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Part I
A non-topological TQFT



Idea
The category of physical processes, Phys is

▶ All states of all physical systems (objects)
▶ All physical processes between them (arrows)

(time evolution, asymptotic scattering, etc.)



Axioms for Phys
1. Phys has noninteracting composites (⊗-structure)

2. Physical processes act on observables, preserve composites:

𝒪 ∶ Phys ⟶ 𝐶∗Alg𝑜𝑝

(but gauge theory!)

3. States 𝜑 ∈ Phys determine expectation values

⟨−⟩𝜑 ∶ 𝒪(𝜑) ⟶ ℂ

Observables without expectation values‼

4. Processes 𝑓 ∶ 𝜑 ⟶ 𝜓 preserve expectation values:

𝒪(𝜑)𝒪(𝜓)

ℂ

(this is not unitarity!)

𝒪(𝑓)

𝜑𝜓

5. Weak independence: ⟨−⟩𝜑⊗𝜓 = ⟨−⟩𝜑 ⊗ ⟨−⟩𝜓
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Theorem
There is a terminal category satisfying these axioms.

▶ Call it Phys.

Proof.
It’s the category of pairs (𝐴, 𝜑), 𝜑 ∶ 𝐴 ⟶ ℂ.



The GNS Construction

Definition
A pointed 𝐴-module (𝐻, 𝑣) represents 𝜑 ∶ 𝐴 ⟶ ℂ if

𝜑(𝑎) = ⟨𝑎𝑣, 𝑣⟩𝐻

The Gelfand-Naimark-Segal Theorem
▶ Positive 𝜑 have an initial representation
▶ A representation is initial iff it is cyclic

(cyclic = generated by the chosen vector)

Notation
▶ Initial representation of 𝜑 = 𝐺𝑁𝑆(𝜑)
▶ Representing vector = Ω
▶ Write 𝐻 for (𝐻, 𝑣)
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The GNS Functor
𝐻 represents 𝜑 ⟹ 𝑓∗𝐻 represents 𝑓∗𝜑

𝐵 𝐴 ℂ
𝑓 𝜑

𝐻𝑓∗𝐻

𝐺𝑁𝑆(𝜑)

𝐺𝑁𝑆(𝜓)

𝒪(𝜓) 𝒪(𝜑)
𝒪(𝑓)

𝒪(𝑓)∗𝐺𝑁𝑆(𝜑)
∃!

𝐺𝑁𝑆(𝑓)

𝜓 𝜑𝑓

Theorem
This gives a symmetric monoidal functor

𝐺𝑁𝑆 ∶ Phys𝑜𝑝 ⟶ ∗Mod
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Proof.
Things exist by initiality. Diagrams commute by cyclicity.



The GNS Functor
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It’s going the wrong way!



The Covariant GNS Functor
Physically Correct Direction

Phys ∗Mod𝑜𝑝 ∗Mod𝑎𝑑𝑗
𝐺𝑁𝑆𝑜𝑝 adjoint

𝐺𝑁𝑆𝑐

Definition
▶ ∗Mod𝑎𝑑𝑗 is ∗-modules with adjoint homomorphisms
▶ Adjoint homomorphisms: coisometries ℎ such that

𝑎ℎ(𝑣) = ℎ(𝑓(𝑎)𝑣)
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Part II
Physics From a Functor



The Schrödinger Picture
Example Factory

▶ 𝑈 ∶ 𝐻 ⟶ 𝐻′ unitary
▶ 𝐴 ⊆ 𝐸𝑛𝑑(𝐻) chosen observables
▶ 𝜑 ∈ 𝐻 determines state ⟨(−)𝜑, 𝜑⟩ ∶ 𝐴 ⟶ ℂ

Lifting Schrödinger
For any choice of 𝐴 and 𝜑 ∈ 𝐻 there exists a unique lift 𝑓 ∶ 𝜑 ⟶ 𝜓
to Phys, such that 𝒪(𝜑) = 𝐴 and:

𝐻 𝐻′

𝐺𝑁𝑆(𝜑) 𝐺𝑁𝑆(𝜓)

𝑈

𝐺𝑁𝑆𝑐(𝑓)



Symmetries and Unitary Representations
Why does a 𝐺-equivariant state give a unitary representation of 𝐺?

Because of composition!

𝐺 Phys ∗Mod𝑎𝑑𝑗
𝐺𝑁𝑆𝑐

Unitary representation of 𝐺!

Bonus items:
▶ Groupoids of symmetries
▶ Equivariant GNS:

Phys

𝐺

∗Mod

𝐺

𝑎𝑑𝑗
𝐺𝑁𝑆

𝐺

𝑐

Rep(𝐺)𝑈

▶ Compatibility with composite systems:

𝜑 ⊗ 𝜓 has symmetry 𝐺 × 𝐺′



Symmetries and Unitary Representations
Why does a 𝐺-equivariant state give a unitary representation of 𝐺?
Because of composition!

𝐺 Phys ∗Mod𝑎𝑑𝑗
𝐺𝑁𝑆𝑐

Unitary representation of 𝐺!

Bonus items:
▶ Groupoids of symmetries
▶ Equivariant GNS:

Phys

𝐺

∗Mod

𝐺

𝑎𝑑𝑗
𝐺𝑁𝑆

𝐺

𝑐

Rep(𝐺)𝑈

▶ Compatibility with composite systems:

𝜑 ⊗ 𝜓 has symmetry 𝐺 × 𝐺′



Symmetries and Unitary Representations
Why does a 𝐺-equivariant state give a unitary representation of 𝐺?
Because of composition!

𝐺 Phys ∗Mod𝑎𝑑𝑗
𝐺𝑁𝑆𝑐

Unitary representation of 𝐺!

Bonus items:
▶ Groupoids of symmetries
▶ Equivariant GNS:

Phys

𝐺

∗Mod

𝐺

𝑎𝑑𝑗
𝐺𝑁𝑆

𝐺

𝑐

Rep(𝐺)𝑈

▶ Compatibility with composite systems:

𝜑 ⊗ 𝜓 has symmetry 𝐺 × 𝐺′



Symmetries and Unitary Representations
Why does a 𝐺-equivariant state give a unitary representation of 𝐺?
Because of composition!

𝐺 Phys ∗Mod𝑎𝑑𝑗
𝐺𝑁𝑆𝑐

Unitary representation of 𝐺!

Bonus items:
▶ Groupoids of symmetries
▶ Equivariant GNS:

Phys𝐺 ∗Mod𝐺
𝑎𝑑𝑗

𝐺𝑁𝑆𝐺
𝑐

Rep(𝐺)𝑈

▶ Compatibility with composite systems:

𝜑 ⊗ 𝜓 has symmetry 𝐺 × 𝐺′



Symmetries and Unitary Representations
Why does a 𝐺-equivariant state give a unitary representation of 𝐺?
Because of composition!

𝐺 Phys ∗Mod𝑎𝑑𝑗
𝐺𝑁𝑆𝑐

Unitary representation of 𝐺!

Bonus items:
▶ Groupoids of symmetries
▶ Equivariant GNS:

Phys𝐺 ∗Mod𝐺
𝑎𝑑𝑗

𝐺𝑁𝑆𝐺
𝑐 Rep(𝐺)𝑈

▶ Compatibility with composite systems:

𝜑 ⊗ 𝜓 has symmetry 𝐺 × 𝐺′



Symmetries and Unitary Representations
Why does a 𝐺-equivariant state give a unitary representation of 𝐺?
Because of composition!

𝐺 Phys ∗Mod𝑎𝑑𝑗
𝐺𝑁𝑆𝑐

Unitary representation of 𝐺!

Bonus items:
▶ Groupoids of symmetries
▶ Equivariant GNS:

Phys𝐺 ∗Mod𝐺
𝑎𝑑𝑗

𝐺𝑁𝑆𝐺
𝑐 Rep(𝐺)𝑈

▶ Compatibility with composite systems:

𝜑 ⊗ 𝜓 has symmetry 𝐺 × 𝐺′



Relation to Probability Theory

(𝑋, 𝜇) – compact probability space.
▶ 𝔼𝜇(𝑎) = ∫𝑋 𝑎 𝑑𝜇 – a state on 𝐶(𝑋)
▶ 𝐿2(𝜇), a 𝐶(𝑋)-module

Theorem
The following diagram of symmetric monoidal functors commutes

Prob𝑜𝑝

Phys𝑜𝑝 ∗Mod

𝐶𝑜𝑝 𝐿2

𝐺𝑁𝑆

Proof.
1. 𝐿2(𝜇) is cyclic
2. 1 ∈ 𝐿2(𝜇) represents the expectation value 𝔼𝜇
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Application: Eigenvalue-Eigenvector Link

Any normal 𝑎 ∈ 𝒪(𝜑) determines a probability space

𝑃𝜑(𝑎) = (𝑆𝑝𝑒𝑐(⟨𝑎⟩), 𝜑|⟨𝑎⟩)

Eigenvalue-Eigenvector Link
The following are equivalent:

1. 𝑎Ω = 𝜆Ω
2. 𝑎 = 𝜆 a.e. in 𝑃𝜑(𝑎)

Proof.
The inclusion ⟨𝑎⟩ ⊆ 𝒪(𝜑) gives a map 𝑅 ∶ 𝜑 ⟶ 𝑃𝜑(𝑎) ∈ Phys
Previous theorem computes 𝐺𝑁𝑆(𝑅):

𝐿2(𝜑|⟨𝑎⟩) ⟶ 𝐺𝑁𝑆(𝜑)

Thus: 𝑎Ω = 𝜆Ω ⟺ 𝑎 ⋅ 1 = 𝜆 ⋅ 1 in 𝐿2 ⟺ 𝑎 = 𝜆 a.e.
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Classical Markov Processes

Markov Processes
▶ 𝑀(𝑋) = probability measures on 𝑋
▶ Markov process 𝑋 ⟶ 𝑌 = map 𝑋 ⟶ 𝑀(𝑌 )
▶ Category of Markov processes = 𝐾𝑙𝑒𝑖𝑠𝑙𝑖(𝑀)

Generalized Gelfand Duality (Furber & Jacobs 2015)
Compact spaces + Markov processes

=
𝐶∗-algebras + completely positive unital maps
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Quantum Markov Processes

Axioms for Phys

𝑀

1. Phys

𝑀

has noninteracting composites (⊗-structure)

2. Physical processes act on observables, preserve composites:

𝒪 ∶ Phys

𝑀
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3. States 𝜑 ∈ Phys
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determine expectation values

⟨−⟩𝜑 ∶ 𝒪(𝜑) ⟶ ℂ

4. Processes 𝑓 ∶ 𝜑 ⟶ 𝜓 preserve expectation values:

𝒪(𝜑)𝒪(𝜓)

ℂ

𝒪(𝑓)

𝜑𝜓

5. Weak independence: ⟨−⟩𝜑⊗𝜓 = ⟨−⟩𝜑 ⊗ ⟨−⟩𝜓
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Quantum Markov Processes

Prob𝑜𝑝

Phys𝑜𝑝 ∗Mod

Prob𝑜𝑝
𝑀

Phys𝑜𝑝
𝑀 Hilb

𝐶𝑜𝑝 𝐿2

𝐺𝑁𝑆

𝐶𝑜𝑝 𝐿2

𝑈

𝐺𝑁𝑆𝑀



Example: State Vector Collapse

▶ 𝑃 ∈ 𝐴 – self-adjoint projection (idempotent)
▶ Φ ∶ 𝐴 ⟶ 𝐴 given by 𝑎 ⟼ 𝑃 𝑎𝑃

Theorem
▶ 𝜑 represented by Ω ⟹ Φ∗𝜑 represented by 𝑃Ω
▶ 𝐺𝑁𝑆𝑀,𝑐(Φ) acts as

𝐺𝑁𝑆(Φ∗𝜑)𝐺𝑁𝑆(𝜑) 𝐺𝑁𝑆(𝜑)
orth. proj.𝑃



Example: Particle Scattering

𝐻 𝐻

𝐻𝛼 𝐻𝛽

𝑆

Proposition
There is a process 𝑆𝛼𝛽 ∶ 𝛼 ⟶ 𝛽 ∈ Phys𝑀 such that

𝐻𝛼 𝐻 𝐻 𝐻𝛽
𝑆 projection

𝐺𝑁𝑆𝑀,𝑐(𝑆𝛼𝛽)

inclusion

If you believe in QED: 𝛾 + 𝛾 ⟶ 𝑒− + 𝑒+



Part III
Work in Progress



Differential Geometry of the 𝐺𝑁𝑆 functor
Hocus pocus work in a topos

Inside a model of SDG:
▶ Differentiate symmetric state 𝜑 ∶ 𝐺 ⟶ Phys and get

𝐿𝑖𝑒(𝐺) ⟶ 𝐷𝑒𝑟(𝒪(𝜑))

𝑋 ⟼ [𝑄, −]

𝐺𝑁𝑆 on infinitesimal symmetries

𝐺𝑁𝑆(𝑋) = 𝑄 ⟺ 𝑄Ω = 0
▶ Differentiate family of algebras 𝐴ℏ ∶ ℝ ⟶ ∗Alg

Result: a class in 𝐻𝐻2(𝐴0)
Classical limit of observables = Poisson structure!
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Why?

Idea
“Path integral argument”

=
isomorphism of vacua in Phys

Families of Vacua
Needed to use S-duality:
“The ℏ-family of spaces vacua of super Yang-Mills theory is trivial”

Conclusion
Need smooth subcategory Vac ⊂ Phys of vacua



Thank You!


