Ortholattices and their automorphisms: towards a simple description of the Hilbert space

Thomas Vetterlein

Department of Knowledge-Based Mathematical Systems, Johannes Kepler University (Linz, Austria)

Workshop on Combining Viewpoints in Quantum Theory Edinburgh, 19 March 2018

(日) (部) (目) (日)

The Birkhoff - von Neumann legacy Can we derive the basic model of quantum theory the complex Hilbert space, from some underlying logico-algebraic structure?

The Birkhoff - von Neumann legacy Can we derive the basic model of quantum theory the complex Hilbert space, from some underlying logico-algebraic structure?

Testable properties of a physical system correspond to closed subspaces of a Hilbert space.

(日) (國) (필) (필) (필) 표

The Birkhoff - von Neumann legacy Can we derive the basic model of quantum theory the complex Hilbert space, from some underlying logico-algebraic structure?

Testable properties of a physical system correspond to closed subspaces of a Hilbert space.

• Properties can be compared; properties can be negated.

(日) (四) (문) (문) (문)

• Accordingly, the closed subspaces of a Hilbert space form an orthoposet – in fact an orthomodular lattice.

The Birkhoff - von Neumann legacy Can we derive the basic model of quantum theory the complex Hilbert space, from some underlying logico-algebraic structure?

Testable properties of a physical system correspond to closed subspaces of a Hilbert space.

- Properties can be compared; properties can be negated.
- Accordingly, the closed subspaces of a Hilbert space form an orthoposet in fact an orthomodular lattice.

An outdated, irrelevant approach, or still a useful viewpoint on quantum theory??

In the meantime ...

... numerous further (more sophisticated?) approaches were proposed.

- G. Niestegg, Composite systems and the role of complex numbers in quantum mechanics.
- F. M. Lev, Why is quantum physics based on complex numbers?
- S. Davis, Quantum theory and the category of complex numbers.
- A. Ivanov, D. Caragheorgheopol, Spectral automorphisms in quantum logics.
- J. Vicary, Completeness of †-categories and the complex numbers.
- V. Moretti, M. Oppio, Quantum theory in real Hilbert space: how the complex Hilbert space structure emerges from Poincaré symmetry.

An old approach with a still unexhausted potential

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Our relaxation of the issue

Does the complex Hilbert space arise from any simpler, easier comprehensible structure?

An old approach with a still unexhausted potential

Our relaxation of the issue

Does the complex Hilbert space arise from any simpler, easier comprehensible structure?

Peculiarities of the logico-algebraic approach:

- It deals with "propositions" but not with actual physical contents.
- It deals with the model of a single system, not caring about interrelations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □ □

An old approach with a still unexhausted potential

Our relaxation of the issue

Does the complex Hilbert space arise from any simpler, easier comprehensible structure?

Peculiarities of the logico-algebraic approach:

- It deals with "propositions" but not with actual physical contents.
- It deals with the model of a single system, not caring about interrelations.

Charmingness of the approach:

• With some effort, we may reconstruct precisely the model in question.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Let E be an abelian group, let K be a division ring, and assume that an action of K on E makes E into a left K-module.

Let E be an abelian group, let K be a division ring, and assume that an action of K on E makes E into a left K-module. Then E is called a linear space.

<ロ> (四) (四) (四) (四) (四) (四) (四)

Let E be an abelian group, let K be a division ring, and assume that an action of K on E makes E into a left K-module. Then E is called a linear space.

Related issue

Why is this notion so fundamental? Can we reduce this structure to something more tangible?

Let E be an abelian group, let K be a division ring, and assume that an action of K on E makes E into a left K-module. Then E is called a linear space.

Related issue

Why is this notion so fundamental? Can we reduce this structure to something more tangible?

We can identify linear spaces with certain lattices.

Definition

A lattice is a partially ordered set such that the greatest lower bound and least upper bound of any pair of elements exist.

Definition

A lattice is a partially ordered set such that the greatest lower bound and least upper bound of any pair of elements exist.

Example

The set $\Pi(X)$ of equivalence relations on a set X, partially ordered by inclusion, is a lattice.

For $R, S \in \Pi(X)$, we have

 $R \wedge S = R \cap S,$ $R \vee S = R; S \cup R; S; R \cup R; S; R; S \cup \dots \quad (\star).$

Definition

A lattice is a partially ordered set such that the greatest lower bound and least upper bound of any pair of elements exist.

Example

The set $\Pi(X)$ of equivalence relations on a set X, partially ordered by inclusion, is a lattice.

For $R, S \in \Pi(X)$, we have

 $R \wedge S = R \cap S,$ $R \vee S = R; S \cup R; S; R \cup R; S; R; S \cup \dots \quad (\star).$

Theorem

Every lattice L is a lattice of equivalence relations.

Definition

A lattice is a partially ordered set such that the greatest lower bound and least upper bound of any pair of elements exist.

Example

The set $\Pi(X)$ of equivalence relations on a set X, partially ordered by inclusion, is a lattice.

For $R, S \in \Pi(X)$, we have

 $R \wedge S = R \cap S,$ $R \vee S = R; S \cup R; S; R \cup R; S; R; S \cup \dots \quad (\star).$

Theorem

Every lattice L is a lattice of equivalence relations. L is linear iff (\star) is " $R \lor S = R; S$ ". L is modular iff (\star) is " $R \lor S = R; S; R$ ".

Theorem

Let E be a linear space over a division ring K. Then, under inclusion, the set $\mathcal{L}(E)$ of subspaces of E is a geomodular lattice: a complemented modular lattice which is moreover compactly atomistic and irreducible.

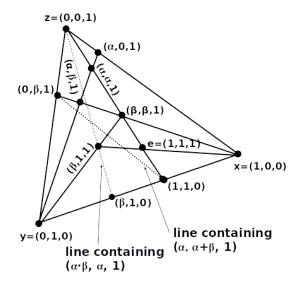
Theorem

Let E be a linear space over a division ring K. Then, under inclusion, the set $\mathcal{L}(E)$ of subspaces of E is a geomodular lattice: a complemented modular lattice which is moreover compactly atomistic and irreducible.

Theorem (Birkhoff, Frink, Jónsson)

Let L be a geomodular lattice of dimension ≥ 4 . Then there is a linear space E over a division ring K such that L is isomorphic to $\mathcal{L}(E)$. K is (up to isomorphism) uniquely determined.

Coordinatising geomodular lattices



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Let *E* be a linear space over a division ring *K*. Assume that *K* possesses an antiautomorphism *. Then a mapping $(-, -): E \times E \to K$ is called an anisotropic quadratic form if:

• $x \mapsto (-, x)$ is an antilinear mapping from E to its dual E^{\star} ;

<ロト <四ト <注入 <注下 <注下 <

Let *E* be a linear space over a division ring *K*. Assume that *K* possesses an antiautomorphism *. Then a mapping $(-, -): E \times E \to K$ is called an anisotropic quadratic form if:

• $x \mapsto (-, x)$ is an antilinear mapping from E to its dual E^{\star} ;

•
$$(x, x) \neq 0$$
 if $x \neq 0$;

•
$$(y, x) = 0$$
 iff $(x, y) = 0$.

Hermitean spaces

Theorem

By "rescaling", an anisotropic quadratic form becomes hermitean:

- * is involutorial;
- $\bullet \ (x,y)=(y,x)^{\star},$

A hermitean space is a linear space with an anisotropic hermitean form.

Hermitean spaces

Theorem

By "rescaling", an anisotropic quadratic form becomes hermitean:

- * is involutorial;
- $\bullet \ (x,y)=(y,x)^{\star},$

A hermitean space is a linear space with an anisotropic hermitean form.

For a subspace A, we put

$$A^{\perp} = \{ x \in E \colon (x, a) = 0 \text{ for all } a \in A \}.$$

The set of closed subspaces of E is

$$\mathcal{C}(E) = \{ A \in \mathcal{L}(E) \colon A^{\perp \perp} = A \}.$$

An ortholattice is a lattice with 0 and 1, additionally endowed with an orthocomplementation $^{\perp}$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

A lattice L is called AC if L is atomistic and fulfils the covering property.

An ortholattice is a lattice with 0 and 1, additionally endowed with an orthocomplementation $^{\perp}$.

A lattice L is called AC if L is atomistic and fulfils the covering property.

Theorem Let E be a hermitean space. Then $\mathcal{C}(E)$ is an irreducible, complete, AC ortholattice.

Theorem (Birkhoff - von Neumann)

Let *E* be a linear space of dimension $4 \leq n < \omega$ over a division ring *K*. Assume that $^{\perp} : \mathcal{L}(E) \to \mathcal{L}(E)$ is an orthocomplementation.

Then there exists an involutorial antiautomorphism * of K and a hermitean form on E inducing $^{\perp}$.

Theorem (Birkhoff - von Neumann)

Let *E* be a linear space of dimension $4 \leq n < \omega$ over a division ring *K*. Assume that $^{\perp} \colon \mathcal{L}(E) \to \mathcal{L}(E)$ is an orthocomplementation. Then there exists an involutorial antiautomorphism * of *K*

and a hermitean form on E inducing \perp .

Theorem (cf. MAEDA-MAEDA)

An irreducible, complete, AC ortholattice of dimension ≥ 4 is isomorphic to $\mathcal{C}(E)$ for some hermitean space E.

An orthomodular space is a hermitean space such that all closed subspaces are splitting:

$$E = A + A^{\perp}$$

for any $A \in \mathcal{C}(E)$.

Orthomodular lattices

Definition

An ortholattice is an orthomodular lattice (OML) if

$$a \leqslant b \quad \Rightarrow \quad b = a \lor (b \land a^{\perp}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Orthomodular lattices

Definition

An ortholattice is an orthomodular lattice (OML) if

$$a \leqslant b \quad \Rightarrow \quad b = a \lor (b \land a^{\perp}).$$

Theorem

Let E be an orthomodular space. The set $\mathcal{C}(E)$ of closed subspaces is an irreducible, complete, AC orthomodular lattice.

Orthomodular lattices

Definition

An ortholattice is an orthomodular lattice (OML) if

$$a \leqslant b \quad \Rightarrow \quad b = a \lor (b \land a^{\perp}).$$

Theorem

Let E be an orthomodular space. The set $\mathcal{C}(E)$ of closed subspaces is an irreducible, complete, AC orthomodular lattice.

Theorem (cf. MAEDA-MAEDA)

An irreducible, complete, AC orthomodular lattice of dimension ≥ 4 is isomorphic to C(E)for some orthomodular space E.

Theorem (Solèr)

Let E be an orthomodular space over the division ring K. Assume that E contains an infinite orthonormal sequence. Then K is one of \mathbb{R} , \mathbb{C} , or \mathbb{H} .

(日) (문) (문) (문) (문)

The complex Hilbert spaces and lattices

We say that a lattice fulfils Pappus's Theorem if: for any atoms $a_0, a_1, a_2, b_0, b_1, b_2$ belonging to a plane, $(a_1 \lor b_0) \land (a_0 \lor b_1) \leqslant ((a_2 \lor b_0) \land (b_2 \lor a_0)) \lor ((a_2 \lor b_1) \land (a_1 \lor b_2)).$

We say that a lattice fulfils the Square Root Axiom if:

for any four distinct atoms a, b, c, d such that $a \lor b = c \lor d$, there are atoms y and z such that

 $\begin{aligned} & y \nleq b \lor z, \, y \nleq c \lor d, \, z \nleq c \lor d, \, z \nleq a \lor y, \\ & a, b, c, d, y, z \text{ belong to a plane, and} \end{aligned}$

 $(a \vee y) \wedge (z \vee d) \leqslant ((b \vee z) \wedge (c \vee y)) \vee ((a \vee b) \wedge (z \vee y)).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The complex Hilbert spaces and lattices

We say that a lattice fulfils Pappus's Theorem if: for any atoms $a_0, a_1, a_2, b_0, b_1, b_2$ belonging to a plane, $(a_1 \lor b_0) \land (a_0 \lor b_1) \leqslant ((a_2 \lor b_0) \land (b_2 \lor a_0)) \lor ((a_2 \lor b_1) \land (a_1 \lor b_2)).$

We say that a lattice fulfils the Square Root Axiom if:

for any four distinct atoms a, b, c, d such that $a \lor b = c \lor d$, there are atoms y and z such that

 $\begin{aligned} & y \nleq b \lor z, \, y \nleq c \lor d, \, z \nleq c \lor d, \, z \nleq a \lor y, \\ & a, b, c, d, y, z \text{ belong to a plane, and} \end{aligned}$

 $(a \vee y) \wedge (z \vee d) \leqslant ((b \vee z) \wedge (c \vee y)) \vee ((a \vee b) \wedge (z \vee y)).$

Theorem (WILBUR)

An irreducible, complete AC orthomodular lattice of infinite dimension and fulfilling Pappus's Theorem and the Square Root Axiom is isomorphic to $\mathcal{C}(E)$ for a complex Hilbert space E.

Review of the lattice-theoretic conditions

For an \aleph_0 -dimensional complex Hilbert space, $(\mathcal{C}(E); \cap, \vee, \stackrel{\perp}{}, \{0\}, E)$ is an irreducible, complete AC OML fulfilling Pappus's Theorem and the Square Root Axiom.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Review of the lattice-theoretic conditions

For an \aleph_0 -dimensional complex Hilbert space, $(\mathcal{C}(E); \cap, \lor, \stackrel{\perp}{}, \{0\}, E)$ is an irreducible, complete AC OML fulfilling Pappus's Theorem and the Square Root Axiom.

$\mathcal{C}(E)$	physical interpretability?		
lattice operations	for compatible propositions only		
orthomodularity	yes		
atomisticity	for finite-state systems		
covering property	not obvious		
completeness	not obvious		
irreducibility	reasonable		
Pappus's Theorem	not obvious		
Square Root Axiom	not obvious		

The lattice-theoretic reconstruction is struggling with the most common notions/constructions regarding Hilbert spaces:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The lattice-theoretic reconstruction is struggling with the most common notions/constructions regarding Hilbert spaces:

 \rightarrow : (general) linear maps;

The lattice-theoretic reconstruction is struggling with the most common notions/constructions regarding Hilbert spaces:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- \rightarrow : (general) linear maps;
- $\oplus :$ direct sums;

The lattice-theoretic reconstruction is struggling with the most common notions/constructions regarding Hilbert spaces:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- \rightarrow : (general) linear maps;
- $\oplus :$ direct sums;
- \otimes : tensor products.

The lattice-theoretic reconstruction is struggling with the most common notions/constructions regarding Hilbert spaces:

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

 \rightarrow : (general) linear maps;

 \oplus : direct sums;

 \otimes : tensor products.

But – we have a correspondence for

 \rightleftarrows automorphisms.

Can we do better?

Can we do better?

• Conditions/operations that are physically hard to interpret and/or technically horribly involved, should be discarded.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Can we do better?

• Conditions/operations that are physically hard to interpret and/or technically horribly involved, should be discarded.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• We should overcome the restriction to the infinite-dimensional case.

Can we do better?

- Conditions/operations that are physically hard to interpret and/or technically horribly involved, should be discarded.
- We should overcome the restriction to the infinite-dimensional case.

Strategy:

• We no longer insist on "purely algebraic" conditions; we allow statements concerning **automorphisms** instead.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Can we do better?

- Conditions/operations that are physically hard to interpret and/or technically horribly involved, should be discarded.
- We should overcome the restriction to the infinite-dimensional case.

Strategy:

• We no longer insist on "purely algebraic" conditions; we allow statements concerning **automorphisms** instead.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• We replace ortholattices with **orthogonality spaces**.

The power of postulates regarding automorphisms

Let *E* be an orthogonality space over the division ring *K*. Let $C_1(K) = \{r \in K : r r^* = 1 \text{ and } r \text{ is in the centre of } K\}$. If $A, A^{\perp} \in \mathcal{C}(E)$ have dimension ≥ 2 , the group of automorphisms fixing *A* and A^{\perp} is $C_1(K)$.

The power of postulates regarding automorphisms

Let *E* be an orthogonality space over the division ring *K*. Let $C_1(K) = \{r \in K : r r^* = 1 \text{ and } r \text{ is in the centre of } K\}$. If $A, A^{\perp} \in \mathcal{C}(E)$ have dimension ≥ 2 , the group of automorphisms fixing *A* and A^{\perp} is $C_1(K)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

K	\mathbb{R}	\mathbb{C}	\mathbb{H}
$C_1(K)$	O(1)	SO(2)	O(1)

The power of postulates regarding automorphisms

Let *E* be an orthogonality space over the division ring *K*. Let $C_1(K) = \{r \in K : r r^* = 1 \text{ and } r \text{ is in the centre of } K\}$. If $A, A^{\perp} \in \mathcal{C}(E)$ have dimension ≥ 2 , the group of automorphisms fixing *A* and A^{\perp} is $C_1(K)$.

$$\begin{array}{c|cc} K & \mathbb{R} & \mathbb{C} & \mathbb{H} \\ \hline C_1(K) & O(1) & SO(2) & O(1) \end{array}$$

Theorem (Mayet)

Let L be an irreducible, complete, AC orthomodular lattice. Let $a, b, c \in L$ be pairwise orthogonal and of height ≥ 3 , and assume that there is an automorphism φ of L such that

• $\varphi(c) < c$,

•
$$\varphi(x) = x$$
 if $x \leq a$ or $x \leq b$,

• φ restricted to $[0, a \vee b]$ is not involutive.

Then L is isomorphic to $\mathcal{C}(H)$ for a complex Hilbert space H.

Definition (Foulis)

An orthogonality space is a set X endowed with a symmetric, irreflexive binary relation \perp .

Definition (Foulis)

An orthogonality space is a set X endowed with a symmetric, irreflexive binary relation \perp .

Standard example

Let X be the set of unit vectors of a Hilbert space. Put $x \perp y$ if (x, y) = 0. Then X is an orthogonality space.

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

Associated ortholattice

Let X be an orthogonality space. For $A \subseteq X$, we put again

$$A^{\perp} = \{ x \in X \colon x \perp a \text{ for all } a \in A \}.$$

The set of all orthoclosed subsets is

$$\mathcal{C}(X,\bot) = \{A \subseteq X \colon A^{\bot\bot} = A\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Associated ortholattice

Let X be an orthogonality space. For $A \subseteq X$, we put again

$$A^{\perp} = \{ x \in X \colon x \perp a \text{ for all } a \in A \}.$$

The set of all orthoclosed subsets is

$$\mathcal{C}(X,\bot) = \{A \subseteq X \colon A^{\bot\bot} = A\}.$$

Theorem $\mathcal{C}(X, \perp)$ is a complete, atomistic ortholattice.

An automorphism of an orthogonality space (X, \bot) is a bijection $\varphi \colon X \to X$ such that $x \bot y$ iff $\varphi(x) \bot \varphi(y)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

An automorphism of an orthogonality space (X, \bot) is a bijection $\varphi \colon X \to X$ such that $x \bot y$ iff $\varphi(x) \bot \varphi(y)$.

Observation

Each automorphism of (X, \perp) induces an ortholattice automorphisms of $\mathcal{C}(X, \perp)$.

(日) (四) (문) (문) (문)

Postulates regarding automorphisms

For an orthogonality space, (X, \perp) we consider the properties:

(F1) For any $A \subseteq X$ and $e \in X$ be such that $e \notin A^{\perp \perp}$, there is an automorphism $\varphi \colon X \to X$ such that

•
$$\varphi(e) \perp A$$

• $\varphi(x) = x$ for any $x \in X$ such that $x \perp A, e$ or $x \perp A, \varphi(e)$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Postulates regarding automorphisms

For an orthogonality space, (X, \perp) we consider the properties:

(F1) For any $A \subseteq X$ and $e \in X$ be such that $e \notin A^{\perp \perp}$, there is an automorphism $\varphi \colon X \to X$ such that

- $\varphi(e) \perp A$,
- $\varphi(x) = x$ for any $x \in X$ such that $x \perp A, e$ or $x \perp A, \varphi(e)$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

(F2) Let $A \subseteq X$ contain more than one element. For any automorphism φ fixing $A^{\perp\perp}$, and for any $n \ge 2$, there is an automorphism ψ such that

•
$$\psi^n = \varphi$$
,

• ψ fixes A as well.

Consequences of (F1)

Lemma

Let (X, \perp) be an orthogonality space fulfilling (F1). Then $\mathcal{C}(X, \perp)$ is atomistic and fulfils the covering property, that is, is AC.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Consequences of (F1)

Lemma

Let (X, \perp) be an orthogonality space fulfilling (F1). Then $\mathcal{C}(X, \perp)$ is atomistic and fulfils the covering property, that is, is AC.

Theorem (DACEY)

$\mathcal{C}(X,\bot)$ is orthomodular if and only if:

• For a maximal orthogonal subset D of $A \in \mathcal{C}(X, \perp)$, we have $D^{\perp \perp} = A$.

Consequences of (F1)

Lemma

Let (X, \perp) be an orthogonality space fulfilling (F1). Then $\mathcal{C}(X, \perp)$ is atomistic and fulfils the covering property, that is, is AC.

Theorem (DACEY)

 $\mathcal{C}(X, \perp)$ is orthomodular if and only if:

• For a maximal orthogonal subset D of $A \in \mathcal{C}(X, \perp)$, we have $D^{\perp \perp} = A$.

Lemma

Let (X, \perp) be an orthogonality space fulfilling (F1). Then $\mathcal{C}(X, \perp)$ is an orthomodular lattice.

Definition

An orthogonality space (X, \perp) is of rank λ if λ is the maximal cardinality of a set of pairwise orthogonal elements.

Definition

An orthogonality space (X, \perp) is of rank λ if λ is the maximal cardinality of a set of pairwise orthogonal elements.

<ロト <四ト <注入 <注下 <注下 <

Lemma

Let (X, \perp) fulfil (F1). The rank of (X, \perp) is the height of $\mathcal{C}(X, \perp)$.

Irreducibility of an orthogonality space

Definition

 (X, \perp) is reducible if there is an $A \subseteq X$ such that A^{\perp} and $A^{\perp \perp}$ are both non-empty and each $x \in X$ is contained in exactly one of A^{\perp} or $A^{\perp \perp}$. Otherwise, we will call (X, \perp) irreducible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Irreducibility of an orthogonality space

Definition

 (X, \perp) is reducible if there is an $A \subseteq X$ such that A^{\perp} and $A^{\perp\perp}$ are both non-empty and each $x \in X$ is contained in exactly one of A^{\perp} or $A^{\perp\perp}$.

Otherwise, we will call (X, \perp) irreducible.

Lemma

If (X, \perp) is irreducible, $\mathcal{C}(X, \perp)$ is directly irreducible.

Description of the \aleph_0 -dimensional complex Hilbert space

Theorem

Let the orthogonality space (X, \perp) be of rank ≥ 4 and irreducible, and let X fulfil (F1).

Then there is an orthogonality space E such that $\mathcal{C}(X, \perp)$ is isomorphic to $\mathcal{C}(E)$.

(日) (四) (문) (문) (문)

Description of the \aleph_0 -dimensional complex Hilbert space

Theorem

Let the orthogonality space (X, \perp) be of rank ≥ 4 and irreducible, and let X fulfil (F1).

Then there is an orthogonality space E such that $\mathcal{C}(X, \perp)$ is isomorphic to $\mathcal{C}(E)$.

Theorem

Let the orthogonality space (X, \bot) be of rank \aleph_0 and irreducible, and let X fulfil (F1) and (F2). Then $\mathcal{C}(X, \bot)$ is isomorphic to $\mathcal{C}(H)$ for an \aleph_0 -dimensional complex Hilbert space H.

The finite-dimensional case

A modified automorphism axiom

For an orthogonality space, (X, \perp) we consider the property:

(F1') Let $e, f \in X$ be distinct. Then there is an automorphism $\varphi \colon X \to X$ such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- $\varphi(e) \perp f$,
- for any $x \perp f$, we have $x \perp e$ iff $x \perp \varphi(e)$, in which case $\varphi(x) = x$.

The finite-dimensional case

A modified automorphism axiom

For an orthogonality space, (X, \perp) we consider the property:

(F1') Let $e, f \in X$ be distinct. Then there is an automorphism $\varphi \colon X \to X$ such that

- $\varphi(e) \perp f$,
- for any x ⊥ f, we have x ⊥ e iff x ⊥ φ(e), in which case φ(x) = x.

Theorem

Let the orthogonality space (X, \perp) be of rank $4 \leq n < \omega$ and irreducible, and let X fulfil (F1'). Then there is an *n*-dimensional orthogonality space Esuch that $\mathcal{C}(X, \perp)$ is isomorphic to $\mathcal{C}(E)$.

Conclusion so far

- The infinite-dimensional complex Hilbert space can be described as an orthogonality space essentially by means of postulates concerning automorphisms.
- The finite-dimensional orthogonal spaces can be described similarly.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Conclusion so far

- The infinite-dimensional complex Hilbert space can be described as an orthogonality space essentially by means of postulates concerning automorphisms.
- The finite-dimensional orthogonal spaces can be described similarly.

《曰》 《聞》 《理》 《理》 三世

The remaining challenge

In the finite-dimensional case, how can we characterise the complex numbers??

Let us compile some facts and ideas ...

Review of the crucial part

Let us recall:

Theorem (Solèr)

Let E be an orthomodular space over the division ring K. Assume that E contains an infinite orthonormal sequence. Then K is one of \mathbb{R} , \mathbb{C} , or \mathbb{H} .

(日) (四) (문) (문) (문)

Review of the crucial part

Let us recall:

Theorem (Solèr)

Let E be an orthomodular space over the division ring K. Assume that E contains an infinite orthonormal sequence. Then K is one of \mathbb{R} , \mathbb{C} , or \mathbb{H} .

Main proof steps:

(1) The fixed field $F = \{ \alpha \in K : \alpha^* = \alpha \}$ is totally ordered, the positive cone being $\{(x, x) : x \in E\}$.

(日) (四) (코) (코) (코) (코)

- (2) $(F; \leq)$ is an archimedean totally ordered group.
- (3) The order of F is complete.

Review of the crucial part

Let us recall:

Theorem (Solèr)

Let E be an orthomodular space over the division ring K. Assume that E contains an infinite orthonormal sequence. Then K is one of \mathbb{R} , \mathbb{C} , or \mathbb{H} .

Main proof steps:

- (1) The fixed field $F = \{ \alpha \in K : \alpha^* = \alpha \}$ is totally ordered, the positive cone being $\{(x, x) : x \in E\}$.
- (2) $(F; \leq)$ is an archimedean totally ordered group.
- (3) The order of F is complete.

Arguments of (2) and (3) rely essentially on the infinite dimensionality. No hope.

Topology

Interestingly, however, **topology** has an effect similar to infinite-dimensionality:

Theorem (Pontrjagin)

Let K be a topological division ring. Assume that K is locally compact, connected, and Hausdorff. Then K is one of \mathbb{R} , \mathbb{C} , or \mathbb{H} .

Topology

Interestingly, however, **topology** has an effect similar to infinite-dimensionality:

Theorem (Pontrjagin)

Let K be a topological division ring. Assume that K is locally compact, connected, and Hausdorff. Then K is one of \mathbb{R} , \mathbb{C} , or \mathbb{H} .

Theorem (Salzmann, Löwen)

A compact, connected topological projective plane whose automorphism group is transitive is classical.

< □ > < @ > < 注 > < 注 > ... 注

Topology

Interestingly, however, **topology** has an effect similar to infinite-dimensionality:

Theorem (Pontrjagin)

Let K be a topological division ring. Assume that K is locally compact, connected, and Hausdorff. Then K is one of \mathbb{R} , \mathbb{C} , or \mathbb{H} .

Theorem (Salzmann, Löwen)

A compact, connected topological projective plane whose automorphism group is transitive is classical.

Question

How can we use these facts to characterise the right "topological orthogonality spaces"?

Let (X, \perp) be an orthogonality space that is irreducible, of finite rank ≥ 4 , and fulfils (F1'). Let *E* be the representing orthogonal space over *K*.

(日) (四) (문) (문) (문)

Let (X, \perp) be an orthogonality space that is irreducible, of finite rank ≥ 4 , and fulfils (F1'). Let *E* be the representing orthogonal space over *K*.

Theorem (ECKMANN, ZABEY)

Let V be a linear space over $\operatorname{GF}(p^d)$ of finite dimension ≥ 3 . Then $\mathcal{L}(V)$ does not possess an orthocomplementation.

(日) (國) (필) (필) (필) 표

Let (X, \perp) be an orthogonality space that is irreducible, of finite rank ≥ 4 , and fulfils (F1'). Let *E* be the representing orthogonal space over *K*.

Theorem (ECKMANN, ZABEY)

Let V be a linear space over $\operatorname{GF}(p^d)$ of finite dimension ≥ 3 . Then $\mathcal{L}(V)$ does not possess an orthocomplementation.

(日) (國) (필) (필) (필) 표

Corollary The division ring K is infinite.

Theorem (Jones)

Let V be an orthogonal space of dimension ≥ 4 such that:

• For any $e, f \in V$ there is an automorphism φ such that $\varphi(e) = f$ and $\varphi(x) = x$ whenever $x \perp e, f$.

Then the division ring has characteristic 0.

Theorem (Jones)

Let V be an orthogonal space of dimension ≥ 4 such that:

• For any $e, f \in V$ there is an automorphism φ such that $\varphi(e) = f$ and $\varphi(x) = x$ whenever $x \perp e, f$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Then the division ring has characteristic 0.

Lemma

For any $u, v \in X$, there is an automorphism φ such that $\varphi(u) = v$.

Theorem (Jones)

Let V be an orthogonal space of dimension ≥ 4 such that:

• For any $e, f \in V$ there is an automorphism φ such that $\varphi(e) = f$ and $\varphi(x) = x$ whenever $x \perp e, f$.

Then the division ring has characteristic 0.

Lemma

For any $u, v \in X$, there is an automorphism φ such that $\varphi(u) = v$.

Corollary

K has characteristic 0.

Consider the property:

(F3) Let $u, v \in X$ such that $u \perp v$ and let $w \in \{u, v\}^{\perp \perp}$ be distinct from u, v. Let φ be an automorphism fixing u, v, w, and any $x \perp u, v$. Then φ fixes also any $x \in \{u, v\}^{\perp \perp}$.

Consider the property:

(F3) Let $u, v \in X$ such that $u \perp v$ and let $w \in \{u, v\}^{\perp \perp}$ be distinct from u, v. Let φ be an automorphism fixing u, v, w, and any $x \perp u, v$. Then φ fixes also any $x \in \{u, v\}^{\perp \perp}$.

Lemma If (X, \perp) fulfils (F3), K is commutative.

K = F(i)

Recall:

(F2) For any automorphism φ fixing some at least 2-dimensional $A \in \mathcal{C}(X, \bot)$, and for any $n \ge 2$, there is an automorphism ψ such that $\psi^n = \varphi$ and ψ fixes A as well.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Recall:

(F2) For any automorphism φ fixing some at least 2-dimensional $A \in \mathcal{C}(X, \bot)$, and for any $n \ge 2$, there is an automorphism ψ such that $\psi^n = \varphi$ and ψ fixes A as well.

Lemma

If (X, \perp) fulfils (F1'), (F2), and (F3), then K = F(i) for some $i \in K$ such that $i^2 = 1$.

Definition

Let \mathbb{T} be the group of unit complex numbers. An automorphism circle is a homomorphism κ from \mathbb{T} to the group of automorphisms of (X, \bot) such that $\kappa(\alpha) = \operatorname{id} \operatorname{iff} \alpha = \pm 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Definition

Let \mathbb{T} be the group of unit complex numbers. An automorphism circle is a homomorphism κ from \mathbb{T} to the group of automorphisms of (X, \bot) such that $\kappa(\alpha) = \operatorname{id} \operatorname{iff} \alpha = \pm 1$.

Axioms for automorphism circles

(A1) Let $u, v \in X$ be such that $u \perp v$ and let φ be an automorphism of (X, \perp) such that $\varphi(u) = v$ and $\varphi(x) = x$ if $x \perp u, v$. Then there is an automorphism circle κ fixing the same elements as φ and such that $\kappa(i) = \varphi$.

Definition

Let \mathbb{T} be the group of unit complex numbers. An automorphism circle is a homomorphism κ from \mathbb{T} to the group of automorphisms of (X, \bot) such that $\kappa(\alpha) = \text{id iff}$ $\alpha = \pm 1$.

Axioms for automorphism circles

- (A1) Let $u, v \in X$ be such that $u \perp v$ and let φ be an automorphism of (X, \perp) such that $\varphi(u) = v$ and $\varphi(x) = x$ if $x \perp u, v$. Then there is an automorphism circle κ fixing the same elements as φ and such that $\kappa(i) = \varphi$.
- (A2) Let $u, v \in X$ be such that $u \perp v$. Let κ be an automorphism circle such that $\kappa(i)(u) = v$ and $\kappa(i)(x) = x$ for $x \perp u, v$. Then any other automorphism circle with these properties is of the form $\varphi^{-1} \circ \kappa \circ \varphi$, where φ is an automorphism fixing u, v, and any $x \perp u, v$.

Axioms for automorphism circles, ctd.

(A3) Let $u, v \in X$ be such that $u \perp v$, and let $w \in \{u, v\}^{\perp \perp}$. Then there is an automorphism circle κ such that $\kappa(i)(u) = v$ and $\kappa(t) = w$ for some $t \in \mathbb{T}$.

Axioms for automorphism circles, ctd.

(A3) Let $u, v \in X$ be such that $u \perp v$, and let $w \in \{u, v\}^{\perp \perp}$. Then there is an automorphism circle κ such that $\kappa(i)(u) = v$ and $\kappa(t) = w$ for some $t \in \mathbb{T}$.

Theorem

Let (X, \perp) fulfil (F1')–(F3) and (A1)–(A3). Then K is generated by $\{\alpha \in K : \alpha \alpha^* = 1\}$, and this multiplicative subgroup is isomorphic to \mathbb{T} .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• We have attempted to describe the complex Hilbert space in an as simple fashion as possible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- We have attempted to describe the complex Hilbert space in an as simple fashion as possible.
- Orthogonality spaces together with postulates regarding automorphisms have proved to be a not too bad possibility.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- We have attempted to describe the complex Hilbert space in an as simple fashion as possible.
- Orthogonality spaces together with postulates regarding automorphisms have proved to be a not too bad possibility.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Easy axiomatics does not mean easy structure – what about concrete representations?

Lattices and equivalence relations

Lattices are representable by collections of equivalence relations.

Lattices and equivalence relations

Lattices are representable by collections of equivalence relations.

The OMLs of interest arise in a similar fashion.

Theorem (Harding)

Let $\Pi(X)$ be the lattice of equivalence relations on a set X, partially ordered by inclusion.

Then
$$0 = \{\{x\} : x \in X\}$$
 and $1 = \{X\}$. Let

Fact
$$(X)$$
 =
{ $(R,S) \in \Pi(X)^2$: R and S commute, $R \cap S = 0, R \lor S = 1$ },

and define

 $(R_1, S_1) \leqslant (R_2, S_2)$ if $R_1 \subseteq R_2, S_2 \subseteq S_1, R_1$ and S_2 commute.

Then Fact(X) is an orthomodular poset.

Observation (Harding)

Let E be an orthogonal space. The ortholattice $\mathcal{C}(E)$ is embeddable into $\operatorname{Fact}(E)$: Each $A \in \mathcal{C}(E)$ gives rise to a product decomposition of E.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Observation (Harding)

Let E be an orthogonal space. The ortholattice $\mathcal{C}(E)$ is embeddable into Fact(E): Each $A \in \mathcal{C}(E)$ gives rise to a product decomposition of E.

(日) (國) (필) (필) (필) 표

Question

How do the results presented here relate to representations by means of set decompositions?

Theorem

Let the orthogonality space (X, \perp) be of rank \aleph_0 and irreducible, and let X fulfil (F1) and (F2).

Then $\mathcal{C}(X, \perp)$ is isomorphic to $\mathcal{C}(H)$ for an \aleph_0 -dimensional complex Hilbert space H.

Theorem

Let the orthogonality space (X, \perp) be of rank \aleph_0 and irreducible, and let X fulfil (F1) and (F2). Then $\mathcal{C}(X, \perp)$ is isomorphic to $\mathcal{C}(H)$

for an \aleph_0 -dimensional complex Hilbert space H.

• Is there a proof of the coordinatisation of (eligible) ortholattices that takes into account the orthostructure?

(日) (國) (필) (필) (필) 표

Theorem

Let the orthogonality space (X, \bot) be of rank \aleph_0 and irreducible, and let X fulfil (F1) and (F2). Then $\mathcal{C}(X, \bot)$ is isomorphic to $\mathcal{C}(H)$ for an \aleph_0 -dimensional complex Hilbert space H.

• Is there a proof of the coordinatisation of (eligible) ortholattices that takes into account the orthostructure?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > = □

• What about orthogonality spaces and common constructions?

Theorem

Let the orthogonality space (X, \bot) be of rank \aleph_0 and irreducible, and let X fulfil (F1) and (F2). Then $\mathcal{C}(X, \bot)$ is isomorphic to $\mathcal{C}(H)$ for an \aleph_0 -dimensional complex Hilbert space H.

- Is there a proof of the coordinatisation of (eligible) ortholattices that takes into account the orthostructure?
- What about orthogonality spaces and common constructions?
- Do the postulates on automorphisms have a "good" interpretation?

◆□▶ ◆圖▶ ◆理▶ ◆理▶ ─ 理

Theorem

Let the orthogonality space (X, \bot) be of rank \aleph_0 and irreducible, and let X fulfil (F1) and (F2). Then $\mathcal{C}(X, \bot)$ is isomorphic to $\mathcal{C}(H)$ for an \aleph_0 -dimensional complex Hilbert space H.

- Is there a proof of the coordinatisation of (eligible) ortholattices that takes into account the orthostructure?
- What about orthogonality spaces and common constructions?
- Do the postulates on automorphisms have a "good" interpretation?
- Proceed analogously for other structures than orthogonality spaces: e.g., test spaces, orthoalgebras, partial Boolean algebras.