu →MVω,

Γ̂(A) := Γ(K0(A), [1A]) = [ 0, [1A] ]K0(A)

(i) A ∼= B iff Γ̂(A) ∼= Γ̂(B)

(ii) Γ̂ is full.



Some Mundici Examples (1991):

MV Algebra AF C*-correspondent

{0, 1} C
Chain Mn Matn(C)

Finite Finite Dimensional
Dyadic Rationals CAR algebra of a Fermi gas

Q ∩ [0, 1] Glimm’s universal UHF algebra
Chang Algebra Behncke-Leptin algebra

Real algebraic numbers in [0,1] Blackadar algebra B.
Generated by an irrational ρ ∈ [0, 1] Effros-Shen Algebra Fp

Finite Product of Post MV-algebras Continuous Trace
Free on ℵ0 generators Universal AF C*-algebra M
Free on one generator Farey AF C*-algebra M1.

Mundici (1988), Boca (2008)



Coordinatization: von Neumann’s Continuous Geometry

I In an article in PNAS (US) (1936) “Continuous Geometry”
von Neumann says “The purpose of the investigations,
. . . reported briefly in this note, was to complete the
elimination of the notion of point (and line and plane) from
geometry.”

I What’s left? A (complemented, modular) lattice of subspaces
of a space and a dimension function (into [0,1] or R). The
subspaces correspond to the principal right ideals of a
von-Neumann regular ring.
Ref.
https://en.wikipedia.org/wiki/Continuous geometry
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Some Mundici Examples (1991): Coordinatizations (LS)
+ MSc. Thesis of Wei Lu

+ Mundici

Denumerable MV Algebra AF C*-correspondent

{0, 1} C
Chain Mn Matn(C)

Finite Finite Dimensional
Dyadic Rationals CAR algebra of a Fermi gas

Q ∩ [0, 1] Glimm’s universal UHF algebra
Chang Algebra Behncke-Leptin algebra

Real algebraic numbers in [0,1] Blackadar algebra B.
Generated by an irrational ρ ∈ [0, 1] Effros-Shen Algebra Fp

Finite Product of Post MV-algebras Continuous Trace
Free on ℵ0 generators Universal AF C*-algebra M
Free on one generator Farey AF C*-algebra M1.

Mundici (1988), Boca (2008)



Inverse Semigroups and Monoids

Definition (Inverse Semigroups)

Semigroups (resp. monoids) satisfying: “Every element x has a
unique pseudo-inverse x−1.”

I ∀x∃!x−1(xx−1x = x & x−1xx−1 = x−1)

Fundamental Examples
I IX = PBij(X ), Symmetric Inverse Monoid. These are partial

bijections on the set X , i.e. partial functions f : X ⇀ X which
are bijections dom(f )→ ran(f ).

I For each subset A ⊆ X , there are partial identity functions
1A ∈ IX . These are the idempotents.

I f −1of = 1dom(f ) and f of −1 = 1ran(f ) , partial identities on X .

I Semisimple: = Finite Cartesian Products of finite symmetric
inverse monoids IX1 × · · · × IXn
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Inverse Monoids: Basic Definitions

Let S be an inverse monoid with zero element 0.
Let E (S) be the set of idempotents of S .

I In analogy with S = IX , if a ∈ S , define
dom(a) = a−1a, ran(a) = aa−1.

I For a, b ∈ S , define a 6 b iff a = be, for some e ∈ E (S).

I S is boolean if:
(i) E (S) is a boolean algebra,
(ii) “compatible” elements have joins,
(iii) multiplication distributes over (finite) ∨’s.

Example: In IX , 6 is inclusion, and two partial bijections will be
“compatible” iff their union is a partial bijection. IX is a Boolean
∧-monoid, since partial bijections have meets.
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Inverse Monoids: More Basic Definitions and Facts

Let S be an inverse monoid.

I U(S) is the Group of Units (i.e. invertible elements) of S . For
example, U(IX ) is the symmetric group Sym(X ).

I S is factorizable if every element is 6 u, for some u ∈ U(S).
(IX is factorizable iff X is finite).

I S is fundamental if the centralizer(E (S)) = E (S).
(IX is always fundamental).



Non-Commutative Stone Duality

Boolean Inverse monoids arise in various recent areas of
noncommutative Stone Duality.

Theorem (Lawson, 2009,2011)

The category of Boolean inverse ∧-semigroups is dual to the
category of Hausdorff Boolean groupoids.

Theorem (Kudryavtseva,Lawson 2012)

The category of Boolean inverse semigroups is dual to the category
of Boolean groupoids.



Green’s Relations and Type Monoid

Let S be an inverse monoid. Define:

1. J on S : aJ b iff SaS = SbS (i.e. equality of principal ideals).

2. D on E (S): eDf iff ∃a∈S(e = dom(a), f = ran(a), e
a−→ f )

The Type Monoid of S . Consider E (S)/D, S boolean. For
idempotents e, f ∈ E (S), define [e]

∼⊕ [f ] as follows: if we can find
orthogonal idempotents e ′ ∈ [e], f ′ ∈ [f ], let [e]

∼⊕ [f ] := [e ′ ∨ f ′].
Otherwise, undefined.

Proposition

Let S be a factorizable Boolean inverse monoid. Then:

I D preserves complementation and (E (S)/D,∼⊕, [0], [1]) is an
effect algebra w/ RDP.

Call these Foulis Monoids.
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Coordinatizing MV Algebras: Main Theorem

I For Foulis monoids S as in the Proposition, D = J .

I Can identify E (S)/D with the poset of principal ideals S/J .

I We say S satisfies the lattice condition if S/J is a lattice. It
is then in fact an MV-algebra (by Bennet & Foulis).

Theorem (Coordinatization Theorem for MV Algebras: L& S)

For each countable MV algebra A, there is a Foulis monoid S
satisfying the lattice condition such that S/J ∼= A, as MV
algebras.



Towards AF inverse monoids

Methodology: redo Bratteli theory, using rook (or boolean)
matrices

I A rook matrix in Matn({0, 1}) is one where every row and
column have at most one 1. Let Rn := rook matrices.

I There’s bijection In
∼=−→ Rn: f 7→ M(f ), where M(f )ij = 1 iff

i = f (j).

Up to isomorphism, it’s possible to redo the entire theory of
Bratteli diagrams using rook matrices and In’s instead of Z’s.



Bratteli Diagrams, AF Inverse Monoids and colimits of Ins

Recall B = (V ,E ) a Bratteli diagram.

V (i) m(1) m(2) · · · m(k)

V (i + 1) n(1) n(2) · · · n(l)

Draw sij -many edges between m(j) to n(i) .

Now associate

V (0) ↔ S0 = I1 ∼= {0, 1}
...

...
...

V (i) ↔ Si = Im(1) × · · · × Im(k)

Monomorphisms σi : Si → Si+1 are induced by standard maps.
Combinatorial Conditions are true

An AF Inverse Monoid I (B) := colim(S0
σ0−→ S1

σ1−→ S2
σ2−→ · · · ),

for Bratteli diagram B.



AF Inverse Monoids and colimits of Ins

Lemma
(1) Colimits of ω-chains (S0

σ0−→ S1
σ1−→ S2

σ2−→ · · · ) of boolean
inverse ∧-monoids with monos inherit all the nice features of the
factors. In particular, the groups of units are direct limits of groups
of units of the Si .
(2) Given any ω-sequence of semisimple inverse monoids and
injective morphisms, the colim(Si ) is isomorphic to I (B), for some
Bratteli diagram B.

Theorem
AF inverse monoids are Dedekind finite Boolean inverse monoids in
which D preserves complementation. Their groups of units are
direct limits of finite direct products of finite symmetric groups.



The General Coordinatization Theorem

Theorem (Coordinatization Theorem for MV Algebras: L& S)

For each countable MV algebra A, there is a Foulis monoid S
satisfying the lattice condition such that S/J ∼= A.

Proof sketch: We know from Mundici every MV algebra A is
isomorphic to an MV-algebra [0, u]G , an interval effect algebra for
some order unit u in a countable `-group G . It turns out that G is
a countable dimension group. Thus there is a Bratteli diagram B
yielding G . Take then I (B), the AF inverse monoid of B. It turns
out that I (B)/J is isomorphic to [0, u] as an MV effect-algebra,
and the latter will be a lattice, thus a Foulis monoid. So, we have
coordinatized A.



New Results: Characterizing AF Inverse monoids

Goal: characterize AF inverse monoids abstractly and connect
with Krieger & Wehrung’s work.

Consider α ∈ I{1,2,3,4,5,6,7}, where α = id{2,3} ∪ {(4, 5, 6)}.

∴ α = id{2,3} ∨ ( 4
5 ) ∨ ( 5

6 ) ∨ ( 6
4 ) (orthogonal join)

α = idempotent ∨ infinitesimals (i.e. s2 = 0): Basic.

Krieger monoid = locally finite, basic Boolean inverse monoid

Theorem (i) Countable Krieger Monoids = AF Inverse Monoids
(ii) Groups of units of Krieger monoids = Krieger’s ample groups.
(iii) Kreiger Monoids = Wehrung’s locally matricial B.Inv.Monoids
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Corollary: AF Monoids vs Boolean algebras

We can now answer Mundici’s challenge:

Theorem: Countable Krieger Monoids = AF Inverse Monoids

Corollary: Commutative AF inverse monoids = countable Boolean
algebras

Proof: Suppose S is a commutative AF inverse monoid and
s2 = 0. Then s−1sss−1 = 0. By commutativity, s−1s = ss−1.
Then s−1s = 0, so s = 0. So there are no nonzero infinitesimals.
But the monoid is basic, so all elements are idempotents. But the
idempotents E (S) form a Boolean algebra!



Example 1: Coordinatizing Finite MV-Algebras

Let In = IX be the inverse monoid of partial bijections on n
letters, |X | = n. One can show that all the In’s are Foulis
monoids. The idempotents in this monoid are partial identities 1A,
where A ⊆ X . Two idempotents 1AD1B iff |A| = |B|. Indeed we

get a bijection In/J
∼=−→ n+1, where n+1 = {0, 1, · · · , n}. This

induces an order isomorphism, where n+1 is given its usual order,
and lattice structure via max, min.

The effect algebra structure of In/J becomes: let r , s ∈ n+1.
r
∼⊕ s is defined and equals r + s iff r + s 6 n. The

orthocomplement r ′ = n − r . The associated MV algebra:
r ⊕ s = r + min(r ′, s), which equals r + s if r + s 6 n and
r ⊕ s equals n if r + s > n.

We get an iso In/J ∼=Mn, the  Lukasiewicz chain. But every
finite MV algebra is a product of such chains, which are then
coordinatized by a product of In’s.



Example 2: Coordinatizing Dyadic Rationals–Cantor Space

Cuntz (1977) studied C*-algebras of isometries (of a sep. Hilbert
space). Also arose in wavelet theory & formal language theory
(Nivat, Perrot). We’ll describe Cn the nth Cuntz inverse monoid.

Cantor Space Aω, A finite. For Cn, pick |A| = n. For C2, pick
A = {a, b}. Given the usual topology, we have:

1. Clopen subsets have the form XAω, where X ⊆ A∗ are Prefix
codes : finite subsets s.t. x - y (y prefix of x)⇒ x = y .

2. Representation of clopen subsets by prefix codes is not unique.
E.g. aAω = (aa + ab)Aω.

3. We can make prefixes X in clopens uniquely representable:
define weight by w(X ) =

∑
x∈X |x |. Theorem: Every clopen

is generated by a unique prefix code X of minimal weight.



Cuntz and n-adic AF-Inverse Monoids

Definition (The Cuntz inverse monoid, Lawson (2007))

Cn ⊆ IAω consists of those partial bijections on prefix sets of same
cardinality: (x1 + · · · xr )Aω −→ (y1 + · · · yr )Aω such that
xiu 7→ yiu, for any right infinite string u.

Proposition (Lawson (2007))

Cn is a Boolean inverse ∧-monoid, whose set of idempotents
E (Cn) is the unique countable atomless B.A. Its group of units is
the Thompson group Vn.

Definition ( n-adic inverse monoid Adn ⊆ Cn)

Adn = those partial bijections in Cn of the form xi 7→ yi , where
|xi | = |yi |, i 6 r . Ad2 = the dyadic inverse monoid.



Cuntz and Dyadic AF-Inverse Monoids

Theorem
The MV-algebra of dyadic rationals is co-ordinatized by Ad2.

The proof uses Bernoulli measures on Cantor spaces.

Proposition (Characterizing Ad2 as an AF monoid)

The dyadic inverse monoid is isomorphic to the direct limit of the
sequence of symmetric inverse monoids (partial bijections)

I2 → I4 → I8 → · · ·

called the CAR inverse monoid. The group of units is a colimit of
symmetric groups: Sym(1)→ Sym(2)→ · · ·Sym(2r )→ · · · .



Cuntz and Dyadic AF-Inverse Monoids: Invariant Measures

General theory of measures on Cantor Space is recent research
(Akin, Handelman, . . . ). Look at simple Bernoulli Measures.

Definition
Let S be a Boolean inverse monoid. An invariant measure is a
function µ : E (S)→ [0, 1] satisfying: (i) µ(1) = 1,
(ii) ∀s ∈ S(µ(s−1s) = µ(ss−1)),
(iii) If e, f ∈ E (S), e ⊥ f then µ(e ∨ f ) = µ(e) + µ(f ).

A good invariant measure µ is an invariant measure such that:
µ(e) 6 µ(f ) ⇒ ∃e ′[e ′ 6 f ∧ µ(e) = µ(e ′)]

Example If |A| = n and a ∈ A, let µ(a) = 1
n . If x ∈ A∗, let

µ(x) = 1
n|x|

. For prefix set X , let µ(X ) =
∑

x∈X µ(x).
(If n = 2, µ is called Bernoulli measure.)



Bernoulli Measures
A general property:

Lemma
If S is a boolean inverse monoid with a good invariant measure µ
that reflects the D relation (i.e. µ(e) = µ(f )⇒ eDf ) then S is (i)
Dedekind finite, (ii) D preserves complementation, and (iii) S/J is
linearly ordered.

Lemma
Ad2 has a good invariant measure that reflects the D relation.
Hence Ad2/J is linearly ordered.

The main coordinatization theorem in this example then follows:

M. Lawson , P. Scott, AF Inverse Monoids and the structure of
Countable MV Algebras, J. Pure and Applied Algebra 221 (2017),
pp. 45–74. (also extended arXiv version).



Coordinatizing Q ∩ [0, 1] : thesis of Wei Lu

Definition (Omnidivisional sequence)

A sequence D = {ni}∞i=1 of natural numbers is omnidivisional if it
satisfies the following properties.

I For all i , ni | ni+1.

I For all m ∈ N, there exists i ∈ N such that m | ni .

Example

The sequence {n!}∞n=1.

Theorem (Coordinatization of the rationals)

Let D = {ni}∞n=1 be an omnidivisional sequence. Then, (for certain
“standard embeddings” τi ) the directed colimit of the sequence

Q : In1
τ1−→ In2

τ2−→ In3
τ3−→ In4

τ4−→ . . . ,

coordinatizes Q ∩ [0, 1].
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“standard embeddings” τi ) the directed colimit of the sequence

Q : In1
τ1−→ In2

τ2−→ In3
τ3−→ In4

τ4−→ . . . ,

coordinatizes Q ∩ [0, 1].



Coordinatizing the Chang Algebra

Theorem[Decomposition Theorem I] Let A be an MV algebra.
Suppose that A has subalgebras forming a chain of inclusions

A0 ⊆ A1 ⊆ A2 ⊆ . . . ⊆ An ⊆ . . .

such that A =
⋃∞

i=1 Ai and each Ai is coordinatized by an inverse
semigroup Si . Suppose there are injective maps τi : Si −→ Si+1

well-defined on D-classes. Then, A is coordinatized by the directed
colimit of S0

τ0−→ S1
τ1−→ S2

τ2−→ . . . .

Theorem[Decomposition Theorem II] : “Converse” of Theorem I.

For the Chang Algebra, the Foulis monoid is interesting: I(N)fc =
the subinverse monoid of I(N) of those partial bijections on N
whose domain are either finite or balanced cofinite.


