Contextuality as a resource

Rui Soares Barbosa

Department of Computer Science, University of Oxford

rui.soares.barbosa@cs.ox.ac.uk

Combining Viewpoints in Quantum Theory
Edinburgh, 20th March 2018
Joint work with:

- Samson Abramsky (Oxford)
- Shane Mansfield (Paris VII)

and also:

- Kohei Kishida (Dalhousie)
- Giovanni Carù (Oxford)
- Nadish de Silva (UCL)
- Octavio Zapata (UCL)
Motivation

- **Contextuality and non-locality:** fundamental non-classical phenomena of QM
Motivation

- **Contextuality and non-locality:**
 fundamental non-classical phenomena of QM

- Contextuality as a **resource** for QIP and QC:
Motivation

- **Contextuality and non-locality**: fundamental non-classical phenomena of QM

- Contextuality as a **resource** for QIP and QC:
 - **Non-local games**
 - XOR games (CHSH; Cleve–Høyer–Toner–Watrous)
 - quantum graph homomorphisms (Mančinska–Roberson)
 - constraint satisfaction (Cleve–Mittal)
 - etc. (Abramsky–B–de Silva–Zapata)
Motivation

- **Contextuality and non-locality:**
 fundamental non-classical phenomena of QM

- Contextuality as a **resource** for QIP and QC:
 - **Non-local games**
 XOR games (CHSH; Cleve–Høyer–Toner–Watrous)
 quantum graph homomorphisms (Mančinska–Roberson)
 constraint satisfaction (Cleve–Mittal)
 etc. (Abramsky–B–de Silva–Zapata)
 - **MBQC**
 Raussendorf (2013)
 “Contextuality in measurement-based quantum computation”
Motivation

- **Contextuality and non-locality:** fundamental non-classical phenomena of QM

- Contextuality as a **resource** for QIP and QC:
 - **Non-local games**
 XOR games (CHSH; Cleve–Høyer–Toner–Watrous)
 quantum graph homomorphisms (Mančinska–Roberson)
 constraint satisfaction (Cleve–Mittal)
 etc. (Abramsky–B–de Silva–Zapata)
 - **MBQC**
 Raussendorf (2013)
 “Contextuality in measurement-based quantum computation”
 - **MSD**
 “Contextuality supplies the ‘magic’ for quantum computation”
Contextuality formulated in a theory-independent fashion
Overview

- Contextuality formulated in a theory-independent fashion

Overview

- Contextuality formulated in a theory-independent fashion

- Towards a resource theory of contextuality:
Overview

- Contextuality formulated in a theory-independent fashion

- Towards a resource theory of contextuality:
 - Combine and transform contextual blackboxes
Overview

- Contextuality formulated in a theory-independent fashion

- Towards a resource theory of contextuality:
 - Combine and transform contextual blackboxes
 - Measure of contextuality
Overview

- Contextuality formulated in a theory-independent fashion

- Towards a resource theory of contextuality:
 - Combine and transform contextual blackboxes
 - Measure of contextuality
 - Quantifiable advantages in QC and QIP tasks
Contextuality
Empirical data

\[o_A \in \{0, 1\} \]

\[m_A \in \{a_1, a_2\} \]

\[o_B \in \{0, 1\} \]

\[m_B \in \{b_1, b_2\} \]
Empirical data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>$1/2$</td>
<td>0</td>
<td>0</td>
<td>$1/2$</td>
</tr>
<tr>
<td>a_1</td>
<td>b_2</td>
<td>$3/8$</td>
<td>$1/8$</td>
<td>$1/8$</td>
<td>$3/8$</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>$3/8$</td>
<td>$1/8$</td>
<td>$1/8$</td>
<td>$3/8$</td>
</tr>
<tr>
<td>a_2</td>
<td>b_2</td>
<td>$1/8$</td>
<td>$3/8$</td>
<td>$3/8$</td>
<td>$1/8$</td>
</tr>
</tbody>
</table>

$\Phi \in \{a_1, a_2\}$

$\Phi_B \in \{b_1, b_2\}$

$\rho \in \{0, 1\}$

Φ (measurement device) \rightarrow Φ_B (measurement device) \rightarrow ρ (preparation)
A simple observation
(Abramsky–Hardy)

- Propositional formulae ϕ_1, \ldots, ϕ_N

\[
p_i := \text{Prob}(\phi_i)
\]

Not simultaneously satisfiable, hence
\[
\text{Prob}(\bigwedge \phi_i) = 0
\]

Using elementary logic and probability:
\[
1 = \text{Prob}(\neg \bigwedge \phi_i) = \text{Prob}(\bigvee \neg \phi_i) \leq \sum_{i=1}^{N} \text{Prob}(\neg \phi_i) = \sum_{i=1}^{N} (1 - p_i) = N - \sum_{i=1}^{N} p_i.
\]

Hence,
\[
\sum_{i=1}^{N} p_i \leq N - 1.
\]
A simple observation
(Abramsky–Hardy)

- Propositional formulae ϕ_1, \ldots, ϕ_N

- $p_i := \text{Prob}(\phi_i)$
A simple observation
(Abramsky–Hardy)

- Propositional formulae ϕ_1, \ldots, ϕ_N
- $p_i := \text{Prob}(\phi_i)$
- Not simultaneously satisfiable, hence

$$\text{Prob}(\bigwedge \phi_i) = 0$$
A simple observation
(Abramsky–Hardy)

- Propositional formulae ϕ_1, \ldots, ϕ_N

- $p_i := \text{Prob}(\phi_i)$

- Not simultaneously satisfiable, hence

$$\text{Prob}(\bigwedge \phi_i) = 0$$

- Using elementary logic and probability:

$$1 = \text{Prob}(\neg \bigwedge \phi_i) = \text{Prob}(\bigvee \neg \phi_i)$$

$$\leq \sum_{i=1}^{N} \text{Prob}(\neg \phi_i) = \sum_{i=1}^{N} (1 - p_i) = N - \sum_{i=1}^{N} p_i.$$
A simple observation
(Abramsky–Hardy)

- Propositional formulae ϕ_1, \ldots, ϕ_N

- $p_i := \text{Prob}(\phi_i)$

- Not simultaneously satisfiable, hence

\[\text{Prob}(\bigwedge \phi_i) = 0 \]

- Using elementary logic and probability:

\[
1 = \text{Prob}(\neg \bigwedge \phi_i) = \text{Prob}(\bigvee \neg \phi_i) \\
\leq \sum_{i=1}^{N} \text{Prob}(\neg \phi_i) = \sum_{i=1}^{N} (1 - p_i) = N - \sum_{i=1}^{N} p_i.
\]

- Hence, $\sum_{i=1}^{N} p_i \leq N - 1$.
Analysis of the Bell table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>b₁</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>a₁</td>
<td>b₂</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>a₂</td>
<td>b₁</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>a₂</td>
<td>b₂</td>
<td>1/8</td>
<td>3/8</td>
<td>3/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

These formulae are contradictory. But \(p_1 + p_2 + p_3 + p_4 = 3 \). The inequality is violated by \(1/4 \).
Analysis of the Bell table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>b₁</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>a₁</td>
<td>b₂</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>a₂</td>
<td>b₁</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>a₂</td>
<td>b₂</td>
<td>1/8</td>
<td>3/8</td>
<td>3/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

$$\phi_1 = a_1 \leftrightarrow b_1$$
$$\phi_2 = a_1 \leftrightarrow b_2$$
$$\phi_3 = a_2 \leftrightarrow b_1$$
$$\phi_4 = a_2 \oplus b_2$$

These formulae are contradictory. But

$$p_1 + p_2 + p_3 + p_4 = 3.35$$

The inequality is violated by $$\frac{1}{4}$$.
Analysis of the Bell table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>b₁</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>a₁</td>
<td>b₂</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>a₂</td>
<td>b₁</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>a₂</td>
<td>b₂</td>
<td>1/8</td>
<td>3/8</td>
<td>3/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

φ₁ = a₁ ↔ b₁
φ₂ = a₁ ↔ b₂
φ₃ = a₂ ↔ b₁
φ₄ = a₂ ⊕ b₂

These formulae are contradictory.
Analysis of the Bell table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>a_1</td>
<td>b_2</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{3}{8}$</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{3}{8}$</td>
</tr>
<tr>
<td>a_2</td>
<td>b_2</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{1}{8}$</td>
</tr>
</tbody>
</table>

$\phi_1 = a_1 \leftrightarrow b_1$

$\phi_2 = a_1 \leftrightarrow b_2$

$\phi_3 = a_2 \leftrightarrow b_1$

$\phi_4 = a_2 \oplus b_2$

These formulae are contradictory.

But

$p_1 + p_2 + p_3 + p_4 = 3.35$
Analysis of the Bell table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>a_1</td>
<td>b_2</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{3}{8}$</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{3}{8}$</td>
</tr>
<tr>
<td>a_2</td>
<td>b_2</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{1}{8}$</td>
</tr>
</tbody>
</table>

$\phi_1 = a_1 \leftrightarrow b_1$
$\phi_2 = a_1 \leftrightarrow b_2$
$\phi_3 = a_2 \leftrightarrow b_1$
$\phi_4 = a_2 \oplus b_2$

These formulae are contradictory.
But

$$p_1 + p_2 + p_3 + p_4 = 3.35$$

The inequality is violated by $\frac{1}{4}$.
But the Bell table can be realised in the real world.
But the Bell table can be realised in the real world.

What was our unwarranted assumption?
But the Bell table can be realised in the real world.

What was our unwarranted assumption?

That all variables could \textit{in principle} be observed simultaneously.
Contextuality

- But the Bell table can be realised in the real world.
- What was our unwarranted assumption?
- That all variables could *in principle* be observed simultaneously.
- **Local consistency vs global inconsistency.**
Abramsky–Brandenburger framework

Measurement scenario \(\langle X, M, O \rangle \):

- \(X \) is a finite set of measurements or variables
- \(O \) is a finite set of outcomes or values
- \(M \) is a cover of \(X \), indicating joint measurability (contexts)

Example: (2,2,2) Bell scenario

- The set of variables is \(X = \{ a_1, a_2, b_1, b_2 \} \).
- The outcomes are \(O = \{ 0, 1 \} \).
- The measurement contexts are: \(\{ \{ a_1, b_1 \}, \{ a_1, b_2 \}, \{ a_2, b_1 \}, \{ a_2, b_2 \} \} \).
Abramsky–Brandenburger framework

Measurement scenario $\langle X, M, O \rangle$:
- X is a finite set of measurements or variables
- O is a finite set of outcomes or values
- M is a cover of X, indicating joint measurability (contexts)

Example: (2,2,2) Bell scenario
- The set of variables is $X = \{ a_1, a_2, b_1, b_2 \}$.
- The outcomes are $O = \{ 0, 1 \}$.
- The measurement contexts are:

$$\{ \{ a_1, b_1 \}, \{ a_1, b_2 \}, \{ a_2, b_1 \}, \{ a_2, b_2 \} \}.$$
Measurement scenarios

Examples: Bell-type scenarios, KS configurations, and more.
Another example: 18-vector Kochen–Specker

- A set of 18 variables, \(X = \{A, \ldots, O\} \)
Another example: 18-vector Kochen–Specker

- A set of 18 variables, $X = \{A, \ldots, O\}$
- A set of outcomes $O = \{0, 1\}$
Another example: 18-vector Kochen–Specker

- A set of 18 variables, $X = \{A, \ldots, O\}$
- A set of outcomes $O = \{0, 1\}$
- A measurement cover $M = \{C_1, \ldots, C_9\}$, whose contexts C_i correspond to the columns in the following table:

```
<table>
<thead>
<tr>
<th></th>
<th>U_1</th>
<th>U_2</th>
<th>U_3</th>
<th>U_4</th>
<th>U_5</th>
<th>U_6</th>
<th>U_7</th>
<th>U_8</th>
<th>U_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>H</td>
<td>H</td>
<td>B</td>
<td>I</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>Q</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>I</td>
<td>K</td>
<td>E</td>
<td>K</td>
<td>Q</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>C</td>
<td>G</td>
<td>M</td>
<td>N</td>
<td>D</td>
<td>F</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>G</td>
<td>J</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>J</td>
<td>L</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>
```
Empirical Models

Joint outcome or event in a context C is $s \in O^C$, e.g.

$$s = [a_1 \mapsto 0, b_1 \mapsto 1].$$
Joint outcome or \textbf{event} in a context C is $s \in O^C$, e.g.

$$s = [a_1 \mapsto 0, b_1 \mapsto 1].$$

\textbf{Empirical model:} family $\{e_C\}_{C \in \mathcal{M}}$ where $e_C \in \text{Prob}(O^C)$ for $C \in \mathcal{M}$.

It specifies a probability distribution over the events in each context. Each distribution is a row of the probability table.
Empirical Models

Joint outcome or event in a context C is $s \in O^C$, e.g.

$$s = [a_1 \mapsto 0, b_1 \mapsto 1] .$$

Empirical model: family $\{e_C\}_{C \in \mathcal{M}}$ where $e_C \in \text{Prob}(O^C)$ for $C \in \mathcal{M}$.

It specifies a probability distribution over the events in each context. Each distribution is a row of the probability table.

Compatibility condition: the distributions “agree on overlaps”

$$\forall C, C' \in \mathcal{M}. \quad e_C|_{C \cap C'} = e_{C'}|_{C \cap C'} .$$
Empirical Models

Joint outcome or **event** in a context C is $s \in O^C$, e.g.

$$s = [a_1 \mapsto 0, b_1 \mapsto 1].$$

Empirical model: family $\{e_C\}_{C \in \mathcal{M}}$ where $e_C \in \text{Prob}(O^C)$ for $C \in \mathcal{M}$.

It specifies a probability distribution over the events in each context. Each distribution is a row of the probability table.

Compatibility condition: the distributions “agree on overlaps”

$$\forall C, C' \in \mathcal{M}. \quad e_C|_{C \cap C'} = e_{C'}|_{C \cap C'}.$$

In multipartite scenarios, compatibility = the **no-signalling** principle.
Contextuality

A (compatible) empirical model is **non-contextual** if there exists a **global distribution** \(d \in \text{Prob}(O^X) \) on the joint assignments of outcomes to all measurements that marginalises to all the \(e_C \):

\[
\exists d \in \text{Prob}(O^X). \forall C \in \mathcal{M}. \quad d|_C = e_C.
\]
A (compatible) empirical model is non-contextual if there exists a global distribution $d \in \text{Prob}(O^X)$ on the joint assignments of outcomes to all measurements that marginalises to all the e_C:

$$\exists d \in \text{Prob}(O^X). \forall C \in \mathcal{M}. \quad d|_C = e_C.$$

i.e. all the local information can be glued into a consistent global description.
Contextuality

A (compatible) empirical model is **non-contextual** if there exists a **global distribution** \(d \in \text{Prob}(O^X) \) on the joint assignments of outcomes to all measurements that marginalises to all the \(e_C \):

\[
\exists d \in \text{Prob}(O^X). \ \forall C \in \mathcal{M}. \ \ d|_C = e_C .
\]

i.e. all the local information can be glued into a consistent global description.

Contextuality:
family of data which is **locally consistent** but **globally inconsistent**.
Contextuality

A (compatible) empirical model is **non-contextual** if there exists a **global distribution** \(d \in \text{Prob}(O^X) \) on the joint assignments of outcomes to all measurements that marginalises to all the \(e_C \):

\[
\exists d \in \text{Prob}(O^X). \forall C \in \mathcal{M}. \quad d|_C = e_C.
\]

i.e. all the local information can be glued into a consistent global description.

Contextuality: family of data which is **locally consistent** but **globally inconsistent**.

The import of results such as Bell’s and Bell–Kochen–Specker’s theorems is that there are empirical models arising from quantum mechanics that are contextual.
Given an empirical model e, define possibilistic model $\text{poss}(e)$ by taking the support of each distributions.

Contains the possibilistic, or logical, information of that model.
Possibilistic collapse

- Given an empirical model e, define possibilistic model $\text{poss}(e)$ by taking the support of each distribution.
- Contains the possibilistic, or logical, information of that model.

<table>
<thead>
<tr>
<th>$a_1 b_1$</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>$a_1 b_2$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{3}{8}$</td>
</tr>
<tr>
<td>$a_2 b_1$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{3}{8}$</td>
</tr>
<tr>
<td>$a_2 b_2$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{1}{8}$</td>
</tr>
</tbody>
</table>

\rightarrow

<table>
<thead>
<tr>
<th>$a_1 b_1$</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_2$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_2 b_1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_2 b_2$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logical contextuality: Hardy model

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0 b_0$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_0 b_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_0$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Logical contextuality: Hardy model

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

There are some global sections, but...
Logical contextuality: Hardy model

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0 b_0$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_0 b_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_0$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

There are some global sections, but...
Logical contextuality: Hardy model

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0 b_0$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_0 b_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_0$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Logical contextuality: Hardy model

<table>
<thead>
<tr>
<th>(a_0 b_0)</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_0 b_0)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_0 b_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_1 b_0)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_1 b_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Logical contextuality: Hardy model

<table>
<thead>
<tr>
<th>a_0 b_0</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0 b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0 b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1 b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1 b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Logical contextuality: Hardy model

There are some global sections, but...
Logical contextuality: Hardy model

<table>
<thead>
<tr>
<th>$a_0 b_0$</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_0 b_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_0$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Logical contextuality: Hardy model

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0 b_0$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_0 b_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_0$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

There are some global sections,
Logical contextuality: Hardy model

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0 b_0$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_0 b_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_0$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

There are some global sections, but . . .
Logical contextuality: Hardy model

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0 b_0$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_0 b_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_0$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

There are some global sections, but . . .
Logical contextuality: Hardy model

There are some global sections, but . . .
There are some global sections, but . . .
Logical contextuality: Hardy model

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0 b_0$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_0 b_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_0$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

There are some global sections, but . . .
Logical contextuality: Hardy model

There are some global sections, but . . .
Logical contextuality: Hardy model

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

There are some global sections, but...
Logical contextuality: Hardy model

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

There are some global sections, but . . .
Logical contextuality: Hardy model

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_0 b_0)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_0 b_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_1 b_0)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_1 b_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

There are some global sections, but . . .

Logical contextuality: Not all sections extend to global ones.
Strong Contextuality:

no event can be extended to a global assignment.
Strong contextuality

Strong Contextuality: **no** event can be extended to a global assignment.

E.g. K–S, GHZ, the PR box:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>b₁</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a₁</td>
<td>b₂</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a₂</td>
<td>b₁</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a₂</td>
<td>b₂</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Strong contextuality:

no event can be extended to a global assignment.

E.g. K–S, GHZ, the PR box:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a_1</td>
<td>b_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a_2</td>
<td>b_2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Cohomological witnesses of contextuality
(Abramsky–B–Mansfield, ABM–Kishida–Lal, Carù, Raussendorf et al.)
Measuring Contextuality
The contextual fraction

Non-contextuality: global distribution $d \in \text{Prob}(O^X)$ such that:

$$\forall C \in \mathcal{M}. \ d|_C = e_C.$$
The contextual fraction

Non-contextuality: global distribution $d \in \text{Prob}(O^X)$ such that:

$$\forall C \in M. \ d|_C = e_C.$$

Which fraction of a model admits a non-contextual explanation?
The contextual fraction

Non-contextuality: global distribution \(d \in \text{Prob}(O^X) \) such that:

\[
\forall C \in \mathcal{M}. \ d|_C = e_C .
\]

Which fraction of a model admits a non-contextual explanation?

Consider subdistributions \(c \in \text{SubProb}(O^X) \) such that:

\[
\forall C \in \mathcal{M}. \ c|_C \leq e_C .
\]

Non-contextual fraction: maximum weight of such a subdistribution.
The contextual fraction

Non-contextuality: global distribution $d \in \text{Prob}(O^X)$ such that:

$$\forall C \in \mathcal{M}. \quad d|_C = e_C.$$

Which fraction of a model admits a non-contextual explanation?

Consider subdistributions $c \in \text{SubProb}(O^X)$ such that:

$$\forall C \in \mathcal{M}. \quad c|_C \leq e_C.$$

Non-contextual fraction: maximum weight of such a subdistribution.

Equivalently, maximum weight λ over all convex decompositions

$$e = \lambda e^{NC} + (1 - \lambda)e'$$

where e^{NC} is a non-contextual model.
The contextual fraction

Non-contextuality: global distribution \(d \in \text{Prob}(O^X) \) such that:

\[
\forall c \in \mathcal{M}. \ d|_c = e_c.
\]

Which fraction of a model admits a non-contextual explanation?

Consider subdistributions \(c \in \text{SubProb}(O^X) \) such that:

\[
\forall c \in \mathcal{M}. \ c|_c \leq e_c.
\]

Non-contextual fraction: maximum weight of such a subdistribution.

Equivalently, maximum weight \(\lambda \) over all convex decompositions

\[
e = \lambda e^{NC} + (1 - \lambda)e'
\]

where \(e^{NC} \) is a non-contextual model.
The contextual fraction

Non-contextuality: global distribution \(d \in \text{Prob}(O^X) \) such that:

\[
\forall C \in \mathcal{M}. \ d|_C = e_C.
\]

Which fraction of a model admits a non-contextual explanation?

Consider \textbf{subdistributions} \(c \in \text{SubProb}(O^X) \) such that:

\[
\forall C \in \mathcal{M}. \ c|_C \leq e_C.
\]

\textbf{Non-contextual fraction}: maximum weight of such a subdistribution.

Equivalently, maximum weight \(\lambda \) over all convex decompositions

\[
e = \lambda e^{NC} + (1 - \lambda) e^{SC}
\]

where \(e^{NC} \) is a non-contextual model. \(e^{SC} \) is strongly contextual!

\[
\text{NCF}(e) = \lambda \quad \text{CF}(e) = 1 - \lambda
\]
Checking contextuality of e corresponds to solving

Find $d \in \mathbb{R}^n$

such that $M d = v^e$

and $d \geq 0$.

(Non-)contextual fraction via linear programming
Checking contextuality of e corresponds to solving

Find $d \in \mathbb{R}^n$

such that $M d = v^e$

and $d \geq 0$.

Computing the non-contextual fraction corresponds to solving the following linear program:

Find $c \in \mathbb{R}^n$

maximising $1 \cdot c$

subject to $M c \leq v^e$

and $c \geq 0$.
E.g. Equatorial measurements on GHZ\((n)\)

Figure: Contextual fraction of empirical models obtained with equatorial measurements at \(\phi_1\) and \(\phi_2\) on each qubit of \(|\psi_{\text{GHZ}(n)}\rangle\) with: (a) \(n = 3\); (b) \(n = 4\).
Violations of Bell inequalities
Generalised Bell inequalities

An **inequality** for a scenario $\langle X, \mathcal{M}, O \rangle$ is given by:

- a set of coefficients $\alpha = \{ \alpha(C, s) \}_{C \in \mathcal{M}, s \in O^c}$
- a bound R

Wlog we can take R non-negative (in fact, we can take $R = 0$).

It is called a **Bell inequality** if it is satisfied by every NC model. If it is saturated by some NC model, the Bell inequality is said to be **tight**.

NB: A complete set of inequalities can be derived from the logical approach.
Generalised Bell inequalities

An inequality for a scenario \(\langle X, M, O \rangle \) is given by:

- a set of coefficients \(\alpha = \{ \alpha(C, s) \}\) \(C \in M, s \in O \)
- a bound \(R \)

For a model \(e \), the inequality reads as

\[
B_\alpha(e) \leq R ,
\]

where

\[
B_\alpha(e) := \sum_{C \in M, s \in O} \alpha(C, s)e_C(s) .
\]
Generalised Bell inequalities

An **inequality** for a scenario \(\langle X, \mathcal{M}, O \rangle \) is given by:

- a set of coefficients \(\alpha = \{ \alpha(C, s) \}_{C \in \mathcal{M}, s \in O^c} \)
- a bound \(R \)

For a model \(e \), the inequality reads as

\[
B_\alpha(e) \leq R,
\]

where

\[
B_\alpha(e) := \sum_{C \in \mathcal{M}, s \in O^c} \alpha(C, s)e_C(s).
\]

Wlog we can take \(R \) non-negative (in fact, we can take \(R = 0 \)).
Generalised Bell inequalities

An inequality for a scenario $\langle X, M, O \rangle$ is given by:
- a set of coefficients $\alpha = \{\alpha(C, s)\}_{C \in M, s \in O^c}$
- a bound R

For a model e, the inequality reads as

$$B_\alpha(e) \leq R,$$

where

$$B_\alpha(e) := \sum_{C \in M, s \in O^c} \alpha(C, s)e_C(s).$$

Wlog we can take R non-negative (in fact, we can take $R = 0$).

It is called a Bell inequality if it is satisfied by every NC model. If it is saturated by some NC model, the Bell inequality is said to be tight.
Generalised Bell inequalities

An inequality for a scenario $\langle X, M, O \rangle$ is given by:

- a set of coefficients $\alpha = \{\alpha(C, s)\}_{C \in M, s \in O^C}$
- a bound R

For a model e, the inequality reads as

$$B_\alpha(e) \leq R,$$

where

$$B_\alpha(e) := \sum_{C \in M, s \in O^C} \alpha(C, s)e_C(s).$$

Wlog we can take R non-negative (in fact, we can take $R = 0$).

It is called a Bell inequality if it is satisfied by every NC model. If it is saturated by some NC model, the Bell inequality is said to be tight.

NB: A complete set of inequalities can be derived from the logical approach.
Violation of a Bell inequality

A Bell inequality establishes a bound for the value of $B_{\alpha}(e)$ amongst NC models.
Violation of a Bell inequality

A Bell inequality establishes a bound for the value of \(B_\alpha(e) \) amongst NC models.

For a general (no-signalling) model \(e \), the quantity is limited only by

\[
\| \alpha \| := \sum_{C \in \mathcal{M}} \max \left\{ \alpha(C, s) \mid s \in O^C \right\}
\]
Violation of a Bell inequality

A Bell inequality establishes a bound for the value of $B_{\alpha}(e)$ amongst NC models.

For a general (no-signalling) model e, the quantity is limited only by

$$\|\alpha\| := \sum_{C \in \mathcal{M}} \max \left\{ \alpha(C, s) \mid s \in O^C \right\}$$

The **normalised violation** of a Bell inequality $\langle \alpha, R \rangle$ by an empirical model e is the value

$$\frac{\max\{0, B_{\alpha}(e) - R\}}{\|\alpha\| - R}.$$
Proposition

Let e be an empirical model.
Bell inequality violation and the contextual fraction

Proposition
Let e be an empirical model.

- The normalised violation by e of any Bell inequality is at most $\text{CF}(e)$.

Moreover, this Bell inequality is tight at “the” non-contextual model e_{NC} and maximally violated by “the” strongly contextual model e_{SC} for any decomposition:

$$e = \text{NCF}(e) e_{\text{NC}} + \text{CF}(e) e_{\text{SC}}.$$
Bell inequality violation and the contextual fraction

Proposition

Let e be an empirical model.

- The normalised violation by e of any Bell inequality is at most $\text{CF}(e)$.

- This bound is attained: there exists a Bell inequality whose normalised violation by e is exactly $\text{CF}(e)$.
Bell inequality violation and the contextual fraction

Proposition
Let e be an empirical model.

- The normalised violation by e of any Bell inequality is at most $\text{CF}(e)$.

- This bound is attained: there exists a Bell inequality whose normalised violation by e is exactly $\text{CF}(e)$.

- Moreover, this Bell inequality is tight at “the” non-contextual model e^{NC} and maximally violated by “the” strongly contextual model e^{SC} for any decomposition:

$$e = \text{NCF}(e)e^{NC} + \text{CF}(e)e^{SC}.$$
Bell inequality violation and the contextual fraction

Quantifying Contextuality LP:

Find \(\mathbf{c} \in \mathbb{R}^n \)
maximising \(1 \cdot \mathbf{c} \)
subject to \(M\mathbf{c} \leq \mathbf{v}^e \)
and \(\mathbf{c} \geq 0 \).

\[e = \lambda e^{NC} + (1 - \lambda) e^{SC} \text{ with } \lambda = 1 \cdot x^*. \]
Bell inequality violation and the contextual fraction

Quantifying Contextuality LP:

Find \(c \in \mathbb{R}^n \)

maximising \(1 \cdot c \)

subject to \(M c \leq v^e \)

and \(c \geq 0 \)

Dual LP:

Find \(y \in \mathbb{R}^m \)

minimising \(y \cdot v^e \)

subject to \(M^T y \geq 1 \)

and \(y \geq 0 \)

\(e = \lambda e^{NC} + (1 - \lambda) e^{SC} \) with \(\lambda = 1 \cdot x^* \).
Bell inequality violation and the contextual fraction

Quantifying Contextuality LP:

Find \(c \in \mathbb{R}^n \)
maximising \(1 \cdot c \)
subject to \(M c \leq v^e \)
and \(c \geq 0 \).

Dual LP:

Find \(y \in \mathbb{R}^m \)
minimising \(y \cdot v^e \)
subject to \(M^T y \geq 1 \)
and \(y \geq 0 \).

\[e = \lambda e^{NC} + (1 - \lambda)e^{SC} \text{ with } \lambda = 1 \cdot x^*. \]

\[a := 1 - |M|y \]
Bell inequality violation and the contextual fraction

Quantifying Contextuality LP:

Find $c \in \mathbb{R}^n$
maximising $1 \cdot c$
subject to $M c \leq v^e$
and $c \geq 0$.

Dual LP:

Find $y \in \mathbb{R}^m$
minimising $y \cdot v^e$
subject to $M^T y \geq 1$
and $y \geq 0$.

$$e = \lambda e^{NC} + (1 - \lambda)e^{SC} \text{ with } \lambda = 1 \cdot x^*.$$
Bell inequality violation and the contextual fraction

Quantifying Contextuality LP:

Find \(c \in \mathbb{R}^n \)

maximising \(1 \cdot c \)

subject to \(M c \leq v^e \)

and \(c \geq 0 \).

\[e = \lambda e^{NC} + (1 - \lambda)e^{SC} \text{ with } \lambda = 1 \cdot x^*. \]

Dual LP:

Find \(y \in \mathbb{R}^m \)

minimising \(y \cdot v^e \)

subject to \(M^T y \geq 1 \)

and \(y \geq 0 \).

\[a := 1 - |M|y \]

Find \(a \in \mathbb{R}^m \)

maximising \(a \cdot v^e \)

subject to \(M^T a \leq 0 \)

and \(a \leq 1 \).

computes tight Bell inequality (separating hyperplane)
Operations on empirical models
Contextuality as a resource

More than one possible measure of contextuality.

What properties should a good measure satisfy?

Monotonicity wrt operations that do not introduce contextuality.

Towards a resource theory as for entanglement (e.g. LOCC), non-locality, . . .
Contextuality as a resource

- More than one possible measure of contextuality.
- What properties should a good measure satisfy?
Contextuality as a resource

- More than one possible measure of contextuality.
- What properties should a good measure satisfy?
- Monotonicity wrt operations that do not introduce contextuality
- Towards a resource theory as for entanglement (e.g. LOCC), non-locality, . . .
Algebra of empirical models

- Think of empirical models as black boxes

\[e \langle X, M, O \rangle \] to mean that \(e \) is a (compatible) empirical model on \(\langle X, M, O \rangle \).

The operations remind one of process algebras.
Algebra of empirical models

- Think of empirical models as black boxes
- What operations can we perform (non-contextually) on them?
Algebra of empirical models

- Think of empirical models as black boxes

- What operations can we perform (*non-contextually*) on them?

- We write type statements

\[e : \langle \mathcal{X}, \mathcal{M}, O \rangle \]

...to mean that \(e\) is a (compatible) empirical model on \(\langle \mathcal{X}, \mathcal{M}, O \rangle\).
Algebra of empirical models

- Think of empirical models as black boxes
- What operations can we perform (non-contextually) on them?
- We write type statements
 \[e : \langle X, M, O \rangle \]
 to mean that \(e \) is a (compatible) empirical model on \(\langle X, M, O \rangle \).
- The operations remind one of process algebras.
Operations

Relabelling:

\[\langle X, M, O \rangle \xrightarrow{\alpha} (X, M) \sim (X', M') \xrightarrow{e} \langle X', M', O \rangle\]

For \(C \in M\), \(s:\alpha(C) \rightarrow O\), \(e[\alpha](s) := e(C \circ \alpha^{-1})\)

Restriction \(e\):

\[\langle X, M, O \rangle \leq (X, M) \xrightarrow{e\restriction M'}: \langle X', M', O \rangle\]

For \(C' \in M'\), \(s:\ C' \rightarrow O\), \((e\restriction M')(s) := e|_{C'}(s)\)

with any \(C \in M\) s.t. \(C' \subseteq C\)

Coarse-graining \(e\):

\[\langle X, M, O \rangle \xrightarrow{f}: O \rightarrow O' \xrightarrow{e/f}: \langle X, M, O' \rangle\]

For \(C \in M\), \(s:\ C \rightarrow O'\), \((e/f)(s) := \sum t:C \rightarrow O, f \circ t = s e(C)(t)\)

R S Barbosa

Contextuality as a resource 25
Operations

Relabelling

\[
ed : \langle X, M, O \rangle
\]
\[
\alpha : (X, M) \cong (X', M') \quad \leadsto \quad e[\alpha] : \langle X', M', O \rangle
\]
Operations

Relabelling

\[e : \langle X, M, O \rangle \]
\[\alpha : (X, M) \cong (X', M') \quad \leadsto \quad e[\alpha] : \langle X', M', O \rangle \]

For \(C \in M \), \(s : \alpha(C) \rightarrow O \), \(e[\alpha]_{\alpha(C)}(s) := e_C(s \circ \alpha^{-1}) \)
Operations

Relabelling

\[e : \langle X, M, O \rangle \sim \alpha : (X, M) \cong (X', M') \leadsto e[\alpha] : \langle X', M', O \rangle \]

For \(C \in M \), \(s : \alpha(C) \rightarrow O \), \(e[\alpha]_{\alpha(C)}(s) := e_C(s \circ \alpha^{-1}) \)

Restriction

\[e : \langle X, M, O \rangle \sim (X', M') \leq (X, M) \leadsto e \upharpoonright M' : \langle X', M', O \rangle \]
Operations

Relabelling

\[e : \langle X, M, O \rangle \quad \alpha : (X, M) \cong (X', M') \quad \leadsto \quad e[\alpha] : \langle X', M', O \rangle \]

For \(C \in M \), \(s : \alpha(C) \longrightarrow O \), \(e[\alpha]_{\alpha(C)}(s) := e_C(s \circ \alpha^{-1}) \)

Restriction

\[e : \langle X, M, O \rangle \quad (X', M') \leq (X, M) \quad \leadsto \quad e \upharpoonright M' : \langle X', M', O \rangle \]

For \(C' \in M' \), \(s : C' \longrightarrow O \), \((e \upharpoonright M')_{C'}(s) := e_C|_{C'}(s) \)

with any \(C \in M \) s.t. \(C' \subseteq C \)
Operations

Relabelling

\[e : \langle X, M, O \rangle \]
\[\alpha : (X, M) \cong (X', M') \quad \leadsto \quad e[\alpha] : \langle X', M', O \rangle \]

For \(C \in M, s : \alpha(C) \rightarrow O, e[\alpha](s) := e_C(s \circ \alpha^{-1}) \)

Restriction

\[e : \langle X, M, O \rangle \]
\[(X', M') \leq (X, M) \quad \leadsto \quad e \upharpoonright M' : \langle X', M', O \rangle \]

For \(C' \in M', s : C' \rightarrow O, (e \upharpoonright M')(s) := e_C|_{C'}(s) \)
with any \(C \in M \) s.t. \(C' \subseteq C \)

Coarse-graining

\[e : \langle X, M, O \rangle \]
\[f : O \rightarrow O' \quad \leadsto \quad e/f : \langle X, M, O' \rangle \]
Operations

Relabelling
\[e : \langle X, M, O \rangle \]
\[\alpha : (X, M) \cong (X', M') \leadsto e[\alpha] : \langle X', M', O \rangle \]
For \(C \in M \), \(s : \alpha(C) \rightarrow O \), \(e[\alpha]_\alpha(C)(s) := e_C(s \circ \alpha^{-1}) \)

Restriction
\[e : \langle X, M, O \rangle \]
\[(X', M') \leq (X, M) \leadsto e \upharpoonright M' : \langle X', M', O \rangle \]
For \(C' \in M' \), \(s : C' \rightarrow O \), \((e \upharpoonright M')_{C'}(s) := e_C|_{C'}(s) \)
with any \(C \in M \) s.t. \(C' \subseteq C \)

Coarse-graining
\[e : \langle X, M, O \rangle \]
\[f : O \rightarrow O' \leadsto e/f : \langle X, M, O' \rangle \]
For \(C \in M \), \(s : C \rightarrow O' \), \((e/f)_C(s) := \sum_{t : C \rightarrow O, f \circ t = s} e_C(t) \)
Operations

Mixing

\[e, e' : \langle X, M, O \rangle \]
\[\lambda \in [0, 1] \]
\[\leadsto e + \lambda e' : \langle X, M, O \rangle \]
Operations

Mixing

\[e, e' : \langle X, M, O \rangle \]
\[\lambda \in [0, 1] \]
\[\leadsto e + \lambda e' : \langle X, M, O \rangle \]

For \(C \in M, s : C \to O' \),
\[(e + \lambda e')_C(s) := \lambda e_C(s) + (1 - \lambda)e'_C(s) \]
Operations

Mixing

\[e, e' : \langle X, M, O \rangle \quad \sim \quad e + \lambda \ e' : \langle X, M, O \rangle \]

\[\lambda \in [0, 1] \]

For \(C \in M, s : C \rightarrow O' \),

\[(e + \lambda \ e')_{C}(s) := \lambda e_{C}(s) + (1 - \lambda) e'_{C}(s) \]

Choice

\[e : \langle X, M, O \rangle \quad \sim \quad e \& e' : \langle X \sqcup X', M \sqcup M', O \rangle \]

\[e' : \langle X', M', O \rangle \]
Operations

Mixing

\[e, e' : \langle X, M, O \rangle \]
\[\lambda \in [0, 1] \]
\[\leadsto e + \lambda e' : \langle X, M, O \rangle \]

For \(C \in M, s : C \rightarrow O' \),

\[(e + \lambda e')_C(s) := \lambda e_C(s) + (1 - \lambda)e'_C(s)\]

Choice

\[e : \langle X, M, O \rangle \]
\[e' : \langle X', M', O \rangle \]
\[\leadsto e \& e' : \langle X \sqcup X', M \sqcup M', O \rangle \]

For \(C \in M, (e \& e')_C := e_C \)
For \(D \in M', (e \& e')_D := e'_D \)
Operations

Mixing

\[e, e' : \langle X, \mathcal{M}, O \rangle \]
\[\lambda \in [0, 1] \]
\[\xrightarrow{\lambda} e + \lambda e' : \langle X, \mathcal{M}, O \rangle \]

For \(C \in \mathcal{M}, s : C \longrightarrow O' \),
\[(e + \lambda e')_c(s) := \lambda e_c(s) + (1 - \lambda)e'_c(s) \]

Choice

\[e : \langle X, \mathcal{M}, O \rangle \]
\[e' : \langle X', \mathcal{M}', O \rangle \]
\[\xrightarrow{\text{}} e \& e' : \langle X \sqcup X', \mathcal{M} \sqcup \mathcal{M}', O \rangle \]

For \(C \in \mathcal{M}, (e \& e')_c := e_c \)
For \(D \in \mathcal{M}', (e \& e')_D := e'_D \)

Tensor

\[e : \langle X, \mathcal{M}, O \rangle \]
\[e' : \langle X', \mathcal{M}', O \rangle \]
\[\xrightarrow{\text{}} e \otimes e' : \langle X \sqcup X', \mathcal{M} \star \mathcal{M}', O \rangle \]
Operations

Mixing

\[e, e' : \langle X, \mathcal{M}, O \rangle \]
\[\lambda \in [0, 1] \]
\[\rightsquigarrow e + \lambda\ e' : \langle X, \mathcal{M}, O \rangle \]

For \(C \in \mathcal{M}, s : C \rightarrow O' \),
\[(e + \lambda\ e')_C(s) := \lambda e_C(s) + (1 - \lambda) e'_C(s) \]

Choice

\[e : \langle X, \mathcal{M}, O \rangle \]
\[e' : \langle X', \mathcal{M}', O \rangle \]
\[\rightsquigarrow e \& e' : \langle X \sqcup X', \mathcal{M} \sqcup \mathcal{M}', O \rangle \]

For \(C \in \mathcal{M}, (e \& e')_C := e_C \)
For \(D \in \mathcal{M}', (e \& e')_D := e'_D \)

Tensor

\[e : \langle X, \mathcal{M}, O \rangle \]
\[e' : \langle X', \mathcal{M}', O \rangle \]
\[\rightsquigarrow e \otimes e' : \langle X \sqcup X', \mathcal{M} \star \mathcal{M}', O \rangle \]

\[\mathcal{M} \star \mathcal{M}' := \{ C \sqcup D \mid C \in \mathcal{M}, D \in \mathcal{M}' \} \]
Operations

Mixing

$$e, e' : \langle X, M, O \rangle \quad \lambda \in [0, 1] \quad \leadsto \quad e + \lambda \ e' : \langle X, M, O \rangle$$

For $C \in M$, $s : C \rightarrow O'$,

$$(e + \lambda \ e')_C(s) := \lambda e_C(s) + (1 - \lambda) e'_C(s)$$

Choice

$$e : \langle X, M, O \rangle \quad e' : \langle X', M', O \rangle \quad \leadsto \quad e \& e' : \langle X \sqcup X', M \sqcup M', O \rangle$$

For $C \in M$, $(e \& e')_C := e_C$

For $D \in M'$, $(e \& e')_D := e'_D$

Tensor

$$e : \langle X, M, O \rangle \quad e' : \langle X', M', O \rangle \quad \leadsto \quad e \otimes e' : \langle X \sqcup X', M \star M', O \rangle$$

$$M \star M' := \{ C \sqcup D \mid C \in M, D \in M' \}$$

For $C \in M$, $D \in M'$, $s = \langle s_1, s_2 \rangle : C \sqcup D \rightarrow O$,

$$(e \otimes e')_{C \sqcup D} \langle s_1, s_2 \rangle := e_C(s_1) e'_D(s_2)$$
Operations and the contextual fraction

\[\text{NCF}(e_1 \otimes e_2) = \text{NCF}(e_1) \cdot \text{NCF}(e_2) \]

Sequencing

\[\text{NCF}(e_1; e_2) \geq \text{NCF}(e_1) \cdot \text{NCF}(e_2) \]
Operations and the contextual fraction

Relabelling $e[\alpha]$
Operations and the contextual fraction

Relabelling \(e[\alpha] \)

Restriction \(e \upharpoonright \mathcal{M}' \)
Operations and the contextual fraction

Relabelling $e[\alpha]$
Restriction $e \upharpoonright M'$
Coarse-graining e/f
Operations and the contextual fraction

Relabelling \(e[\alpha] \)

Restriction \(e \upharpoonright \mathcal{M}' \)

Coarse-graining \(e/f \)

Mixing \(\lambda e + (1 - \lambda)e' \)
Operations and the contextual fraction

Relabelling \(e[\alpha] \)

Restriction \(e \upharpoonright \mathcal{M}' \)

Coarse-graining \(e/f \)

Mixing \(\lambda e + (1 - \lambda)e' \)

Choice \(e & e' \)
Operations and the contextual fraction

Relabelling \(e[\alpha] \)

Restriction \(e \upharpoonright M' \)

Coarse-graining \(e/f \)

Mixing \(\lambda e + (1 - \lambda)e' \)

Choice \(e \& e' \)

Tensor \(e_1 \otimes e_2 \)
Operations and the contextual fraction

Relabelling \(e[\alpha] \)

Restriction \(e \upharpoonright M' \)

Coarse-graining \(e/f \)

Mixing \(\lambda e + (1 - \lambda)e' \)

Choice \(e \& e' \)

Tensor \(e_1 \otimes e_2 \)

Sequencing \(e_1; e_2 \)
Operations and the contextual fraction

Relabelling \(\text{CF}(e[\alpha]) = \text{CF}(e) \)

Restriction \(e \upharpoonright M' \)

Coarse-graining \(e/f \)

Mixing \(\lambda e + (1 - \lambda)e' \)

Choice \(e \& e' \)

Tensor \(e_1 \otimes e_2 \)

Sequencing \(e_1; e_2 \)
Operations and the contextual fraction

Relabelling \[\text{CF}(e[\alpha]) = \text{CF}(e) \]

Restriction \[\text{CF}(e \upharpoonright \mathcal{M}') \leq \text{CF}(e) \]

Coarse-graining \[e/f \]

Mixing \[\lambda e + (1 - \lambda)e' \]

Choice \[e \& e' \]

Tensor \[e_1 \otimes e_2 \]

Sequencing \[e_1 ; e_2 \]
Operations and the contextual fraction

Relabelling \(\text{CF}(e[\alpha]) = \text{CF}(e) \)

Restriction \(\text{CF}(e \upharpoonright \mathcal{M}') \leq \text{CF}(e) \)

Coarse-graining \(\text{CF}(e/f) \leq \text{CF}(e) \)

Mixing \(\lambda e + (1 - \lambda)e' \)

Choice \(e \& e' \)

Tensor \(e_1 \otimes e_2 \)

Sequencing \(e_1 ; e_2 \)
Operations and the contextual fraction

Relabelling \[\text{CF}(e[\alpha]) = \text{CF}(e) \]

Restriction \[\text{CF}(e \upharpoonright \mathcal{M}') \leq \text{CF}(e) \]

Coarse-graining \[\text{CF}(e/f) \leq \text{CF}(e) \]

Mixing \[\text{CF}(\lambda e + (1 - \lambda)e') \leq \lambda \text{CF}(e) + (1 - \lambda)\text{CF}(e') \]

Choice \[e \& e' \]

Tensor \[e_1 \otimes e_2 \]

Sequencing \[e_1 ; e_2 \]
Operations and the contextual fraction

Relabelling \(\text{CF}(e[\alpha]) = \text{CF}(e) \)

Restriction \(\text{CF}(e \upharpoonright \mathcal{M}') \leq \text{CF}(e) \)

Coarse-graining \(\text{CF}(e/f) \leq \text{CF}(e) \)

Mixing \(\text{CF}(\lambda e + (1 - \lambda)e') \leq \lambda \text{CF}(e) + (1 - \lambda)\text{CF}(e') \)

Choice \(\text{CF}(e \& e') = \max\{\text{CF}(e), \text{CF}(e')\} \)

Tensor \(e_1 \otimes e_2 \)

\(\text{NCF}(e_1 \otimes e_2) = \text{NCF}(e_1) \text{NCF}(e_2) \)

Sequencing \(e_1; e_2 \)
Operations and the contextual fraction

Relabelling $\text{CF}(e[\alpha]) = \text{CF}(e)$

Restriction $\text{CF}(e \upharpoonright M') \leq \text{CF}(e)$

Coarse-graining $\text{CF}(e/f) \leq \text{CF}(e)$

Mixing $\text{CF}(\lambda e + (1 - \lambda)e') \leq \lambda \text{CF}(e) + (1 - \lambda)\text{CF}(e')$

Choice $\text{CF}(e & e') = \max\{\text{CF}(e), \text{CF}(e')\}$

Tensor $\text{CF}(e_1 \otimes e_2) = \text{CF}(e_1) + \text{CF}(e_2) - \text{CF}(e_1)\text{CF}(e_2)$

NCF($e_1 \otimes e_2$) $= \text{NCF}(e_1)\text{NCF}(e_2)$

Sequencing $e_1 ; e_2$
Operations and the contextual fraction

Relabelling \(\text{CF}(e[\alpha]) = \text{CF}(e) \)

Restriction \(\text{CF}(e \upharpoonright \mathcal{M}') \leq \text{CF}(e) \)

Coarse-graining \(\text{CF}(e/f) \leq \text{CF}(e) \)

Mixing \(\text{CF}(\lambda e + (1 - \lambda)e') \leq \lambda \text{CF}(e) + (1 - \lambda)\text{CF}(e') \)

Choice \(\text{CF}(e \& e') = \max\{\text{CF}(e), \text{CF}(e')\} \)

Tensor \(\text{CF}(e_1 \otimes e_2) = \text{CF}(e_1) + \text{CF}(e_2) - \text{CF}(e_1)\text{CF}(e_2) \)
\(\text{NCF}(e_1 \otimes e_2) = \text{NCF}(e_1)\text{NCF}(e_2) \)

Sequencing \(\text{CF}(e_1 \otimes e_2) \leq \text{CF}(e_1) + \text{CF}(e_2) - \text{CF}(e_1)\text{CF}(e_2) \)
\(\text{NCF}(e_1; e_2) \geq \text{NCF}(e_1)\text{NCF}(e_2) \)
Resource theory of contextuality
(some work in progress)
Resource theory of contextuality
(some work in progress)

- Resource theory *a la* Coecke–Fritz–Spekkens. (resource theory of combinable processes)
Resource theory of contextuality
(some work in progress)

- Resource theory *a la* Coecke–Fritz–Spekkens.
 (resource theory of combinable processes)

- Device-independent processes
Resource theory of contextuality
(some work in progress)

- Resource theory *a la* Coecke–Fritz–Spekkens. (resource theory of combinable processes)

- Device-independent processes
 - Operations remind one of process algebra

Sequencing:
- so far, it hides middle steps
- not doing so leads to notion of causal empirical models.

Allow natural expression of measurement-based computation with feed-forward, in a device-independent form:
- One can measure a non-maximal context (face σ of complex)
 - leaving a model on scenario σ.
Resource theory of contextuality
(some work in progress)

- Resource theory *a la* Coecke–Fritz–Spekkens. (resource theory of combinable processes)

- Device-independent processes
 - Operations remind one of process algebra
 - Process calculus:
 operational semantics by (probabilistic) transitions
Resource theory of contextuality
(some work in progress)

- Resource theory *a la* Coecke–Fritz–Spekkens.
 (resource theory of combinable processes)

- Device-independent processes
 - Operations remind one of process algebra
 - Process calculus:
 - operational semantics by (probabilistic) transitions
 - bissimulation, metric / approximation
Resource theory of contextuality
(some work in progress)

▶ Resource theory a la Coecke–Fritz–Spekkens.
(resource theory of combinable processes)

▶ Device-independent processes
 ▶ Operations remind one of process algebra
 ▶ Process calculus:
 operational semantics by (probabilistic) transitions
 ▶ bissimulation, metric / approximation
 ▶ (modal) logic for device-independent processes
Resource theory of contextuality
(some work in progress)

▶ Resource theory a la Coecke–Fritz–Spekkens.
(resource theory of combinable processes)

▶ Device-independent processes
 ▶ Operations remind one of process algebra
 ▶ Process calculus:
 operational semantics by (probabilistic) transitions
 ▶ bissimulation, metric / approximation
 ▶ (modal) logic for device-independent processes

▶ Sequencing:
Resource theory of contextuality
(some work in progress)

(resource theory of combinable processes)

▶ Device-independent processes
 ▶ Operations remind one of process algebra
 ▶ Process calculus:
 operational semantics by (probabilistic) transitions
 ▶ bisimulation, metric / approximation
 ▶ (modal) logic for device-independent processes

▶ Sequencing:
 ▶ so far, it hides middle steps
Resource theory of contextuality
(some work in progress)

 (resource theory of combinable processes)

- Device-independent processes
 - Operations remind one of process algebra
 - Process calculus:
 - operational semantics by (probabilistic) transitions
 - bissimulation, metric / approximation
 - (modal) logic for device-independent processes

- Sequencing:
 - so far, it hides middle steps
 - not doing so leads to notion of causal empirical models.
Resource theory of contextuality
(some work in progress)

- Resource theory *a la* Coecke–Fritz–Spekkens. (resource theory of combinable processes)

- Device-independent processes
 - Operations remind one of process algebra
 - Process calculus:
 - operational semantics by (probabilistic) transitions
 - bissimulation, metric / approximation
 - (modal) logic for device-independent processes

- Sequencing:
 - so far, it hides middle steps
 - not doing so leads to notion of causal empirical models.

- Allow natural expression of measurement-based computation with feed-forward, in a device-independent form:
Resource theory of contextuality
(some work in progress)

- Resource theory \textit{a la} Coecke–Fritz–Spekkens. (resource theory of combinable processes)

- Device-independent processes
 - Operations remind one of process algebra
 - Process calculus:
 - operational semantics by (probabilistic) transitions
 - bisimulation, metric / approximation
 - (modal) logic for device-independent processes

- Sequencing:
 - so far, it hides middle steps
 - not doing so leads to notion of causal empirical models.

- Allow natural expression of measurement-based computation with feed-forward, in a device-independent form:
 - One can measure a non-maximal context (face σ of complex)
Resource theory of contextuality
(some work in progress)

- Resource theory *a la* Coecke–Fritz–Spekkens.
 (resource theory of combinable processes)

- Device-independent processes
 - Operations remind one of process algebra
 - Process calculus:
 operational semantics by (probabilistic) transitions
 - bissimulation, metric / approximation
 - (modal) logic for device-independent processes

- Sequencing:
 - so far, it hides middle steps
 - not doing so leads to notion of causal empirical models.

- Allow natural expression of measurement-based computation with feed-forward, in a device-independent form:
 - One can measure a non-maximal context (face σ of complex)
 - leaving a model on scenario $\text{lk}_\sigma \mathcal{M}$
Contextual fraction and quantum advantages
Contextual fraction and advantages

- Contextuality has been associated with quantum advantage in information-processing and computational tasks.
Contextual fraction and advantages

- Contextuality has been associated with quantum advantage in information-processing and computational tasks.

- Measure of contextuality \(\leadsto \) quantify such advantages.
Contextual fraction and cooperative games

- Game described by n formulae (one for each allowed input).
- These describe the winning condition that the corresponding outputs must satisfy.
Contextual fraction and cooperative games

- Game described by \(n \) formulae (one for each allowed input).

- These describe the winning condition that the corresponding outputs must satisfy.

- If the formulae are \(k \)-consistent (at most \(k \) are jointly satisfiable), the **hardness of the task** is \(\frac{n-k}{n} \).

 (cf. Abramsky & Hardy, “Logical Bell inequalities”)
Contextual fraction and cooperative games

- Game described by n formulae (one for each allowed input).
- These describe the winning condition that the corresponding outputs must satisfy.
- If the formulae are k-consistent (at most k are jointly satisfiable), the hardness of the task is $\frac{n-k}{n}$.
 (cf. Abramsky & Hardy, “Logical Bell inequalities”)
- We have

\[
1 - \bar{p}_S \geq \text{NCF} \frac{n-k}{n}
\]
Contextuality and MBQC
E.g. Raussendorf (2013) ℓ^2-MBQC

- Measurement-based quantum computing scheme (m input bits, l output bits, n parties)
 - Classical control:
 - Pre-processes input
 - Determines the flow of measurements
 - Post-processes to produce the output
 - Only Z_2-linear computations.
 - Additional power to compute non-linear functions resides in certain resource empirical models.
 - Raussendorf (2013): If an ℓ^2-MBQC deterministically computes a non-linear Boolean function $f : 2^m \rightarrow 2^l$ then the resource must be strongly contextual.
 - Probabilistic version: non-linear function computed with sufficiently large probability of success implies contextuality.
Contextuality and MBQC

E.g. Raussendorf (2013) ℓ^2-MBQC

- measurement-based quantum computing scheme
 (m input bits, l output bits, n parties)

- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

- only \mathbb{Z}_2-linear computations.
- additional power to compute non-linear functions resides in certain resource empirical models.

- Raussendorf (2013): If an ℓ^2-MBQC deterministically computes a non-linear Boolean function $f: 2^m \rightarrow 2^l$ then the resource must be strongly contextual.

- Probabilistic version: non-linear function computed with sufficiently large probability of success implies contextuality.
Contextuality and MBQC
E.g. Raussendorf (2013) ℓ^2-MBQC

- measurement-based quantum computing scheme
 (m input bits, l output bits, n parties)

- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

only \mathbb{Z}_2-linear computations.
Contextuality and MBQC

E.g. Raussendorf (2013) ℓ2-MBQC

- measurement-based quantum computing scheme
 \((m \text{ input bits}, l \text{ output bits}, n \text{ parties})\)

- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output
 only \(\mathbb{Z}_2\)-linear computations.

- additional power to compute non-linear functions resides in certain resource empirical models.
Contextuality and MBQC

E.g. Raussendorf (2013) ℓ_2-MBQC

- measurement-based quantum computing scheme
 (m input bits, l output bits, n parties)

- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

only \mathbb{Z}_2-linear computations.

- additional power to compute non-linear functions resides in certain resource empirical models.

- Raussendorf (2013): If an ℓ_2-MBQC deterministically computes a non-linear Boolean function $f : 2^m \rightarrow 2^l$ then the resource must be strongly contextual.
Contextuality and MBQC

E.g. Raussendorf (2013) ℓ_2-MBQC

- measurement-based quantum computing scheme
 (m input bits, l output bits, n parties)

- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

 only \mathbb{Z}_2-linear computations.

- additional power to compute non-linear functions resides in certain resource empirical models.

- Raussendorf (2013): If an ℓ_2-MBQC deterministically computes a non-linear Boolean function $f : 2^m \rightarrow 2^l$ then the resource must be strongly contextual.

- Probabilistic version: non-linear function computed with sufficiently large probability of success implies contextuality.
Goal: Compute Boolean function $f : 2^m \rightarrow 2^l$ using ℓ^2-MBQC

Hardness of the problem
$
\nu(f) := \min \{ d(f, g) \mid g \text{ is } \mathbb{Z}_2\text{-linear} \}
$

(average distance between f and closest \mathbb{Z}_2-linear function)

Average probability of success computing f (over all 2^m possible inputs):
\bar{p}_S

Then,
$1 - \bar{p}_S \geq NCF(e) \nu(f)$
Goal: Compute Boolean function $f : 2^m \rightarrow 2^l$ using ℓ_2-MBQC

Hardness of the problem

\[\nu(f) := \min \{ d(f, g) \mid g \text{ is } \mathbb{Z}_2\text{-linear} \} \]

(average distance between f and closest \mathbb{Z}_2-linear function)

where for Boolean functions f and g, $d(f, g) := 2^{-m} | \{ i \in 2^m \mid f(i) \neq g(i) \} |$.
Contextual fraction and MBQC

- **Goal**: Compute Boolean function \(f : 2^m \rightarrow 2^l \) using \(\ell_2\)-MBQC

- **Hardness of the problem**

 \[\nu(f) := \min \{ d(f, g) \mid g \text{ is } \mathbb{Z}_2\text{-linear} \} \]

 (average distance between \(f \) and closest \(\mathbb{Z}_2\)-linear function)

 where for Boolean functions \(f \) and \(g \),
 \[d(f, g) := 2^{-m} | \{ i \in 2^m \mid f(i) \neq g(i) \} |. \]

- **Average probability of success** computing \(f \) (over all \(2^m \) possible inputs): \(\bar{p}_S \).
Goal: Compute Boolean function $f : 2^m \rightarrow 2^l$ using $\ell 2$-MBQC

Hardness of the problem

$$\nu(f) := \min \{d(f, g) \mid g \text{ is } \mathbb{Z}_2\text{-linear}\}$$

(average distance between f and closest \mathbb{Z}_2-linear function)

where for Boolean functions f and g, $d(f, g) := 2^{-m} \mid \{i \in 2^m \mid f(i) \neq g(i)\}$.

Average probability of success computing f (over all 2^m possible inputs): $\bar{\rho}_S$.

Then,

$$1 - \bar{\rho}_S \geq \text{NCF}(e) \nu(f)$$
Questions...

“The contextual fraction as a measure of contextuality”
Samson Abramsky, RSB, Shane Mansfield