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Once upon a time ...

The Birkhoff - von Neumann legacy

Can we derive the basic model of quantum theory
the complex Hilbert space,

from some underlying logico-algebraic structure?

Testable properties of a physical system correspond
to closed subspaces of a Hilbert space.

Properties can be compared; properties can be negated.

Accordingly, the closed subspaces of a Hilbert space
form an orthoposet – in fact an orthomodular lattice.

An outdated, irrelevant approach,
or still a useful viewpoint on quantum theory??
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In the meantime ...

... numerous further (more sophisticated?) approaches were
proposed.

G. Niestegg, Composite systems and the role of complex
numbers in quantum mechanics.

F. M. Lev, Why is quantum physics based on complex
numbers?

S. Davis, Quantum theory and the category of complex
numbers.

A. Ivanov, D. Caragheorgheopol, Spectral automorphisms
in quantum logics.

J. Vicary, Completeness of †-categories and the complex
numbers.

V. Moretti, M. Oppio, Quantum theory in real Hilbert
space: how the complex Hilbert space structure emerges
from Poincaré symmetry.



An old approach with a still unexhausted potential

Our relaxation of the issue

Does the complex Hilbert space arise from
any simpler, easier comprehensible structure?

Peculiarities of the logico-algebraic approach:

It deals with “propositions” but not
with actual physical contents.

It deals with the model of a single system,
not caring about interrelations.

Charmingness of the approach:

With some effort, we may reconstruct precisely
the model in question.



An old approach with a still unexhausted potential

Our relaxation of the issue

Does the complex Hilbert space arise from
any simpler, easier comprehensible structure?

Peculiarities of the logico-algebraic approach:

It deals with “propositions” but not
with actual physical contents.

It deals with the model of a single system,
not caring about interrelations.

Charmingness of the approach:

With some effort, we may reconstruct precisely
the model in question.



An old approach with a still unexhausted potential

Our relaxation of the issue

Does the complex Hilbert space arise from
any simpler, easier comprehensible structure?

Peculiarities of the logico-algebraic approach:

It deals with “propositions” but not
with actual physical contents.

It deals with the model of a single system,
not caring about interrelations.

Charmingness of the approach:

With some effort, we may reconstruct precisely
the model in question.



Linear spaces

Definition

Let E be an abelian group, let K be a division ring, and
assume that an action of K on E makes E into a left K-module.

Then E is called a linear space.

Related issue

Why is this notion so fundamental?
Can we reduce this structure to something more tangible?

We can identify linear spaces with certain lattices.
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Lattices

Definition

A lattice is a partially ordered set such that the greatest lower
bound and least upper bound of any pair of elements exist.

Example

The set Π(X) of equivalence relations on a set X,
partially ordered by inclusion, is a lattice.

For R,S ∈ Π(X), we have

R ∧ S = R ∩ S,
R ∨ S = R;S ∪ R;S;R ∪ R;S;R;S ∪ . . . (?).

Theorem

Every lattice L is a lattice of equivalence relations.
L is linear iff (?) is “R ∨ S = R;S”.
L is modular iff (?) is “R ∨ S = R;S;R”.
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Linear spaces and lattices

Theorem

Let E be a linear space over a division ring K.
Then, under inclusion, the set L(E) of subspaces of E
is a geomodular lattice:
a complemented modular lattice which is moreover
compactly atomistic and irreducible.

Theorem (Birkhoff, Frink, Jónsson)

Let L be a geomodular lattice of dimension > 4.
Then there is a linear space E over a division ring K
such that L is isomorphic to L(E).
K is (up to isomorphism) uniquely determined.
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Coordinatising geomodular lattices



Pairing a linear space with its dual

Definition

Let E be a linear space over a division ring K.
Assume that K possesses an antiautomorphism ?.
Then a mapping (−,−) : E × E → K is called
an anisotropic quadratic form if:

x 7→ (−, x) is an antilinear mapping from E to its dual E?;

(x, x) 6= 0 if x 6= 0;

(y, x) = 0 iff (x, y) = 0.
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Hermitean spaces

Theorem

By “rescaling”, an anisotropic quadratic form becomes
hermitean:

? is involutorial;

(x, y) = (y, x)?,

A hermitean space is a linear space
with an anisotropic hermitean form.

For a subspace A, we put

A⊥ = {x ∈ E : (x, a) = 0 for all a ∈ A}.

The set of closed subspaces of E is

C(E) = {A ∈ L(E) : A⊥⊥ = A}.
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Ortholattices

Definition

An ortholattice is a lattice with 0 and 1, additionally
endowed with an orthocomplementation ⊥.

A lattice L is called AC if L is atomistic and
fulfils the covering property.

Theorem

Let E be a hermitean space.
Then C(E) is an irreducible, complete, AC ortholattice.
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Hermitean spaces and ortholattices

Theorem (Birkhoff - von Neumann)

Let E be a linear space of dimension 4 6 n < ω over
a division ring K. Assume that ⊥ : L(E)→ L(E) is an
orthocomplementation.
Then there exists an involutorial antiautomorphism ? of K
and a hermitean form on E inducing ⊥.

Theorem (cf. Maeda-Maeda)

An irreducible, complete, AC ortholattice of dimension > 4
is isomorphic to C(E) for some hermitean space E.
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Orthomodular spaces

Definition

An orthomodular space is a hermitean space
such that all closed subspaces are splitting:

E = A+A⊥

for any A ∈ C(E).



Orthomodular lattices
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An ortholattice is an orthomodular lattice (OML) if

a 6 b ⇒ b = a ∨ (b ∧ a⊥).
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Let E be an orthomodular space.
The set C(E) of closed subspaces is
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The classical Hilbert spaces

Theorem (Solèr)

Let E be an orthomodular space over the division ring K.
Assume that E contains an infinite orthonormal sequence.
Then K is one of R, C, or H.



The complex Hilbert spaces and lattices

We say that a lattice fulfils Pappus’s Theorem if:

for any atoms a0, a1, a2, b0, b1, b2 belonging to a plane,

(a1∨ b0)∧ (a0∨ b1) 6 ((a2∨ b0)∧ (b2∨a0))∨ ((a2∨ b1)∧ (a1∨ b2)).

We say that a lattice fulfils the Square Root Axiom if:

for any four distinct atoms a, b, c, d such that a∨ b = c∨ d, there
are atoms y and z such that
y � b ∨ z, y � c ∨ d, z � c ∨ d, z � a ∨ y,
a, b, c, d, y, z belong to a plane, and

(a ∨ y) ∧ (z ∨ d) 6 ((b ∨ z) ∧ (c ∨ y)) ∨ ((a ∨ b) ∧ (z ∨ y)).

Theorem (Wilbur)

An irreducible, complete AC orthomodular lattice of infinite
dimension and fulfilling Pappus’s Theorem and the Square Root
Axiom is isomorphic to C(E) for a complex Hilbert space E.
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Review of the lattice-theoretic conditions

For an ℵ0-dimensional complex Hilbert space,
(C(E);∩,∨,⊥ , {0}, E) is an irreducible, complete AC OML
fulfilling Pappus’s Theorem and the Square Root Axiom.

C(E) physical interpretability?

lattice operations for compatible propositions only
orthomodularity yes
atomisticity for finite-state systems
covering property not obvious
completeness not obvious
irreducibility reasonable
Pappus’s Theorem not obvious
Square Root Axiom not obvious
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Correspondence with the algebraic environment

The lattice-theoretic reconstruction is struggling with the most
common notions/constructions regarding Hilbert spaces:

→: (general) linear maps;

⊕: direct sums;

⊗: tensor products.

But – we have a correspondence for

�: automorphisms.
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Modifications and extensions

Can we do better?

Conditions/operations that are physically hard to interpret
and/or technically horribly involved, should be discarded.

We should overcome the restriction to the
infinite-dimensional case.

Strategy:

We no longer insist on “purely algebraic” conditions; we
allow statements concerning automorphisms instead.

We replace ortholattices with orthogonality spaces.
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The power of postulates regarding automorphisms

Let E be an orthogonality space over the division ring K.

Let C1(K) = {r ∈ K : r r? = 1 and r is in the centre of K}.
If A,A⊥ ∈ C(E) have dimension > 2, the group of
automorphisms fixing A and A⊥ is C1(K).

K R C H
C1(K) O(1) SO(2) O(1)

Theorem (Mayet)

Let L be an irreducible, complete, AC orthomodular lattice.
Let a, b, c ∈ L be pairwise orthogonal and of height > 3,
and assume that there is an automorphism ϕ of L such that

ϕ(c) < c,

ϕ(x) = x if x 6 a or x 6 b,

ϕ restricted to [0, a ∨ b] is not involutive.

Then L is isomorphic to C(H) for a complex Hilbert space H.
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Orthogonality spaces

Definition (Foulis)

An orthogonality space is a set X endowed with
a symmetric, irreflexive binary relation ⊥.

Standard example

Let X be the set of unit vectors of a Hilbert space.
Put x⊥ y if (x, y) = 0. Then X is an orthogonality space.



Orthogonality spaces

Definition (Foulis)

An orthogonality space is a set X endowed with
a symmetric, irreflexive binary relation ⊥.

Standard example

Let X be the set of unit vectors of a Hilbert space.
Put x⊥ y if (x, y) = 0. Then X is an orthogonality space.



Associated ortholattice

Let X be an orthogonality space.

For A ⊆ X, we put again

A⊥ = {x ∈ X : x⊥ a for all a ∈ A}.

The set of all orthoclosed subsets is

C(X,⊥) = {A ⊆ X : A⊥⊥ = A}.

Theorem

C(X,⊥) is a complete, atomistic ortholattice.
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Automorphisms of orthogonality spaces

An automorphism of an orthogonality space (X,⊥) is a
bijection ϕ : X → X such that x⊥ y iff ϕ(x)⊥ ϕ(y).

Observation

Each automorphism of (X,⊥) induces an ortholattice
automorphisms of C(X,⊥).
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Postulates regarding automorphisms

For an orthogonality space, (X,⊥) we consider the properties:

(F1) For any A ⊆ X and e ∈ X be such that e /∈ A⊥⊥,
there is an automorphism ϕ : X → X such that

ϕ(e)⊥A,
ϕ(x) = x for any x ∈ X such that x⊥A, e or x⊥A,ϕ(e).

(F2) Let A ⊆ X contain more than one element. For any
automorphism ϕ fixing A⊥⊥, and for any n > 2, there is an
automorphism ψ such that

ψn = ϕ,
ψ fixes A as well.
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Consequences of (F1)

Lemma

Let (X,⊥) be an orthogonality space fulfilling (F1).
Then C(X,⊥) is atomistic and fulfils the covering property,
that is, is AC.

Theorem (Dacey)

C(X,⊥) is orthomodular if and only if:

For a maximal orthogonal subset D of A ∈ C(X,⊥),
we have D⊥⊥ = A.

Lemma

Let (X,⊥) be an orthogonality space fulfilling (F1).
Then C(X,⊥) is an orthomodular lattice.
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Rank of an orthogonality space

Definition

An orthogonality space (X,⊥) is of rank λ if λ is the maximal
cardinality of a set of pairwise orthogonal elements.

Lemma

Let (X,⊥) fulfil (F1).
The rank of (X,⊥) is the height of C(X,⊥).
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Irreducibility of an orthogonality space

Definition

(X,⊥) is reducible if there is an A ⊆ X such that
A⊥ and A⊥⊥ are both non-empty and
each x ∈ X is contained in exactly one of A⊥ or A⊥⊥.

Otherwise, we will call (X,⊥) irreducible.

Lemma

If (X,⊥) is irreducible, C(X,⊥) is directly irreducible.
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The finite-dimensional case

A modified automorphism axiom

For an orthogonality space, (X,⊥) we consider the property:

(F1’) Let e, f ∈ X be distinct. Then there is an automorphism
ϕ : X → X such that

ϕ(e)⊥ f ,
for any x⊥ f , we have x⊥ e iff x⊥ ϕ(e),
in which case ϕ(x) = x.

Theorem

Let the orthogonality space (X,⊥) be
of rank 4 6 n < ω and irreducible, and let X fulfil (F1’).

Then there is an n-dimensional orthogonality space E
such that C(X,⊥) is isomorphic to C(E).
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Conclusion so far

The infinite-dimensional complex Hilbert space can be
described as an orthogonality space – essentially by means
of postulates concerning automorphisms.

The finite-dimensional orthogonal spaces can be described
similarly.

The remaining challenge

In the finite-dimensional case,
how can we characterise the complex numbers??

Let us compile some facts and ideas ...
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Review of the crucial part

Let us recall:

Theorem (Solèr)

Let E be an orthomodular space over the division ring K.
Assume that E contains an infinite orthonormal sequence.
Then K is one of R, C, or H.

Main proof steps:

(1) The fixed field F = {α ∈ K : α? = α} is totally ordered, the
positive cone being {(x, x) : x ∈ E}.

(2) (F ;6) is an archimedean totally ordered group.

(3) The order of F is complete.

Arguments of (2) and (3) rely essentially on the infinite
dimensionality. No hope.
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Topology

Interestingly, however, topology has an effect similar to
infinite-dimensionality:

Theorem (Pontrjagin)

Let K be a topological division ring.
Assume that K is locally compact, connected, and Hausdorff.
Then K is one of R, C, or H.

Theorem (Salzmann, Löwen)

A compact, connected topological projective plane whose
automorphism group is transitive is classical.

Question

How can we use these facts to characterise the right
“topological orthogonality spaces”?
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Delimiting the division ring by other means

Let (X,⊥) be an orthogonality space
that is irreducible, of finite rank > 4, and fulfils (F1’).
Let E be the representing orthogonal space over K.

Theorem (Eckmann, Zabey)

Let V be a linear space over GF(pd) of finite dimension > 3.
Then L(V ) does not possess an orthocomplementation.

Corollary

The division ring K is infinite.
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Characteristic 0

Theorem (Jones)

Let V be an orthogonal space of dimension > 4 such that:

For any e, f ∈ V there is an automorphism ϕ such that
ϕ(e) = f and ϕ(x) = x whenever x⊥ e, f .

Then the division ring has characteristic 0.

Lemma

For any u, v ∈ X, there is an automorphism ϕ
such that ϕ(u) = v.

Corollary

K has characteristic 0.
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Commutativity

Consider the property:

(F3) Let u, v ∈ X such that u⊥ v and let w ∈ {u, v}⊥⊥ be
distinct from u, v. Let ϕ be an automorphism fixing u, v,
w, and any x⊥ u, v. Then ϕ fixes also any x ∈ {u, v}⊥⊥.

Lemma

If (X,⊥) fulfils (F3), K is commutative.
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K = F (i)

Recall:

(F2) For any automorphism ϕ fixing some at least 2-dimensional
A ∈ C(X,⊥), and for any n > 2, there is an automorphism
ψ such that ψn = ϕ and ψ fixes A as well.

Lemma

If (X,⊥) fulfils (F1’), (F2), and (F3), then K = F (i) for some
i ∈ K such that i2 = 1.
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Automorphism circles

Definition

Let T be the group of unit complex numbers.
An automorphism circle is a homomorphism κ from T to the
group of automorphisms of (X,⊥) such that κ(α) = id iff
α = ±1.

Axioms for automorphism circles

(A1) Let u, v ∈ X be such that u⊥ v and let ϕ be an
automorphism of (X,⊥) such that ϕ(u) = v and ϕ(x) = x
if x⊥ u, v. Then there is an automorphism circle κ fixing
the same elements as ϕ and such that κ(i) = ϕ.

(A2) Let u, v ∈ X be such that u⊥ v. Let κ be an
automorphism circle such that κ(i)(u) = v and κ(i)(x) = x
for x⊥ u, v. Then any other automorphism circle with
these properties is of the form ϕ−1 ◦ κ ◦ ϕ, where ϕ is an
automorphism fixing u, v, and any x⊥ u, v.
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Automorphism circles

Axioms for automorphism circles, ctd.

(A3) Let u, v ∈ X be such that u⊥ v, and let w ∈ {u, v}⊥⊥.
Then there is an automorphism circle κ such that
κ(i)(u) = v and κ(t) = w for some t ∈ T.

Theorem

Let (X,⊥) fulfil (F1’)–(F3) and (A1)–(A3). Then K is
generated by {α ∈ K : αα? = 1}, and this multiplicative
subgroup is isomorphic to T.
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Conclusion

We have attempted to describe the complex Hilbert space
in an as simple fashion as possible.

Orthogonality spaces together with postulates regarding
automorphisms have proved to be a not too bad possibility.

Easy axiomatics does not mean easy structure – what
about concrete representations?
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Lattices and equivalence relations

Lattices are representable by collections of equivalence relations.

The OMLs of interest arise in a similar fashion.

Theorem (Harding)

Let Π(X) be the lattice of equivalence relations on a set X,
partially ordered by inclusion.
Then 0 = {{x} : x ∈ X} and 1 = {X}. Let

Fact(X) =

{(R,S) ∈ Π(X)2 : R and S commute, R ∩ S = 0, R ∨ S = 1},

and define

(R1, S1) 6 (R2, S2) if R1 ⊆ R2, S2 ⊆ S1, R1 and S2 commute.

Then Fact(X) is an orthomodular poset.
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Vision

Observation (Harding)

Let E be an orthogonal space.
The ortholattice C(E) is embeddable into Fact(E):
Each A ∈ C(E) gives rise to a product decomposition of E.

Question

How do the results presented here relate to
representations by means of set decompositions?
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Further issues

Theorem

Let the orthogonality space (X,⊥) be of rank ℵ0
and irreducible, and let X fulfil (F1) and (F2).

Then C(X,⊥) is isomorphic to C(H)
for an ℵ0-dimensional complex Hilbert space H.

Is there a proof of the coordinatisation of (eligible)
ortholattices that takes into account the orthostructure?

What about orthogonality spaces and common
constructions?

Do the postulates on automorphisms have a “good”
interpretation?

Proceed analogously for other structures than
orthogonality spaces: e.g., test spaces, orthoalgebras,
partial Boolean algebras.
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