Effectus theory

Bas Westerbaan

bas@westerbaan.name
Radboud Universiteit Nijmegen
Effectus theory

Bas Westerbaan

bas@westerbaan.name
Radboud Universiteit Nijmegen
Teaser, another reconstruction of QT:

an operational \mathcal{T}-effectus is (a subcategory of) Euclidean Jordan Algebras (finite-dimensional) with positive maps)

follows from [Webering, arXiv:1801.05798]
People

Jacobs

Cho

A. Westerbaan

B. W.
People

Jacobs

Cho

A. Westerbaan

B. W.

Tull

connection with OPTs

Wetering

Reconstruction

Adams

Type theory
Oxford CQM

f.d. Hilbert spaces

$C^2 \text{ (qubit)}, \ C^3 \text{ (qutrit)}, ...$

Effectus theory

von Neumann algebras

$C^2 \text{ (bit)}, \ M_2 \text{ (qubit)}, ...$
Oxford CQM

f.d. Hilbert spaces
\(\mathbb{C}^2 \) (qubit), \(\mathbb{C}^3 \) (qutrit), ...

operators
\(\mathbb{H}, \mathcal{A} \), ...

Effectus theory

von Neumann algebras
\(\mathbb{C}^2 \) (bit), \(M_2 \) (qubit), ...

contractive normal c.p. maps
\(a \mapsto \sum_i b_i^* a b_i \), ...

Oxford CQM

- f.d. Hilbert spaces
 - C^2 (qubit), C^3 (qutrit), ...

- Operators
 - $\hat{\mathbf{H}}$, \hat{S}, ...

- Parallel composition
 - $C^2 \otimes C^2$: two qubits

Effectus theory

- von Neumann algebras
 - C^2 (bit), M_2 (qubit), ...

- Contractive normal c.p. maps
 - $a \mapsto \sum_i b_i^* a b_i$, ...

- Probabilistic disjunction
 - $C^2 \oplus M_2$: bit or qubit
Oxford CQM

f.d. Hilbert spaces
C^2 (qubit), C^3 (qutrit),...

Operators
\mathbb{H}, \mathbb{A}, ...

Parallel composition
$C^2 \otimes C^2$: two qubits

Expressive calculus for ‘circuits’
Works best finite-dimensionally

Effectus theory

von Neumann algebras
C^2 (bit), M_2 (qubit), ...

Contractive normal c.p. maps
$a \mapsto \sum_i b_i^* a b_i$, ...

+ Probabilistic disjunction
$C^2 \oplus M_2$: bit or qubit

Hard to reason about circuits
Measurement, classical data and infinite dimensions built in.
Maps between (μN)-algebras go the opposite way

measure in sta. basis

$\mathbb{C}^2 \rightarrow M_2$

(bit ← qbit)

$(\lambda, \mu) \mapsto 2\lambda \chi \chi_{0} + \mu I X I$
Maps between (uN) algebras go the opposite way

measure in sta. basis

initialize as 0

\[\mathbb{C}^2 \rightarrow M_2 \]

\[\text{bit} \leftarrow \text{qbit} \]

\[M_2 \rightarrow \mathbb{C} \]

\[\text{qbit} \leftarrow 1 \]

\[(\lambda, \mu) \rightarrow \mathcal{N}_{0x01} + \mu/1 \times 1 \]

\[a \rightarrow \langle 01a10 \rangle \]
Maps between (vn) algebras go the opposite way

- Measure in standard basis
- Initialize as 0
- Discard qutrit

\[\mathbb{C}^2 \rightarrow M_2 \] (bit ← qbit)
\[M_2 \rightarrow \mathbb{C} \] (qbit ← 1)
\[M_2 \rightarrow M_2 \otimes M_3 \] (qbit ← qbit ⊗ qutrit)

\[(\lambda, \mu) \rightarrow \lambda 0 \otimes 0 + \mu 1 \otimes 1 \]

\[a \rightarrow \langle 01 | a | 10 \rangle \]

\[a \rightarrow a \otimes 1 \]
Maps between (vn) algebras go the opposite way

measure in sta. basis

- $\mathbb{C}^2 \rightarrow M_2$
 - (bit ← qbit)

initialize as 0

- $M_2 \rightarrow \mathbb{C}$
 - (qbit ← 1)

discard qutrit

- $M_2 \rightarrow M_2 \otimes M_3$
 - (qbit ← qbit⊗qutrit)

CPTP

$\mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$

$p \mapsto \sum_i b_i^* p b_i$

CPU-map

$\mathcal{B}(\mathcal{K}) \rightarrow \mathcal{B}(\mathcal{H})$

$a \mapsto \sum_i b_i^* a b_i$
Overview

operational

t-effectus

is a

t-effectus
Overview

operational
\(t \)-effectus

is a

\(t \)-effectus

is an

\(f \)-effectus
Overview

operational
O-effectus

is a

t-effectus

is an

f-effectus

is a

O-effectus
Overview

operational

\(t \text{-effectus} \)

is a

\(t \text{-effectus} \)

is an

\(f \text{-effectus} \)

is a

\(\diamond \text{-effectus} \)

is an

effectus
Overview

Operational

\triangleright-effectus
is a

\triangleright-effectus
is an

\triangledown-effectus
is a

\triangledown-effectus
is an

Effectus
An Effectus has objects \(A, B, X, Y, \ldots \) representing data types/systems.
An Effectus has

- objects A, B, X, Y, … representing data types/systems
- arrows f, g, … between them, representing maps/operations
An Effectus has

- objects A, B, X, Y, \ldots representing data types/systems
- arrows f, g, \ldots between them, representing maps/operations
- final object 1 representing the system with one state

for any A, there is a unique $!_A : A \longrightarrow 1$
An Effectus has

. objects A, B, X, Y, \ldots representing data types/systems
. arrows f, g, \ldots between them, representing maps/operations
. final object 1 representing the system with one state

for any A, there is a unique $!_A : A \rightarrow 1$

. Coproduct $A + B$ representing (probabilistic) disjunction

\[A \xrightarrow{k_1} A + B \quad \xleftarrow{k_2} B \]

\[\begin{array}{c}
A \\
\downarrow \, f
\end{array} \quad \begin{array}{c}
\vdash \quad \{f, g\} \\
\downarrow \, \tilde{C} \quad \downarrow \, g \\
B
\end{array} \]

\[A \rightarrow \tilde{C} \rightarrow B \]
An Effectus has

- objects $A, B, X, Y, ...$ representing data types/systems
- arrows $f, g, ...$ between them, representing maps/operations
- final object 1 representing the system with one state

For any A, there is a unique $!_A : A \to 1$

- Coproduct $A + B$ representing (probabilistic) disjunction

\[
\begin{array}{ccc}
A & \xrightarrow{K_1} & A + B & \xleftarrow{K_2} & B \\
& \searrow^{f} & \downarrow^{[f,g]} & \nearrow^{g} & \\
& & \hat{C} & &
\end{array}
\]

\[
\text{swap} = [k_2, k_1] : A + A \to A + A
\]

\[
\nu = [\text{id}, \text{id}] : A + A \to A
\]
Predicates and partial maps

\[p : X \rightarrow 1+1 \]

predicate on \(X \)
Predicates and partial maps

\[p : X \rightarrow 1+1 \]

\[
\begin{array}{ccc}
X & \xrightarrow{1} & 1 \\
\downarrow & & \downarrow \kappa_1 \\
2 & \xrightarrow{1+1} & \end{array}
\]

predicate on \(X \)

the truth predicate on \(X \)
Predicates and partial maps

$p : X \to \{1,1\}$

- Predicate on X
- Truth predicate on X
- Negation/orthosupplement of p
Predicates and partial maps

\[p : X \rightarrow 1 + 1 \]

\[X \xrightarrow{\mathcal{L}} 1 \xrightarrow{x_1} 1 + 1 \]

\[X \xrightarrow{\mathcal{M} \ p} 1 + 1 \]

\[p^\perp \]

\[X \xrightarrow{f} y + 1 \]

\[\text{predicate on } X \]

\[\text{the truth predicate on } X \]

\[\text{the negation/orthosupplement of } p \]

\[\text{a partial map } X \rightarrow y \]
Predicates and partial maps

\[p : X \to 1+1 \]

\[X \xrightarrow{!} 1 \xrightarrow{\mu_1} 1+1 \]

\[X \xrightarrow{p} 1+1 \]

\[X \xrightarrow{p^\perp} 1+1 \]

\[X \xrightarrow{f} Y+1 \]

\[X \xrightarrow{f} Y+1 \xrightarrow{[g,k_2]} Z+1 \]

\[g \circ f \]

\(\mu \), the truth predicate on \(X \)

the negation/orthosuplement of \(p \)

a partial map \(X \to Y \)

composition of partial maps
Predicates and partial maps

\[p : X \to \mathbb{1} + \mathbb{1} \]

\[X \xrightarrow{1} \mathbb{1} \xrightarrow{k_1} \mathbb{1} + \mathbb{1} \]

\[X \xrightarrow{\neg} \mathbb{1} + \mathbb{1} \]

\[\mu \text{, the truth predicate on } X \]

\[\text{the negation/orthosupplement of } p \]

\[X \xrightarrow{f} y + 1 \]

\[X \xrightarrow{f} y + 1 \xrightarrow{[g,k_2]} z + 1 \]

\[g \circ f \]

\[X \xrightarrow{f} y \xrightarrow{k_1} y + 1 \]

\[\text{a partial map } X \to Y \]

\[\text{composition of partial maps} \]

\[\text{a map as a (total) partial map} \]
Predicates and partial maps

\(p : X \rightarrow 1+1 \)
- \(X \xrightarrow{p} 1+1 \)
- \(X \xrightarrow{p^\perp} 1+1 \)

Predicate on \(X \)
- the truth predicate on \(X \)
- the negation/orthosupplement of \(p \)

\(X \xrightarrow{f} y+1 \)
- \(X \xrightarrow{f} y+1 \xrightarrow{\partial_0 f} Z+1 \)
- \(X \xrightarrow{f} y \xrightarrow{\partial_1 f} y+1 \)
- \(X \xrightarrow{f} y+1 \xrightarrow{!+id} 1+1 \)

Partial map \(x \rightarrow y \)
- composition of partial maps
- a map as a (total) partial map
- \(1 \otimes f \) is a measure of partiality of \(f \)
Predicates and partial maps

\[p : X \rightarrow 1+1 \]

- \(p \) is a predicate on \(X \)
- \(\mu \), the truth predicate on \(X \)
- \(p^+ \), the negation/orthosupplement of \(p \)

\[X \xrightarrow{f} y+1 \]

- \(f \) is a partial map \(X \rightarrow y \)
- \(g \circ f \) is the composition of partial maps
- \(1 \circ f \) is a map as a (total) partial map

\[1 \circ f \text{ is a measure of partiality of } f \]

\[1 \circ f = 1 \Rightarrow f \text{ total} \]
\[1 \circ f = 0 \Rightarrow f = \kappa_{20} \]
Scalars and states

$\lambda: 1 \rightarrow 1+1$
a scalar (so partial map $1 \rightarrow 1$)
Scalars and states

\[\lambda: 1 \rightarrow 1+1 \]
\[\lambda \circ \mu = \lambda \circ \mu \]

a scalar (so partial map \(1 \rightarrow 1 \))

product is composition as partial maps
Scalars and states

\(\lambda : 1 \to 1+1 \) is a scalar (so partial map \(1 \to 1 \))

\(\rho \circ \mu = \rho \circ \mu \) product is composition as partial maps

Similarly \(\lambda \cdot p \equiv \lambda \circ p \) for scalar \(\lambda : 1 \to 1 \)

predicate \(p : X \to 1 \)
Scalars and states

\(\lambda: 1 \to 1+1 \) \hspace{1cm} \text{a scalar (so partial map} \ 1 \to 1) \\
\lambda \circ \mu = \lambda \circ \mu \) \text{ product is composition as partial maps}

Similarly \(\lambda \cdot p = \lambda \circ p \) \text{ for scalar } \lambda: 1 \to 1 \\
\text{predicate } p: X \to 1

\omega: 1 \to X \hspace{1cm} \text{a state on } X
Scalars and states

\(\lambda : 1 \to 1 + 1 \) a scalar (so partial map \(1 \to 1 \))

\(\lambda \circ \mu = \lambda \circ \mu \) product is composition as partial maps

Similarly \(\lambda \cdot p = \lambda \circ p \) for scalar \(\lambda : 1 \to 1 \)

Predicate \(p : X \to 1 \)

\(\omega : 1 \to X \)

\(\omega \circ \lambda + \gamma \) convex combination of states

\(\lambda \omega \circ \lambda + \gamma \)
Scalars and states

\[\lambda : 1 \to 1 + 1 \] a scalar (so partial map \(1 \to 1 \))

\[\lambda \circ \mu = \lambda \circ \mu \] product is composition as partial maps

Similarly \(\lambda \cdot p = \lambda \circ p \) for scalar \(\lambda : 1 \to 1 \)

Predicate \(p : X \to 1 \)

A state on \(X \)

Convex combination of states

Validity of a predicate in a state
Partial sum of predicates

If for predicates p, q on X, there is a b with

$$\begin{array}{c}
\begin{array}{c}
p \quad X \quad q \\
\downarrow \quad \downarrow \\
1+1 \leftarrow 1+1+1 \rightarrow 1+1
\end{array}
\end{array}$$

then p and q are summable (in symbols: $p \uparrow q$) and their sum $p \circ q$ is given by

$$\begin{array}{c}
\begin{array}{c}
p \circ q \\
\downarrow \quad \downarrow \\
1+1+1 \leftarrow 1+1+1 \rightarrow 1+1
\end{array}
\end{array}$$
Definition an **Effectus** is a category C with

- finite coproducts and final object 1,

where all diagrams of the form

$$
\begin{align*}
X + Y & \xrightarrow{id+!} X + I \\
! + id & \downarrow \quad \downarrow ! + id \\
1 + Y & \xrightarrow{id+!} 1 + I
\end{align*}
$$

are pullback squares and

- the following arrows are jointly manic

$$
\begin{align*}
1 + 1 + 1 & \xrightarrow{} 1 + 1 \\
\downarrow & \\
\times & \xrightarrow{}
\end{align*}
$$
Definition an **Effectus** is a category C with

- finite coproducts and final object 1,
- where all diagrams of the form

$$
\begin{align*}
X + Y & \xrightarrow{id + !} X + 1 \\
1 + Y & \xrightarrow{id + !} 1 + 1 \\
X + Y & \xrightarrow{! + id} X + 1 \\
1 + Y & \xrightarrow{! + id} 1 + 1
\end{align*}
$$

are pullback squares and

- the following arrows are jointly manic

$$
\begin{align*}
1 + 1 + 1 & \xrightarrow{! V} 1 + 1 \\
& \xrightarrow{X}
\end{align*}
$$

Examples: νN^\op, Set, CRng^\op, KLCD, any topos, EA^\op, ...
Structure in an effectus

\(\mathcal{M} \), the set of scalars is an effect monoid, that is: an effect algebra with biadditive product for which 1 is a unit.
Structure in an effectus

M, the set of scalars is an effect monoid, that is: an effect algebra with biadditive product for which 1 is a unit.

$\text{Pred}X$, the set of predicates on an object X is an M-effect module, that is: an effect algebra with an action of M.
Structure in an effectus

\[M, \text{ the set of scalars is an effect monoid, that is: an effect algebra with biadditive product for which } 1 \text{ is a unit.} \]

\[\text{Pred}X, \text{ the set of predicates on an object } X \text{ is an } M\text{-effect module, that is: an effect algebra with an action of } M. \]

\[\text{Stat} X, \text{ the set of states on } X \text{ is an (abstract) } M^0\text{-convex set.} \]
Structure in an effectus

M, the set of scalars is an effect monoid, that is: an effect algebra with biadditive product for which 1 is a unit.

$\text{Pred} X$, the set of predicates on an object X is an M-effect module, that is: an effect algebra with an action of M.

$\text{Stat} X$, the set of states on X is an (abstract) M^op-convex set.
Definition: A category C is an Effectus in partial form if

1. C is a fin PAC – that is
 a. C has coproducts
 b. C is PCM-enriched, i.e.
 a. every $\text{Hom}(X, y) \times \text{Hom}(y, y)$ has partial binary operation \otimes and distinguished map \circ that turn it into a PCM
 b. $f \cdot g \Rightarrow [\text{hof} \otimes \text{hog} \quad (\text{hof}) \otimes (\text{hog}) = \text{ho}(f \circ g)$
 \hspace{1cm} \text{fok} \otimes \text{gok} \quad (\text{fok}) \otimes (\text{gok}) = (\text{fog}) \circ k$
 c. $D, 0b \perp D, 20b$ for any $b: X \to y + y$, where $D, \equiv \{\text{id}, 0\}: y + y \to y$ and $D_2 \equiv \{0, 1o\}$
 d. $f \cdot g \Rightarrow k_1 \cdot f \circ k_2 \cdot g$

2. C “has effects” – that is: there is an object I such that
 a. the PCM $\text{Hom}(X, I) \equiv \text{Pred} X$ is an effect algebra $\mathcal{A} \times X$
 b. $10f \perp 10g \Rightarrow f \perp g$
 c. $10f = 0 \Rightarrow f = 0$

A map f is called total iff $10f = 1$.
Definition a category C is an Effectus in partial form if

1. C is a fin PAC — that is
 a. C has coproducts.
 b. C is PCM-
 \(\alpha \) every \(H \)
 and are
 c. \(\mathcal{D}, \mathcal{O} \leq \mathcal{D}_{\omega} \)
 where \(\mathcal{D}, \mathcal{O} \)
 d. \(f \perp g \Rightarrow k_{1} \mathcal{O} f \perp k_{2} \mathcal{O} g \)

2. C "has effects" — that is: there is an object I such that
 a. the PCM \(\text{Hom}(X, I) = \text{Pred} X \) is an effect algebra \(\mathcal{F} X \).
 b. \(1 \mathcal{O} f \perp 1 \mathcal{O} g \Rightarrow f \perp g \)
 c. \(1 \mathcal{O} f = 0 \Rightarrow f = 0 \).

A map \(f \) is called total iff \(1 \mathcal{O} f = 1 \)
Definition: A category C is an Effectus in partial form if

1. C is a fin PAC — that is
 a. C has coproducts.
 b. C is PCM-
 a. every \mathcal{K} and \mathcal{G}
 b. $f \perp g \Rightarrow$
 c. $D, ob \perp D_{20}$
 where $D, =$
 d. $f \perp g \Rightarrow k_1 o f \perp k_2 o g$

2. C is an Effect Algebra iff
 a. for every x, there is a unique x^\perp such that
 $x^\perp o x = 1 \equiv 0^\perp$
 b. $x \perp 1 \Rightarrow x = 0$

A PCM is an Effect Algebra iff

$$\mathcal{M}, 0, 0 \Rightarrow (M, 0, 0) \text{ with } 0 : M^2 \rightarrow M,$$

$0 \in M$ is a PCM iff

- $x \perp y \Rightarrow [y \perp x]
 - x o y = y o x$
- $0 \perp x$ and $0 o x = x$
- $x \perp y$ and $x o y \perp z$
 $$\Rightarrow [y \perp z, x \perp y \perp z]$$
- $(k o y) o z = x o (y o z)$

permutation Θ

into a PCM

$\Rightarrow k o (f o g)$

$= (f o g) o k$

$\Theta = [0, i \alpha]$. object I such that

an effect algebra $\forall X$.
They're the “same”

If C is an effectus, then $\text{Pan } C$, its category of partial maps, is an effectus in partial form.

If D is an effectus in partial form, then $\text{Tot } D$, its subcategory of total maps is an effectus.

Furthermore $\text{Pan } \text{Tot } D \cong D$ and $\text{Tot } \text{Pan } C \cong C$.
-effectus
An effectus (in partial form) has quotients if:

For every predicate $p : X \to 1$, there is an obj. X_{p^\perp} and (partial) map $\xi_{p^\perp} : X \to X_{p^\perp}$ with $1 \cdot \xi_{p^\perp} \leq p$, such that for any other $f : X \to Y$ with $1 \cdot f \leq p$, there is a unique g with

\[
\begin{array}{ccc}
X & \xrightarrow{\xi_{p^\perp}} & X_{p^\perp} \\
\downarrow & & \downarrow \\
f & \searrow & g \\
\end{array}
\]
\(\Box\)-effectus preparation: quotients

An effectus (in partial form) has quotients if:

For every predicate \(p : X \rightarrow 1\), there is an obj. \(X_{p^+}\) and (partial) map \(\xi_{p^+} : X \rightarrow X_{p^+}\) with \(10 \xi_{p^+} \leq p\), such that for any other \(f : X \rightarrow Y\) with \(10f \leq p\), there is a unique \(g\) with

\[
\begin{array}{ccc}
X & \xrightarrow{\xi_{p^+}} & X_{p^+} \\
\downarrow \text{quotient map} & & \\
X/p^+ & \xrightarrow{g} & Y
\end{array}
\]
An effectus (in partial form) has quotients if:

For every predicate $p : X \to 1$, there is an obj X_{p^\perp} and (partial) map $\xi_{p^\perp} : X \to X_{p^\perp}$ with $10 \xi_{p^\perp} \leq P$, such that for any other $f : X \to Y$ with $10f \leq P$, there is a unique g with

$$
\begin{array}{ccc}
X & \xrightarrow{\xi_{p^\perp}} & X_{p^\perp} \\
\downarrow f & & \downarrow g \\
Y & & Y
\end{array}
$$

(In \mathbb{N}, $\xi : \xi_{p} \to \xi_{p^\perp}$ given by $\xi(a) = \sqrt{p}a\sqrt{p}$)
$\mathsf{\ Diamond}$-effectus preparation: comprehension

An effectus (in partial form) has comprehension if

For every predicate $p : X \to 1$, there is an obj. $\{X | p\}$ and (partial) map $\pi_p : \{X | p\} \to X$ with $p_0 \pi_p = 1_0 \pi_p$ such that for any other $f : Y \to X$ with $p_0 f = 1_0 f$, there is a unique g with

$\begin{array}{ccc}
\{X | p\} & \xrightarrow{\pi_p} & X \\
g & \downarrow & \\
Y & \xrightarrow{f} & \\
\end{array}$
An effectus (in partial form) has comprehension if

For every predicate \(p : X \to 1 \), there is an obj. \(\{X|p\} \) and (partial) map \(\pi_p : \{X|p\} \to X \) with \(p \circ \pi_p = 1 \circ \pi_p \) such that for any other \(f : Y \to X \) with \(p \circ f = 1 \circ f \), there is a unique \(g \) with

\[
\begin{array}{c}
\{X|p\} \\
g
\end{array} \xleftarrow{\text{comp. map}} \xrightarrow{\pi_p} X
\]

and

\[
\begin{array}{c}
Y \\
f
\end{array}
\]
\(\Delta \)-effectus preparation: comprehension

An effectus (in partial form) has comprehension if

For every predicate \(p : X \to 1 \), there is an obj. \(\{ X \mid p \} \) and (partial) map \(\pi_p : \{ X \mid p \} \to X \) with \(p \circ \pi_p = 1 \circ \pi_p \) such that for any other \(f : Y \to X \) with \(p \circ f = 1 \circ f \), there is a unique \(g \) with

\[
\begin{array}{ccc}
\{ X \mid p \} & \xrightarrow{\pi_p} & X \\
g & \downarrow & \downarrow f \\
Y & \xRightarrow{\text{comp. map}} & X
\end{array}
\]

\(\text{(In } \nu N, \nu \chi: A \to LpL\nu Lp) \) given by \(\pi (a) = Lp\nu Lp \)
Aside: why these names?

For effectus C, define category $\mathcal{S}_{\text{Pred}_C}$ by

- objects: pairs (X, p), X object in C, $p \in \text{Pred}_X$
- an arrow $(X, p) \rightarrow (Y, q)$ is a map $f: X \rightarrow Y$ in Par_C with $p \leq (q \circ f)^1$

There is an obvious $U: \mathcal{S}_{\text{Pred}_C} \rightarrow \text{Par}_C$, $(X, p) \mapsto X$ with adjoints $X \mapsto (X, 0)$ and $X \mapsto (X, 1)$.
Aside: why these names?

For effectus C, define category $\mathcal{S}^{\text{Pred}_{C}}$ by

- objects: pairs (X, p), X object in C, $p \in \text{Pred}_{C}X$
- an arrow $(X, p) \to (Y, q)$ is a map $f: X \to Y$ in Par_C with $p \leq (q \circ f)^{-1}$

There is an obvious $U: \mathcal{S}^{\text{Pred}_{C}} \to \text{Par}_C$, $(X, p) \mapsto X$

with adjoints $X \mapsto (X, 0)$ and $X \mapsto (X, 1)$

Exists iff C has quotients
Aside: why these names?

For effectus C, define category $\mathcal{S} \text{Pred}_\sqsubseteq$ by

- objects: pairs (X, p), X object in C, $p \in \text{Pred} X$
- an arrow $(X, p) \to (Y, q)$ is a map $f: X \to Y$ in $\text{Par}(C)$ with $p \leq (q \circ f)$

There is an obvious $\mathcal{U}: \mathcal{S} \text{Pred}_\sqsubseteq \to \text{Par}(C)$, $(X, p) \mapsto X$ with adjoints $X \mapsto (X, 0)$ and $X \mapsto (X, 1)$.

\[\text{Exists iff } C \text{ has quotients} \quad \mathcal{S} \text{Pred}_\sqsubseteq \leftarrow \text{Par}(C) \leftarrow \text{Par} C \leftarrow\]

\[\text{Exists iff } C \text{ has comprehension} \]
\(\Delta\)-effectus preparation: images & sharp predicates

An effectus (in partial form) has images if:

for every map \(f: X \rightarrow Y\)

there is a least predicate \(\text{im} f\) on \(Y\)

with \((\text{im} f) \circ f = 1 \circ f\).
Δ-effectus preparation: images & sharp predicates

An effectus (in partial form) has images if:

- for every map $f: X \rightarrow Y$
- there is a least predicate $\text{im} f$ on Y with $(\text{im} f) o f = 1 o f$.

A map f is faithful if $\text{im} f = 1$.
An effectus (in partial form) has images if:

for every map $f: \times \rightarrow \mathcal{Y}$
there is a least predicate $\text{Im} f$ on \mathcal{Y}
with $(\text{Im} f) \circ f = 1 \circ f$.

A map f is faithful if $\text{Im} f = 1$.

(Equiv.: $p \circ f = 0 \implies p = 0$.)
\textit{effectus preparation:} images $\&$ sharp predicates

An effectus (in partial form) has images if:

for every map $f: X \rightarrow Y$

there is a least predicate $\text{im} f$ on Y

with $(\text{im} f) \circ f = 1 \circ f$.

A map f is \textbf{faithful} if $\text{im} f = 1$.

(Equiv.: $p \circ f = 0 \Rightarrow p = 0$.)

A predicate p is \textbf{sharp} if $p \equiv \text{im} f$ for some f.
A -effectus preparation: images & sharp predicates

An effectus (in partial form) has images if:

for every map $f: X \to Y$
there is a least predicate $\Im f$ on Y
with $(\Im f) \circ f = 1 \circ f$.

A map f is faithful if $\Im f = 1$.
(Equiv.: $\rho f = 0 \Rightarrow p = 0$.)

A predicate p is sharp if $p \equiv \Im f$ for some f.
(In vN: sharp iff projection)
Dfn. a \bigodot-effectus is an effectus with quotients, comprehension and images with: s sharp $\Rightarrow s^\sharp$ sharp.
Proposition. In a C-effectus the sharp predicates SPred_X on X are a sub-effect algebra of Pred_X and an orthomodular lattice.
Factorization in \mathcal{O}-effects

\[x \xrightarrow{f} y \]
Factorization in Θ-effectus

\[X \xrightarrow{\xi} \xi_{(10f)^T} \rightarrow X/_{(10f)^T} \rightarrow \{ y | \text{im} f \} \]
Factorization in \mathcal{O}-effectus

\[X \xrightarrow{f} Y \]
\[\downarrow \pi (1of)^\perp \]
\[X_{(1of)^\perp} \rightarrow \{y \mid \text{lim } f\} \]

π' is always total ($1of' = 1$) and faithful.
Factorization in $\textbf{0}$-effectus

$$
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow_{\xi_{(1of)^\perp}} & & \uparrow_{\Pi_{\text{im } f}} \\
X/(1of)^\perp & \longrightarrow & \{y | \text{im } f\}
\end{array}
$$

f' is always total ($1of'=1$) and faithful. f is pure if f' is an isomorphism.
Factorization in 0-effectus

\[
\begin{array}{c}
X \xrightarrow{\xi} Y \\
\downarrow \xi_{(1of)^{-1}} \quad \uparrow \Pi_{\text{im} f} \\
X_{(1of)^{-1}} \longrightarrow \{y \mid \text{im} f\}
\end{array}
\]

\(f\) is always total \((1of' = 1)\) and faithful.

\(f\) is **pure** if \(f'\) is an isomorphism.

\(f\) pure \& \(1of = 1 \Rightarrow f\) comprehension map
Factorization in 0-effectus

\[X \xrightarrow{g} Y \]
\[X / (1of) \longrightarrow \{ y \mid imf \} \]

\[f \]

\[f' \]

\[f' \] is always total \((1of' = 1)\) and faithful.

\(f \) is **pure** if \(f' \) is an isomorphism.

\(-f \) pure \& \(1of = 1 \) \(\Rightarrow \) \(f \) comprehension map

\(-f \) pure \& \(imf = 1 \) \(\Rightarrow \) \(f \) quotient map
Pure maps in \mathbb{VN}

The pure maps $B(H) \to B(K)$ are precisely those of the form $T \mapsto V^*TV$.
Pure maps in \mathcal{VN}

The pure maps $B(H) \rightarrow B(K)$ are precisely those of the form $T \mapsto V^*TV$

Theorem. An ncp-map $\gamma: A \rightarrow B$ with Paschke/Stinespring dilation

\[
\begin{array}{ccc}
A & \xrightarrow{\gamma} & B \\
\downarrow \rho & & \downarrow \rho \\
\rho' & \xrightarrow{h} & \rho''
\end{array}
\]

is pure if and only if ρ is surjective.
Ceiling \(\Gamma_p \) and floor \(\Lambda_p \)

Define \(\Lambda_p \equiv \text{im } \pi_p \) \((\pi_p \text{ comprh. for } p)\)
\[
\Gamma_p \equiv \Lambda_p^\perp \perp
\]
Ceiling $\lceil p \rceil$ and floor $\lfloor p \rfloor$

Define $\lfloor p \rfloor \equiv \text{im } \pi_p$ (\(\pi_p\) comprh. for \(p\))

$\lceil p \rceil \equiv L_{p+1} \downarrow$

(In vN: $\lceil p \rceil$ least projection above \(p\))
Ceiling Γ_p and floor L_p

Define $L_p = \text{im } \pi_p$ (where π_p is the projection for p)

$\Gamma_p = L_p \dashv \bot$

(In vN: Γ_p least projection above p)

Proposition. In a 0-effectus

- $L_p \leq p$
- $p \leq q \Rightarrow \bot \leq L_p$
- $L_p \vdash L_p$
Ceiling $\lceil p \rceil$ and floor $\lfloor p \rfloor$

Define $\lfloor p \rfloor = \text{im } \pi_p \quad (\pi_p \text{ comprh. for } p)$

$\Gamma_p \equiv \lceil p \rceil^\perp$

(In vN: Γ_p least projection above p)

Proposition. In a 0-effectus

- $\lceil p \rceil \leq p$
- $\lceil \Gamma_p \rceil = \lceil p \rceil$
- $\Gamma_p \leq p = \lceil p \rceil$
- $p \leq q \Rightarrow \lceil p \rceil \leq \lceil q \rceil$
- $\Gamma_p \leq \Gamma_p \circ f$
Ceiling Γ_p and floor ℓ_p

Define $\ell_p = \text{im} \pi_p$ (where π_p comprh. for p)

$\Gamma_p \equiv \ell_p^\perp$

(In vN: Γ_p least projection above p)

Proposition. In a 0-effectus

- $\ell_p \leq p$
- $\ell_p \downarrow = \ell_p$
- $\exists \ell_p \downarrow$
- $\Gamma_p \downarrow \Gamma_p$

- $\Gamma_p \otimes \ell \equiv \Gamma_p$
Ceiling \(\Gamma_p \) and floor \(\Lambda_p \)

Define \(\Lambda_p \equiv \text{im} \, \pi_p \) (\(\pi_p \) comprh. for \(p \))

\[
\Gamma_p \equiv \Lambda_p \downarrow
\]

(In vN: \(\Gamma_p \) least projection above \(p \))

Proposition. In a \(\emptyset \)-effectus

\[
\begin{align*}
\cdot \quad & \Lambda_p \leq p \\
\cdot \quad & \bot \Lambda_p = \Lambda_p \\
\cdot \quad & \Gamma_p \downarrow = \Lambda_p \\
\cdot \quad & \Gamma_p \downarrow \downarrow \leq \Gamma_p \downarrow \\
\cdot \quad & \Gamma_p \downarrow \downarrow \downarrow = \Gamma_p \downarrow
\end{align*}
\]

(In vN: \(\Gamma_f(a)^7 = \Gamma_f(ra^7)^7 \) useful rule)
For $f: X \rightarrow Y$ in a Δ-effectus, define

$$S^e \text{Pred}_X \leftrightarrow S^e \text{Pred}_Y$$

by

$$f^e(s) = \Gamma_{S^e f} I$$

and

$$f^e(s) = \text{im}(f \circ \pi_s)$$
the possibilistic restriction

For \(f: X \rightarrow Y \) in a \(\Theta \)-effectus, define

\[
SPreax X \leftrightarrow SPrea Y
\]

by

\[
f^\Theta(s) \equiv \Gamma_{s\circ f}^\Theta
\]

\[
f^\Theta(s) \equiv \text{im}(f \circ \Pi_s)
\]

De Morgan duals:

\[
f^\Delta(s) \equiv f^\Theta(s^+)^\perp
\]

\[
f^\Theta(s) \equiv f^\Delta(s^+)\perp
\]
For \(f: X \rightarrow Y \) in a \(\Theta \)-effectus, define
\[
\text{SPred} X \leftrightarrow \text{SPred} Y
\]
by
\[
\begin{align*}
\text{SPred}(s) &= \Gamma_{\text{sof}} f \\
\text{SPred}(s) &= \text{im}(f \circ \pi_s)
\end{align*}
\]
In \(\nu \mathcal{N} \):
\[
f^\square = g^\square \iff \text{for every normal state } w \text{ and effect } a, \text{ we have } \omega(f(a)) = 0 \implies \omega(g(a))
\]
De Morgan duals:
\[
\begin{align*}
f^\square(s) &= f^\square(s^\perp) \\
f^\square(s) &= f^\square(s^\perp)
\end{align*}
\]
Proposition. In a Ω-effectus:

- $f^\circ(s) \leq t^\perp$ iff $f_\circ(t) \leq s^\perp$
Proposition. In a \(\Delta \)-effectus:

\[\cdot \, f^*(\mathcal{E}) \leq \mathcal{E}^\perp \text{ iff } f_*(\mathcal{E}) \leq \mathcal{S}^\perp \]

Equivalently: \(f^* \perp f_* \)
Proposition. In a \(\Downarrow \)-effectus:

- \(f \circ (s) \leq \downarrow \) iff \(f \circ (e) \leq \downarrow \)

 Equivalently: \(f \circ -1 f \)

- \(f \circ f \circ f \circ f = f \)

 \(f \circ f \circ f \circ f \circ f = f \)
Proposition. In a \Diamond-effectus:

- $f^\Diamond(x) \leq e^\Downarrow$ iff $f^\Diamond(e) \leq s^\perp$

 Equivalently: $f \circ 1 \circ f^\Diamond$

- $f^\Diamond \circ f^\Diamond \circ f^\Diamond = f^\Diamond$
 $f^\Diamond \circ f^\Diamond \circ f^\Diamond = f^\Diamond$

- $(f \circ g) \circ = f \circ (g \circ)$
 $(f \circ g) \circ = g \circ f^\Diamond$
Proposition. In a \Diamond-effectus:

- $f \circ (s) \leq e^1$ iff $f \circ (e) \leq s^1$

 Equivalently: $f \circ - \circ f$

- $f \circ f \circ f \circ f = f \circ f \circ f = f \circ f$

- $(f \circ g) \circ g = f \circ (g \circ g) \circ (f \circ g) \circ f = g \circ f$

- $(\pi_s) \circ (\pi_s \circ (e)) = s \wedge e$
Proposition. In a \Diamond-effectus:

- $f^{\Diamond}(s) \leq \mathsf{\top}$ iff $f^{\Diamond}(t) \leq \mathsf{\top}$

 Equivalently: $f^{\Diamond} \vdash f^{\Diamond}$

- $f^{\Diamond} \circ f^{\Diamond} \circ f^{\Diamond} = f^{\Diamond}$

- $(f^{\Diamond} \circ g)^{\Diamond} = f^{\Diamond} \circ g^{\Diamond}$

- $(\mathsf{t})^{\Diamond} \circ (\mathsf{t}_s^{\Diamond}(t)) = s \land t$

- $\mathsf{im} f = f^{\Diamond}(1)$

- $f \circ f^{\top} = f^{\Diamond}(1)$
Definitions

f : X ⇀ Y : g are ◦-adjoint iff f ◦ = g ◦
\(\Diamond \)-definitions

\[f : x \Rightarrow y \text{ are } \Diamond \text{-adjoint iff } f \circ \Diamond = \Diamond \circ g \]

\[f : x \rightarrow x \text{ is } \Diamond \text{-self adjoint iff } f \circ \Diamond = \Diamond \circ f \]
\mathcal{O}-definitions

- $f : x \to y$ and g are \mathcal{O}-adjoint iff $f \circ g = \mathcal{O}$
- $f : x \to x$ is \mathcal{O}-self adjoint iff $f \circ f = \mathcal{O}$

- f is \mathcal{O}-positive iff
 - f is pure
 - $f = g \circ g$ for some \mathcal{O}-self adjoint g.
\[\text{Definitions}\]
\[f: x \rightarrow y: g \text{ are } \bigtriangledown\text{-adjoint iff } f \circ g = g \circ f\]
\[f: x \rightarrow x \text{ is } \bigtriangledown\text{-self adjoint iff } f \circ f = f \circ f\]
\[f \text{ is } \bigtriangledown\text{-positive iff}\]
\[\begin{align*}
&\text{f is pure} \\
&f = g \circ g \text{ for some } \bigtriangledown\text{-self adjoint } g
\end{align*}\]

\[\text{Theorem. In } \mathcal{V}N, \text{ the } \bigtriangledown\text{-positive maps}\]
\[\text{are precisely } a \rightarrow \sqrt{b}a\sqrt{b}.\]
&-effectus
Dfn. an $\&$-effectus is $\hat{*}$-effectus where

- for every predicate p on X, there is a unique $\hat{*}$-positive map $\text{asrt}_p : X \to X$ with $1_0 \text{asrt}_p = p$.

- $\xi \circ \pi$ is pure for any comprehension π and quotient map ξ.
Dfn. an $\&$-effectus is \circ-effectus where

- for every predicate p on X, there is a unique \circ-positive map $asrt_p : X \to X$ with $1o asrt_p = p$.
- $\xi o \pi$ is pure for any comprehension π and quotient map ξ.

Write $p \& q \equiv q o asrt_p$, and $p^2 \equiv p \& p$.
Proposition. In an $\&$-effectus TFAE

- p is sharp
- $p \& p = p$
- $\text{asrt}_p \circ \text{asrt}_p = \text{asrt}_p$
Proposition. In an $\&$-effectus TFAE
 1. p is sharp
 2. $p \& p = p$
 3. $\text{asrt}_p \circ \text{asrt}_p = \text{asrt}_p$

Proposition. In an $\&$-effectus

\[\text{im } f \leq s \iff \text{asrt}_s \circ f = f \]

\[1 \circ f \leq \epsilon \iff f \circ \text{asrt}_\epsilon = f \]
Polar decomposition

In an A-effectus, any pure map $f: X \to Y$ factors as follows:

$$
X \xrightarrow{-} X \xrightarrow{\xi} \frac{X}{\mathcal{F}_0} \xrightarrow{\pi} \{y \mid \text{im} f \} \xrightarrow{\pi} Y
$$

- Pure map h with \mathcal{F}_0 sharp
- Partial isometry
Dfn. a \dag-effectus \mathcal{C} is an $\&$-effectus, where the subcat. of pure maps is a \dag-category with:

- $\text{asrt}_p^\dag = \text{asrt}_p$
- f is \bowtie-adjoint to f^\dag
- For every \dag-positive f, there is a unique \dag-positive g with $f = g \circ g$.
- \bowtie-positive maps are \dag-positive.
Dfn. a \dagger-effectus C is an $\&$-effectus, where
the subcat. of pure maps is a \dagger-category with:

- $\text{asr} \mathcal{E}_p = \text{asr} \mathcal{E}_p$
- f is $\&$-adjoint to f^\dagger
- for every \dagger-positive f, there is a unique \dagger-positive g with $f = g \circ g$
- $\&$-positive maps are \dagger-positive

It follows $10f^\dagger = \text{im} f$ and $\text{im} f^\dagger = 10f^\dagger$,
Dfn. a \dagger-effectus \mathcal{C} is an $\&$-effectus, where the subcat. of pure maps is a \dagger-category with:

- $\text{asrt}_p^\dagger = \text{asrt}_p$
- f is $\&$-adjoint to f^\dagger
- for every \dagger-positive f, there is a unique \dagger-positive g with $f = g \circ g$.
- $\&$-positive maps are \dagger-positive.

It follows $\text{im} f^\dagger = \text{im} f$ and $\text{im} f^\dagger = \text{im} f^\dagger$, (so with slight abuse of notation):

$$\pi_5^\dagger = \xi_5 \perp \text{ and } \xi_5^\dagger = \pi_5 \text{ (sharps s)}$$
Theorem. An \&-effectus is a \&-effectus iff

1. for every predicate \(p \), there is a unique predicate \(q \) with \(q \& q = p \)
2. \(\text{asrt}^2_{p \& q} = \text{asrt}_p \circ \text{asrt}^2_q \circ \text{asrt}_p \)
3. \(\xi s \) is sharp for all sharp \(s, t \).
Theorem. An $\&$-effectus is a \dagger-effectus iff

1. for every predicate p, there is a unique predicate q with $q \& q = p$
2. $\text{asrt}_p^2 p \& q = \text{asrt}_p \circ \text{asrt}_q^2 \circ \text{asrt}_p$

Cf. Fundamental Id. of Quad. Jordan Algs.

3. to ξ, is sharp for all sharp s, t.

Dfn. An effectus is operational iff

- the scalars are isomorphic to $[0, 1]$,
- the predicates are jointly monic,
- $p \leq q \Rightarrow \forall \omega. p \omega \leq q \omega$,
- every object X is ‘finite-dimensional’: that is: $\text{Stat } X$ ‘is’ a closed convex subset of a finite-dimensional vector space.
Theorem. (Wetering)

• The category EJA of Euclidean Jordan Algebras with positive maps is a t-effectus.

• Any operational t-effectus is equivalent to a subcategory of EJA.
Theorem. (Wetering)

• The category EJA of Euclidean Jordan Algebras with positive maps is a t-effectus.

• Any operational t-effectus is equivalent to a subcategory of EJA.

(vN^op is t-effectus, but not operational)
Theorem. Every *t*-effectus is a homological category in the sense of Martin Grandis.
Theorem. Every t-effectus is a homological category in the sense of Martin Grandis.

Corollary. Grandis’ Snake Lemma holds for von Neumann algebras...
Grandis’ Snake Lemma. If we have a diagram

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B & \xrightarrow{g} & C & \rightarrow & 0 \\
\downarrow{a} & & \downarrow{b} & & \downarrow{c} & \\
0 & \rightarrow & A' & \rightarrow & B' & \rightarrow & C'
\end{array}
\]

in a t-effectus such that

- $\text{im } f = \Gamma_{10g7}^\bot$
- $\text{im } h = \Gamma_{10k7}^\bot$
- g quotient with $10g$ sharp
- h comprehension

then...

- $b^0(b_o(\text{im } f)) = \Gamma_{10b7}^\bot \text{v } \text{im } f$
- $b_o(b^0(\text{im } h)) = (\text{im } h) \wedge \text{im } b$
- $k^0(k_o(\text{im } b)) = (\text{im } h) \text{v } \text{im } b$
- $f_o(f^0(b_o(0))) = \Gamma_{10b7}^\bot \text{v } \text{im } f$
\[\{A \parallel (10a)^{\perp}\} \xrightarrow{\tilde{\xi}} \{B \parallel (10b)^{\perp}\} \xrightarrow{\tilde{g}} \{C \parallel (10c)^{\perp}\} \]

\[\downarrow \pi_{(10a)^{\perp}} \quad \downarrow \pi_{(10b)^{\perp}} \quad \downarrow \pi_{(10c)^{\perp}} \]

\[A \xrightarrow{f} B \xrightarrow{g} C \rightarrow O \]

\[\downarrow a \quad \downarrow b \quad \downarrow c \]

\[0 \rightarrow A' \xrightarrow{h} B' \xrightarrow{k} C' \]

\[\downarrow \xi_{ima} \quad \downarrow \xi_{imc} \quad \downarrow \xi_{imb} \]

\[A' \parallel ima \xrightarrow{k} B' \parallel imb \xrightarrow{k} C' \parallel imc \]

with \(\text{im} f = \Gamma_{(001)^{\perp}}, \text{im} \tilde{g} = \Gamma_{(10d)^{\perp}}, \ldots \)
Take away

- QT reconstructions don't need dilations/purifications or parallel composition \otimes.
- $\text{compVh} \circ \text{iso} \circ \text{qnot.}$ is the right kind of pure.
- $(\)^\circ$, Δ-adjoint and Δ-positive.

Further reading

- "Dagger and dilations", BW arXiv 1803.01911.
- "Introduction to Effectus theory"
 Cho, Jacobs, Westerbaan, BW arXiv 1512.05813
- "Reconstruction of Quantum Theory from univ. filters"
 Wetering arXiv 1801.05798