Categories of Physical Processes

Stanisław Szawiel

University of Warsaw

CVQT 20th March 2018

Part I

A non-topological TQFT

Idea

The category of physical processes, \mathbf{Phys} is

- ► All states of all physical systems (objects)
- All physical processes between them (arrows) (time evolution, asymptotic scattering, etc.)

Axioms for Phys

- 1. Phys has noninteracting composites (⊗-structure)
- 2. Physical processes act on observables, preserve composites:

$$\mathcal{O}: \mathbf{Phys} \longrightarrow C^* \mathbf{Alg}^{op}$$

3. States $\varphi \in \mathbf{Phys}$ determine expectation values

$$\langle - \rangle_{\varphi} : \mathcal{O}(\varphi) \longrightarrow \mathbb{C}$$

4. Processes $f:\varphi\longrightarrow\psi$ preserve expectation values:

$$\mathcal{O}(\psi) \xrightarrow{\qquad \qquad \mathcal{O}(f) \qquad \qquad } \mathcal{O}(\varphi)$$

5. Weak independence: $\langle - \rangle_{\varphi \otimes \psi} = \langle - \rangle_{\varphi} \otimes \langle - \rangle_{\psi}$

Axioms for Phys

- 1. Phys has noninteracting composites (⊗-structure)
- 2. Physical processes act on observables, preserve composites:

$$\mathcal{O}: \mathbf{Phys} \longrightarrow C^* \mathbf{Alg}^{op}$$
 (but gauge theory!)

3. States $\varphi \in \mathbf{Phys}$ determine expectation values

$$\langle - \rangle_\varphi : \mathcal{O}(\varphi) \longrightarrow \mathbb{C}$$

Observables without expectation values!!

4. Processes $f:\varphi\longrightarrow\psi$ preserve expectation values:

$$\mathcal{O}(\psi) \xrightarrow{\qquad \qquad \mathcal{O}(f) \qquad \qquad } \mathcal{O}(\varphi)$$
 (this is not unitarity!)

5. Weak independence: $\langle - \rangle_{\varphi \otimes \psi} = \langle - \rangle_{\varphi} \otimes \langle - \rangle_{\psi}$

Theorem

There is a terminal category satisfying these axioms.

Proof.

It's the category of pairs $(A,\varphi),\varphi:A\longrightarrow \mathbb{C}.$

The GNS Construction

Definition

A pointed A-module (H,v) represents $\varphi:A\longrightarrow\mathbb{C}$ if

$$\varphi(a) = \langle av, v \rangle_H$$

The GNS Construction

Definition

A pointed A-module (H,v) represents $\varphi:A\longrightarrow \mathbb{C}$ if

$$\varphi(a) = \langle av, v \rangle_H$$

The Gelfand-Naimark-Segal Theorem

- Positive φ have an initial representation
- A representation is initial iff it is cyclic (cyclic = generated by the chosen vector)

Notation

- $\qquad \qquad \textbf{Initial representation of } \varphi = GNS(\varphi)$
- ightharpoonup Representing vector = Ω
- \blacktriangleright Write H for (H, v)

H represents $\varphi \Longrightarrow f^*H$ represents $f^*\varphi$

$$f^*H \longrightarrow H$$

$$B \longrightarrow A \longrightarrow \phi$$

$$GNS(\psi)$$

$$GNS(\varphi)$$

$$\mathcal{O}(\psi) \xrightarrow{\hspace*{1cm}} \mathcal{O}(f) \\ \longrightarrow \mathcal{O}(\varphi)$$

$$GNS(\psi)$$

$$\mathcal{O}(f)^*GNS(\varphi) \longrightarrow GNS(\varphi)$$

$$\mathcal{O}(\psi) \xrightarrow{\hspace*{1cm}} \mathcal{O}(f) \\ \longrightarrow \mathcal{O}(\varphi)$$

$$GNS(\psi) \\ \downarrow \exists ! \\ \mathcal{O}(f)^*GNS(\varphi) \longrightarrow GNS(\varphi) \\ \mathcal{O}(\psi) \longrightarrow \mathcal{O}(f) \\ \mathcal{O}(\varphi)$$

$$GNS(\psi) \longrightarrow GNS(f)$$

$$\exists ! \longrightarrow GNS(\varphi)$$

$$\mathcal{O}(f)^*GNS(\varphi) \longrightarrow \mathcal{O}(\varphi)$$

$$\mathcal{O}(\psi) \longrightarrow \mathcal{O}(\varphi)$$

$$\mathcal{O}(\psi) \xrightarrow{\mathcal{O}(f)} \mathcal{O}(\varphi)$$

Theorem

This gives a symmetric monoidal functor

$$GNS: \mathbf{Phys}^{op} \longrightarrow *\mathbf{Mod}$$

Proof.

Things exist by initiality. Diagrams commute by cyclicity.

Theorem

This gives a symmetric monoidal functor

$$GNS: \mathbf{Phys}^{op} \longrightarrow *\mathbf{Mod}$$

It's going the wrong way!

The Covariant GNS Functor

Physically Correct Direction

The Covariant GNS Functor

Physically Correct Direction

Definition

- $ightharpoonup * \mathbf{Mod}_{adj}$ is *-modules with adjoint homomorphisms
- Adjoint homomorphisms: coisometries *h* such that

$$ah(v) = h(f(a)v)$$

Part II

Physics From a Functor

The Schrödinger Picture

Example Factory

- $V: H \longrightarrow H'$ unitary
- $ightharpoonup A \subseteq End(H)$ chosen observables
- $ightharpoonup \varphi \in H$ determines state $\langle (-)\varphi, \varphi \rangle : A \longrightarrow \mathbb{C}$

Lifting Schrödinger

For any choice of A and $\varphi \in H$ there exists a unique lift $f: \varphi \longrightarrow \psi$ to \mathbf{Phys} , such that $\mathcal{O}(\varphi) = A$ and:

Why does a *G*-equivariant state give a unitary representation of *G*?

Why does a G-equivariant state give a unitary representation of G? Because of composition!

Why does a G-equivariant state give a unitary representation of G? Because of composition!

Bonus items:

- Groupoids of symmetries
- ► Equivariant GNS:

$$\textbf{Phys} \quad \xrightarrow{\quad GNS_c \quad } *\mathbf{Mod}_{adj}$$

Why does a G-equivariant state give a unitary representation of G? Because of composition!

Bonus items:

- ► Groupoids of symmetries
- Equivariant GNS:

$$\mathbf{Phys}^{\mathbf{G}} \xrightarrow{GNS_{c}^{\mathbf{G}}} *\mathbf{Mod}_{adj}^{\mathbf{G}}$$

Why does a G-equivariant state give a unitary representation of G? Because of composition!

Bonus items:

- ► Groupoids of symmetries
- ► Equivariant GNS:

$$\mathbf{Phys}^G \xrightarrow{\quad GNS^G_c} \ast \mathbf{Mod}^G_{adj} \xrightarrow{\quad U \quad} \mathbf{Rep}(G)$$

Why does a G-equivariant state give a unitary representation of G? Because of composition!

Bonus items:

- ► Groupoids of symmetries
- ► Equivariant GNS:

$$\mathbf{Phys}^G \xrightarrow{\quad GNS^G_c} \ast \mathbf{Mod}^G_{adj} \xrightarrow{\quad U \quad} \mathbf{Rep}(G)$$

Compatibility with composite systems:

$$\varphi \otimes \psi$$
 has symmetry $G \times G'$

Relation to Probability Theory

 (X,μ) – compact probability space.

$$\blacktriangleright$$
 $\mathbb{E}_{\mu}(a) = \int_X a \, d\mu$ – a state on $C(X)$

 $ightharpoonup L^2(\mu)$, a C(X)-module

Theorem

The following diagram of symmetric monoidal functors commutes

Relation to Probability Theory

 (X,μ) – compact probability space.

- $\blacktriangleright \ \mathbb{E}_{\mu}(a) = \int_X a \, d\mu$ a state on C(X)
- $ightharpoonup L^2(\mu)$, a C(X)-module

Theorem

The following diagram of symmetric monoidal functors commutes

Proof.

- 1. $L^2(\mu)$ is cyclic
- 2. $1 \in L^2(\mu)$ represents the expectation value \mathbb{E}_{μ}

Application: Eigenvalue-Eigenvector Link

Any normal $a \in \mathcal{O}(\varphi)$ determines a probability space

$$P_{\varphi}(a) = (Spec(\langle a \rangle), \varphi|_{\langle a \rangle})$$

Eigenvalue-Eigenvector Link

The following are equivalent:

- 1. $a\Omega = \lambda\Omega$
- 2. $a=\lambda$ a.e. in $P_{\varphi}(a)$

Application: Eigenvalue-Eigenvector Link

Any normal $a \in \mathcal{O}(\varphi)$ determines a probability space

$$P_{\varphi}(a) = (Spec(\langle a \rangle), \varphi|_{\langle a \rangle})$$

Eigenvalue-Eigenvector Link

The following are equivalent:

- 1. $a\Omega = \lambda\Omega$
- 2. $a=\lambda$ a.e. in $P_{\omega}(a)$

Proof.

The inclusion $\langle a \rangle \subseteq \mathcal{O}(\varphi)$ gives a map $R: \varphi \longrightarrow P_{\varphi}(a) \in \mathbf{Phys}$ Previous theorem computes GNS(R):

$$L^2(\varphi|_{\langle a\rangle}) \longrightarrow GNS(\varphi)$$

Thus: $a\Omega = \lambda\Omega \Longleftrightarrow a \cdot 1 = \lambda \cdot 1$ in $L^2 \Longleftrightarrow a = \lambda$ a.e.

Classical Markov Processes

Markov Processes

- $ightharpoonup M(X) = ext{probability measures on } X$
- ightharpoonup Category of Markov processes = Kleisli(M)

Classical Markov Processes

Markov Processes

- $ightharpoonup M(X) = ext{probability measures on } X$
- ightharpoonup Category of Markov processes = Kleisli(M)

Generalized Gelfand Duality (Furber & Jacobs 2015)

Compact spaces + Markov processes

=

 C^* -algebras + completely positive unital maps

Quantum Markov Processes

Axioms for Phys

- 1. Phys has noninteracting composites (⊗-structure)
- 2. Physical processes act on observables, preserve composites:

$$\mathcal{O}: \mathbf{Phys} \quad \longrightarrow C^*\mathbf{Alg}^{op}$$

3. States $\varphi \in \mathbf{Phys}$ determine expectation values

$$\langle - \rangle_{\varphi} : \mathcal{O}(\varphi) \longrightarrow \mathbb{C}$$

4. Processes $f: \varphi \longrightarrow \psi$ preserve expectation values:

$$\mathcal{O}(\psi) \xrightarrow{\qquad \qquad \mathcal{O}(f) \qquad \qquad } \mathcal{O}(\varphi)$$

5. Weak independence: $\langle - \rangle_{\varphi \otimes \psi} = \langle - \rangle_{\varphi} \otimes \langle - \rangle_{\psi}$

Quantum Markov Processes

Axioms for $Phys_M$

- 1. \mathbf{Phys}_M has noninteracting composites (\otimes -structure)
- 2. Physical processes act on observables, preserve composites:

$$\mathcal{O}: \mathbf{Phys}_M \longrightarrow \mathbf{CompPos}$$

3. States $\varphi \in \mathbf{Phys}_M$ determine expectation values

$$\langle - \rangle_{\varphi} : \mathcal{O}(\varphi) \longrightarrow \mathbb{C}$$

4. Processes $f: \varphi \longrightarrow \psi$ preserve expectation values:

$$\mathcal{O}(\psi) \xrightarrow{\psi} \mathcal{O}(\varphi)$$

5. Weak independence: $\langle - \rangle_{\varphi \otimes \psi} = \langle - \rangle_{\varphi} \otimes \langle - \rangle_{\psi}$

Quantum Markov Processes

Example: State Vector Collapse

- $P \in A$ self-adjoint projection (idempotent)
- $lackbox{} \Phi: A \longrightarrow A \text{ given by } a \longmapsto PaP$

Theorem

- $ightharpoonup \varphi$ represented by $\Omega \Longrightarrow \Phi^* \varphi$ represented by $P\Omega$
- $\triangleright GNS_{M,c}(\Phi)$ acts as

$$GNS(\varphi) \xrightarrow{P} GNS(\varphi) \xrightarrow{\text{orth. proj.}} GNS(\Phi^*\varphi)$$

Example: Particle Scattering

Proposition

There is a process $S_{\alpha\beta}:\alpha\longrightarrow\beta\in\mathbf{Phys}_M$ such that

$$H_{\alpha} \xrightarrow{\text{inclusion}} H \xrightarrow{S} H \xrightarrow{\text{projection}} H_{\beta}$$

$$GNS_{M,c}(S_{\alpha\beta})$$

If you believe in QED: $\gamma + \gamma \longrightarrow e^- + e^+$

Part III Work in Progress

Differential Geometry of the GNS functor

Hocus pocus work in a topos

Inside a model of SDG:

ightharpoonup Differentiate symmetric state $\varphi: G \longrightarrow \mathbf{Phys}$ and get

$$Lie(G) \longrightarrow Der(\mathcal{O}(\varphi))$$

Differential Geometry of the GNS functor

Hocus pocus work in a topos

Inside a model of SDG:

lackbox Differentiate symmetric state $\varphi:G\longrightarrow \mathbf{Phys}$ and get

$$Lie(G) \longrightarrow Der(\mathcal{O}(\varphi))$$

$$X \longmapsto [Q, -]$$

GNS on infinitesimal symmetries

$$GNS(X) = Q \iff Q\Omega = 0$$

Differential Geometry of the GNS functor

Hocus pocus work in a topos

Inside a model of SDG:

lacktriangle Differentiate symmetric state $\varphi:G\longrightarrow \mathbf{Phys}$ and get

$$Lie(G) \longrightarrow Der(\mathcal{O}(\varphi))$$

$$X \longmapsto [Q, -]$$

GNS on infinitesimal symmetries

$$GNS(X) = Q \iff Q\Omega = 0$$

▶ Differentiate family of algebras $A_{\hbar}: \mathbb{R} \longrightarrow *\mathbf{Alg}$ Result: a class in $HH^2(A_0)$ Classical limit of observables = Poisson structure! Why?

Idea

"Path integral argument"

=

isomorphism of vacua in Phys

Families of Vacua

Needed to use S-duality:

"The \hbar -family of spaces vacua of super Yang-Mills theory is trivial"

Conclusion

Need smooth subcategory $\mathbf{Vac} \subset \mathbf{Phys}$ of vacua

Thank You!