
From Symmetric Pattern Matching

to Quantum Control

Benôıt Valiron
LRI – CentraleSupélec, France

Joint work with Amr Sabry and Juliana Vizzotto

CVQT — March 21, 2018

1

Notion of Control

Control in quantum computation has two meanings

• The control of a unitary, as in the control-not gate

• The control-flow of a program: made of primitives such as

– Sequences of operations

– Tests and branchings

– Loops/fixpoints

The former is an instance of the latter:

a quantum control-flow primitive.

(albeit limited)

General quantum control-flow

is the purpose of this talk

2

Plan

1. Classical Control

2. The bumpy road towards quantum control

3. Detour via reversible computing

4. The elusive quantum loop

3

Chapter 1

Classical Control

4

Quantum with Classical Control

Model of computation

The program lives here

5

Quantum with Classical Control

Model of computation

This only holds quantum data

6

Quantum with Classical Control

Model of computation

Series of instructions/circuit and feedback

7

A First-Order Quantum Language

Based on the QRAM model [Knill,1996]

• Memory cells are addressable separately

• Instructions/circuit sent down the wire

A flow-chart language [Selinger,2004]

• Global environment of bits and qubits

• Simple actions:
– Local operations
– Tests of bit-value, loops using control points

Denotational semantics

• Positive matrices and norm-non-increasing superoperators

8

Higher-Order Approach

Completely positive maps [Selinger,V]

• Superoperators without the norm condition

• Compact closed structure

Quantum lambda-calculus [Selinger,Pagani,V]

• Adds to the previous approach
– Higher-order
– Opaque type qbit

– Duplicable/non-duplicable data
– Recursive types (e.g. lists)
– Fixpoints

• Various categorical models extending CPM

• But only low-level QRAM op. for quantum

9

Circuit Description Languages

In real quantum algorithms

• Circuits described with

– Explicit series of gates

– Circuit combinators: Inversion, control, repetition, etc

• Need circuits as first-class objects

• QRAM model not enough

10

Circuit Description Languages

Extending the quantum λ-calculus with [Quipper,2013],[QWIRE,2017]

• A new opaque type for circuits: Circ(A,B)

• Box and unbox constructions

(A(B)
box ..

Circ(A,B)
unbox
nn

– Box: instantiate a new circuit

– Unbox: evaluate a circuit

• A list of fixed, opaque circuits combinators such as

ctl : Circ(A,B) (Circ(qbit⊗A, qbit⊗B)

rev : Circ(A,B) (Circ(B,A)

• Nice arrow-like, categorical semantics [Selinger&Rios,2017]

11

Circuit Description Languages

The circuit construction is classical

• The circuit is built on the classical machine

• It is instantiated on one particular set of qubits

• and applied regardless of the state of the memory.

• The type Circ(A,B) and the circuit combinators are

– opaque

– non-programmable

Trying to build circuit combinators

• requires the non-available quantum control

12

Chapter 2

The Bumpy Road

Towards Quantum Control

13

Quantum Control

Exhibiting the “control flow” hidden in circuits

• “Quantum” tests

• “Quantum” loops/fixpoints

Long-term objective

• Understand the structure of quantum operations

• Syntax for building circuit combinators

Measure of success: How can we say we got quantum control

• Compilation to circuits?

• Modeled as unitary in some Hilbert space?

14

QML

The first successful attempt at implementing a quantum test:

qif◦ x then U y else V y

Perform U or V on y conditionally on x without measuring.

• A näıve compilation approach would do

x • ◦
y U V

• if U and V are “orthogonal”, one can get rid of x

• The orthogonality property is hard to state

• But QML compiles down to circuits: fully quantum

[Altenkirch&Grattage,2005]

15

van Tonder’s Quantum λ-Calculus

Programs in superposition: [vanTonder,2004]

van Tonder defines a syntactic λ-calculus with

• λ-terms in quantum registers

• β-reduction as unitary operation

• Constants such as 0, 1 and H:

H 0 −→ 1√
2
(0 + 1).

The unitarity constraints are too strong

• The terms in superpositions are morally the same

• Turning the language into a purely classical one

16

Linear algebraic lambda-calculi

A side track to overcome the issue [Arrighi&Dowek,2008],[DiazCaro&al]

• Allow linear combinations of terms (aka “superposition”)
– λx.M is an operator where M can be a linear combination
– N(αV + βW)→ α(NV) + β(NW)

• Relax the constraints on orthogonality and norm

Advantages

• Full power of λ-calculus

• The β-reduction works fine

• Isolate and study separately problems and solutions

Inconvenient (for this talk)

• Not completely quantum anymore:

No unitarity nor compilation to circuits

See Alejandro’s talk!

17

Ying’s quantum loops

Mingsheng Ying interprets quantum walk using [Ying,2016]

• a quantum, “regular” while-loop

• based on “quantum coins”:

while (coin toss yields true) do something end

The quantum coin is implemented as an element of a Fock space

∞⊕
n=0

(
qubit�n

)
An element of qubit�n is a qubit that can be used n times

A while-loop on qubit�n

• will loop at most n times

• can behave differently on each superposed qubit state

• the loop “stops quantumly”

This construction still calls for a concrete language

18

Limits of current approaches

Quantum control flow

• Quantum tests are fine: can be done with regular control

• Quantum loops are the main road block

The following seem slightly incompatible

• Reasonnably expressive language : linear alg. λ-calc

• Satisfactory loops : Ying’s approach

• Preservation of unitarity : QML

19

Chapter 3

Detour via Reversible Computation
[FoSSaCS,2018]

20

Test with Pattern Matching

f : Nat + Nat -> ...

f (Left 0) -> ...

f (Left n+1) -> ...

f (Right n) -> ...

g : (Bool x Nat) -> ...

g (True, 0) -> ...

g (False, n) -> ...

g (True, n+1) -> ...

21

Test with Pattern Matching

f : Nat + Nat -> ...

f (Left 0) -> ...

f (Left n+1) -> ...

f (Right n) -> ...

g : (Bool x Nat) -> ...

g (True, 0) -> ...

g (False, n) -> ...

g (True, n+1) -> ...

h : Nat + Nat <-> (Bool x Nat)

h (Left 0) <-> (True, 0)

h (Left n+1) <-> (False, n)

h (Right n) <-> (True, n+1)

Conditions for reversible tests [James&Sabry,2014]

• Exhaustivity

• Non-overlapping

22

Reversible Pattern Matching

Consider the isos U : a↔ c and V : b↔ d.

Then in l(x) ↔ in l(U x)

inr(y) ↔ inr(V y)

 : a⊕ b↔ c⊕ d

Apply U on values of tpe a and V on values of type b.

23

Reversible Pattern Matching

Consider the isos U : a↔ c and V : b↔ d.

Written as a circuit: a⊕ b↔ c⊕ d in l(x) ↔ do x U x′ return in l(x
′)

inr(y) ↔ do y V y′ return inr(y
′)

Generalized notion of controlled operation

24

Reversible Pattern Matching

Consider the isos U : a↔ c and V : b↔ d.

Inverting is trivial: in l(x
′) ↔ do x′ U−1 x return in l(x)

inr(y
′) ↔ do y′ V −1 y return inr(y)

as long as U and V are invertible.

25

Reversible Pattern Matching

Reversible pattern matching: a syntax for circuits. . .

• with type constructors ⊕ and ⊗

• generalized notion of control

Following Quipper/QWIRE we add

• recursive types, e.g. [a] ≡ 1⊕ (a⊗ [a])

• higher-order on isos :

– iso-variables

– boxes in circuits can be iso-variables

– lambda-abstractions λf.{· · · } and application

– fixpoints : µf.{· · · }

26

Reversible Pattern Matching

Example of “complex” program: the map operation

Let f : a↔ b

Define map f : [a]↔ [b] as

µg[a]↔[b].

[] ↔ []

h : t ↔ do
h f h′

t g t′
return h′ : t′

27

Reversible Pattern Matching

Operational semantics:

• Substituting and circuit unfolding

• The “generated circuit” depends on the shape of the input value

– map f on a list of size 0 : the identity

– map f on a list of size 1 : the map f

– map f on a list of size n : f applied on each wire

• Inversion is still obtained syntactically

28

Reversible Pattern Matching

In summary, non-overlapping and exhaustivity give

• syntactic inverses

• generalized controls and tests

• fixpoints

Is everything done?

29

Reversible Pattern Matching

Wait! Why are fixpoints yielding exhaustive patterns?

They are not in general but

• If the fixpoint is non-terminating

– partial injective maps

– original semantics of Theseus [James&Sabry,2014]

– link with inverse categories [Kaasgaard&al 2017]

• As long as the fixpoint is terminating on all inputs:

The iso describes a bijective map on the sets of values

30

Isos as Unitary Maps

How to go from classical reversible to quantum?

• linear combination of data ≡ some sort of side effect

• In the spirit of the monad steaming from the adjunction

FinSet
--
FinVecmm

• Following what is done in the linear algebraic lambda-calculi

M (α · u+ β · v) ≡ α · (M u) + β · (M v)

• Caveat: vector spaces + unitary maps is not a coKleisli category

– (If you found a way, tell me, I’m eager to know!)

31

Isos as Unitary Maps

Consider the finite types a, b and their sets of values |a| and |b|:

• An iso U : a↔ b is a bijection between |a| and |b|

Consider the vector space C|a|.

• A bijection |a| → |b| is a 0/1, unitary matrix C|a|×|b|

• The iso U : a↔ b then yields a unitary map C|a| → C|b|

32

Isos as Unitary Maps

Consider again isos U : a↔ c and V : b↔ d, and the map in l(x) ↔ in l(U x)

inr(y) ↔ inr(V y)

 : a⊕ b↔ c⊕ d

Control over the branch taken for the ⊕, yields the matrix: U 0

0 V

 : a⊕ b −→ c⊕ d.

Allowing sum and scalar products over terms, one can generalize.

33

Isos as Unitary Maps

Consider isos

U11 : a↔ c U21 : b↔ c

U12 : a↔ d U22 : b↔ d

the map a⊕ b↔ c⊕ d in l(x) ↔ α11 · in l(U11 x) + α12 · inr(U12 x)

inr(y) ↔ α21 · in l(U21 y) + α22 · inr(U22 y)

yields a matrix: α11 · U11 α21 · U21

α12 · U12 α22 · U22

 : a⊕ b −→ c⊕ d.

34

Isos as Unitary Maps

With finite types and the absence of fixpoints

• The previous analysis carries over

• Asking for the unitary of α11 α21

α12 α22

entails that isos describe unitaries

• |a| forms an orthonormal basis for C|a|

• Pattern matching still describes a generalized control

But everything is finite

35

Chapter 4

The Elusive Quantum Loop
[FoSSaCS,2018]

36

Recursive Types and Unitary Maps

What about recursive types?

Consider [a] ≡ 1⊕ (a⊗ [a]). Unrolling the definition:

[a] ≡ 1⊕ a⊕ (a⊗ a)⊕ (a⊗ a⊗ a)⊕ · · ·

• Let U : [a]↔ [b] defined with

– Fixpoints

– linear combinations

– terminating on all lists v of type a

• For every list v : a

the term Uv reduces to a linear combination of lists of type b.

• v⊥w but do we have Uv⊥Uw ?

• C|[a]| is infinite-dimensional. . .

37

Isos as Unitary Maps in `2(|a|)

A candidate model: The Hilbert space `2(|[a]|)

• Space of absolute converging sequences indexed with |[a]|.

• Unitary maps U are

– Surjective

– Preserving the inner product

– Bounded: ||Ux|| ≤ ρ||x|| for some ρ > 0.

With enough conditions on fixpoints: iterators

• General isos [a]↔ [b] yield unitaries `2(|[a])→ `2(|[b])

38

Isos as Unitary Maps in `2(|a|)

For example

Consider map Had of type [Bool]↔ [Bool]

This is the iso

µg[a]↔[b].

[] ↔ []

h : t ↔ do
h Had h′

t g t′
return h′ : t′

with

Had =

 true ↔ 1√
2
· true+ 1√

2
· false

false ↔ 1√
2
· true− 1√

2
· false

39

Isos as Unitary Maps in `2(|a|)

For example

Apply map Had of type [Bool]↔ [Bool] on

1√
2
[true] +

1√
2
[true, true, true, true, true]

and get

1√
2
(map Had [true]) +

1√
2
(map Had [true, true, true, true, true])

As for Ying’s fixpoint, it will “loop”

• 1 time on the first list

• 5 times on the second list

A “natural” notion of quantum loop with “quantum termination”?

40

Concluding

In this paper

• We reconciliate QML, the linear algebraic lambda-calculus and

Ying’s approach.

– Lists of qubits extends quantum coins

– Quantum while-loops are simply iterators

• We provide a generalized circuit-construction language with

quantum control

41

Concluding

Quantum loops/fixpoints form a meaningful concept

• Indeed, they can be modeled with unitaries

But

Quantum loops/fixpoints makes no sense

• Finite loops are not “real loops”: they can be unrolled

• Fixpoints are only interesting on unbounded datatypes

• But circuits on unbounded datatypes require infinite unrolling. . .

quantum non-termination is meaningless

Paradoxical?

42

