Infinite-dimensional Categorical Quantum Mechanics
A talk for CLAP Scotland

Stefano Gogioso and Fabrizio Genovese
Quantum Group, University of Oxford

5 Apr 2017
University of Strathclyde, Glasgow
We want to do (diagrammatic) CQM in ∞-dimensions, but...

\[\text{1 Although there is a characterisation of orthonormal bases in terms of } H^*\text{-algebras.}\]
We want to do (diagrammatic) CQM in ∞-dimensions, but...

- Hilb has no unital \dagger-Frobenius algebras1
 - NO group algebras
 - NO Fourier sampling

1Although there is a characterisation of orthonormal bases in terms of H^*-algebras.
We want to do (diagrammatic) CQM in ∞-dimensions, but...

- Hilb has no unital \dagger-Frobenius algebras1
 - NO group algebras
 - NO Fourier sampling

- Hilb is not dagger compact
 - NO traces, cups or caps
 - NO operator-state duality

1Although there is a characterisation of orthonormal bases in terms of H^*-algebras.
We want to do (diagrammatic) CQM in \(\infty \)-dimensions, but...

- Hilb has no unital \(\dagger \)-Frobenius algebras\(^1\)
 - NO group algebras
 - NO Fourier sampling

- Hilb is not dagger compact
 - NO traces, cups or caps
 - NO operator-state duality

- Hilb lacks other useful gadgets
 - NO plane-waves or delta functions
 - NO unbounded operators

\(^1\)Although there is a characterisation of orthonormal bases in terms of \(H^* \)-algebras.
We want to do (diagrammatic) CQM in ∞-dimensions, but...

- Hilb has no unital \dagger-Frobenius algebras\(^1\)
 - **NO** group algebras
 - **NO** Fourier sampling
- Hilb is not dagger compact
 - **NO** traces, cups or caps
 - **NO** operator-state duality
- Hilb lacks other useful gadgets
 - **NO** plane-waves or delta functions
 - **NO** unbounded operators

Can we recover all of this (using non-standard analysis)?

\(^1\)Although there is a characterisation of orthonormal bases in terms of H^*-algebras.
We want to do (diagrammatic) CQM in ∞-dimensions, but...

- Hilb has no unital \dagger-Frobenius algebras\(^1\)
 - NO group algebras
 - NO Fourier sampling
- Hilb is not dagger compact
 - NO traces, cups or caps
 - NO operator-state duality
- Hilb lacks other useful gadgets
 - NO plane-waves or delta functions
 - NO unbounded operators

Can we recover all of this (using non-standard analysis)? **YES, WE CAN.**

\(^1\)Although there is a characterisation of orthonormal bases in terms of H^*-algebras.
Non-standard analysis: an algebraic way to handle limit constructions\(^2\).

\(^2\)Regardless of topological convergence. The sceptics out there might prefer to think directly in terms of the ultraproduc construction: we work in spaces of sequences, quotiented by a notion of “asymptotic equality”, or “equality almost everywhere”, determined by some non-principal ultrafilter \(\mathcal{F}\) on \(\mathbb{N}\).
Non-standard analysis: an algebraic way to handle limit constructions2.

(a) Natural numbers are unbounded, and hence:

(i) infinite non-standard natural numbers exist
(ii) any sequence has an non-standard extension to infinite natural indices

2Regardless of topological convergence. The sceptics out there might prefer to think directly in terms of the ultraproduct construction: we work in spaces of sequences, quotiented by a notion of “asymptotic equality”, or “equality almost everywhere”, determined by some non-principal ultrafilter \mathcal{F} on \mathbb{N}.
Non-standard analysis: an algebraic way to handle limit constructions2.

(a) Natural numbers are unbounded, and hence:
 (i) infinite non-standard natural numbers exist
 (ii) any sequence has an non-standard extension to infinite natural indices

(b) Algebraic manipulation of series (without taking limits):
 (i) consider a sequence of partial sums $a_n := \sum_{j=1}^{n} b_j$
 (ii) extend it to obtain infinite sums $\sum_{j=1}^{\nu} b_j$, where ν is infinite natural

2Regardless of topological convergence. The sceptics out there might prefer to think directly in terms of the ultraproduct construction: we work in spaces of sequences, quotiented by a notion of “asymptotic equality”, or “equality almost everywhere”, determined by some non-principal ultrafilter \mathcal{F} on \mathbb{N}.
Non-standard analysis: an algebraic way to handle limit constructions.

(a) Natural numbers are unbounded, and hence:
 (i) infinite non-standard natural numbers exist
 (ii) any sequence has a non-standard extension to infinite natural indices

(b) Algebraic manipulation of series (without taking limits):
 (i) consider a sequence of partial sums $a_n := \sum_{j=1}^{n} b_j$
 (ii) extend it to obtain infinite sums $\sum_{j=1}^{\nu} b_j$, where ν is infinite natural

(c) Some genuinely new finite vectors arise in non-standard Hilbert spaces:

$$\frac{1}{\sqrt{\nu}} \sum_{n=1}^{\nu} |e_n\rangle,$$
where $\left\{|e_n\rangle \right\}_{\nu}$ form an orthonormal basis

ν is an infinite natural

Regardless of topological convergence. The sceptics out there might prefer to think directly in terms of the ultraproduct construction: we work in spaces of sequences, quotiented by a notion of “asymptotic equality”, or “equality almost everywhere”, determined by some non-principal ultrafilter \mathcal{F} on \mathbb{N}.

2Regardless of topological convergence. The sceptics out there might prefer to think directly in terms of the ultraproduct construction: we work in spaces of sequences, quotiented by a notion of “asymptotic equality”, or “equality almost everywhere”, determined by some non-principal ultrafilter \mathcal{F} on \mathbb{N}.

S Gogioso, F Genovese (Oxford)
Infinite-dimensional CQM
CLAP Scotland
The heavy lifting in non-standard analysis is done by the following result.

Theorem (Transfer Theorem)

A sentence φ holds in the standard model M of some theory—with quantifiers ranging over standard elements, functions, relations and subsets—if and only if the sentence φ holds in any/all non-standard models $\star M$ of the theory—with quantifiers ranging over internal non-standard elements, functions, relations and subsets.
Example (Natural predecessors)

Consider the sentence defining predecessors in the natural numbers:

$$\forall n \in \mathbb{N}. \left[n \neq 0 \Rightarrow \exists m \in \mathbb{N}. n = m + 1 \right]$$

By TT, the following sentence holds in the non-standard model $*\mathbb{N}$:

$$\forall n \in *\mathbb{N}. \left[n \neq 0 \Rightarrow \exists m \in *\mathbb{N}. n = m + 1 \right]$$

Hence all non-zero non-standard naturals have predecessors.
Example (Well-ordering of naturals)

Consider the sentence defining the well-order property for the natural numbers, i.e. saying that every non-empty subset of \mathbb{N} has a minimum:

$$\forall A \subseteq \mathbb{N}. \left(A \neq \emptyset \Rightarrow \exists m \in A. \forall a \in A. m \leq a \right)$$

By TT, the following sentence holds in the non-standard model $\ast \mathbb{N}$:

$$\forall A \subseteq \ast \mathbb{N}. \left(\ast A \neq \emptyset \Rightarrow \exists m \in \ast A. \forall a \in \ast A. m \leq a \right)$$

Hence all non-empty internal subsets $A \subseteq \ast \mathbb{N}$ have a minimum. (The requirement that A be internal is key here: e.g. the subset of all infinite non-standard naturals has no minimum, but it is also not internal.)
Example (Partial sums)

Consider the sentence defining the sequence \(s : \mathbb{N} \to \mathbb{R} \) of partial sums for every sequence \(f : \mathbb{N} \to \mathbb{R} \) in the standard model \(\mathbb{R} \):

\[
\forall f : \mathbb{N} \to \mathbb{R}. \exists s : \mathbb{N} \to \mathbb{R}.
\quad [s(0) = f(0) \land [\forall n \in \mathbb{N}. s(n + 1) = s(n) + f(n + 1)]]
\]

By TT, the following sentence holds in the non-standard model \(\ast \mathbb{R} \):

\[
\forall f : \ast \mathbb{N} \to \ast \mathbb{R}. \exists s : \ast \mathbb{N} \to \ast \mathbb{R}.
\quad [s(0) = f(0) \land [\forall n \in \ast \mathbb{N}. s(n + 1) = s(n) + f(n + 1)]]
\]

Hence every internal sequence \(f : \ast \mathbb{N} \to \ast \mathbb{R} \) admits a corresponding internal sequence of partial sums \(s : \ast \mathbb{N} \to \ast \mathbb{R} \), i.e. the notation \(\sum_{n=0}^{m} f(n) \) is legitimate for all \(m \in \ast \mathbb{N} \).
The category *Hilb - objects

Objects are pairs $\mathcal{H} := (|\mathcal{H}|, P_\mathcal{H})$ specified by the following data:

(i) a non-standard Hilbert space $|\mathcal{H}|$ (the underlying Hilbert space);

(ii) an internal non-standard linear map $P_\mathcal{H} : |\mathcal{H}| \to |\mathcal{H}|$ such that:

- $P_\mathcal{H}$ is a self-adjoint idempotent (the truncating projector);

- there are a non-standard natural $D \in ^\ast \mathbb{N}$ and a family $(|e_d\rangle)_{d=1}^D$ of non-standard vectors in $|\mathcal{H}|$ (an orthonormal basis for \mathcal{H}) such that $P_\mathcal{H} = D \sum_{d=1}^D |e_d\rangle\langle e_d|$.

By Transfer Theorem we have that D is unique, and we define the dimension of object \mathcal{H} to be the non-standard natural $\text{dim} \mathcal{H} := D$.

S Gogioso, F Genovese (Oxford) Infinite-dimensional CQM CLAP Scotland 8 / 24
Objects are pairs $\mathcal{H} := (|\mathcal{H}|, P_{\mathcal{H}})$ specified by the following data:

(i) a non-standard Hilbert space $|\mathcal{H}|$ (the \textbf{underlying Hilbert space});
The category $\ast\text{Hilb} - \text{objects}$

Objects are pairs $\mathcal{H} := (|\mathcal{H}|, P_\mathcal{H})$ specified by the following data:

(i) a non-standard Hilbert space $|\mathcal{H}|$ (the **underlying Hilbert space**);
(ii) an internal non-standard linear map $P_\mathcal{H} : |\mathcal{H}| \to |\mathcal{H}|$ such that:

By Transfer Theorem we have that D is unique, and we define the **dimension** of object \mathcal{H} to be the non-standard natural $\dim \mathcal{H} := D$.
Objects are pairs $\mathcal{H} := (|\mathcal{H}|, P_\mathcal{H})$ specified by the following data:

(i) a non-standard Hilbert space $|\mathcal{H}|$ (the underlying Hilbert space);
(ii) an internal non-standard linear map $P_\mathcal{H} : |\mathcal{H}| \to |\mathcal{H}|$ such that:
 - $P_\mathcal{H}$ is a self-adjoint idempotent (the truncating projector);
The category \(\mathbf{\ast \text{Hilb}} \) - objects

Objects are pairs \(\mathcal{H} := (|\mathcal{H}|, P_\mathcal{H}) \) specified by the following data:

(i) a non-standard Hilbert space \(|\mathcal{H}| \) (the **underlying Hilbert space**);
(ii) an internal non-standard linear map \(P_\mathcal{H} : |\mathcal{H}| \to |\mathcal{H}| \) such that:

- \(P_\mathcal{H} \) is a self-adjoint idempotent (the **truncating projector**);
- there are a non-standard natural \(D \in \mathbb{\ast \mathbb{N}} \) and a family \((|e_d\rangle)_{d=1}^{D}\) of non-standard vectors in \(|\mathcal{H}| \) (an **orthonormal basis** for \(\mathcal{H} \)) such that

\[
P_\mathcal{H} = \sum_{d=1}^{D} |e_d\rangle\langle e_d|
\]
The category \starHilb - objects

Objects are pairs $\mathcal{H} := (|\mathcal{H}|, P_{\mathcal{H}})$ specified by the following data:

(i) a non-standard Hilbert space $|\mathcal{H}|$ (the underlying Hilbert space);

(ii) an internal non-standard linear map $P_{\mathcal{H}} : |\mathcal{H}| \to |\mathcal{H}|$ such that:

- $P_{\mathcal{H}}$ is a self-adjoint idempotent (the truncating projector);
- there are a non-standard natural $D \in \star\mathbb{N}$ and a family $(|e_d\rangle)_{d=1}^{D}$ of non-standard vectors in $|\mathcal{H}|$ (an orthonormal basis for \mathcal{H}) such that

$$P_{\mathcal{H}} = \sum_{d=1}^{D} |e_d\rangle\langle e_d|$$

By Transfer Theorem we have that D is unique, and we define the dimension of object \mathcal{H} to be the non-standard natural $\dim \mathcal{H} := D$.
Morphisms $F : \mathcal{H} \rightarrow \mathcal{K}$ in $\ast\text{Hilb}$ are the those internal non-standard linear maps $F : |\mathcal{H}| \rightarrow |\mathcal{K}|$ such that:

$$P_{\mathcal{K}} \circ F \circ P_{\mathcal{H}} = F$$
Morphisms $F : \mathcal{H} \rightarrow \mathcal{K}$ in $\star\text{Hilb}$ are the those internal non-standard linear maps $F : |\mathcal{H}| \rightarrow |\mathcal{K}|$ such that:

$$P_\mathcal{K} \circ F \circ P_\mathcal{H} = F$$

In particular, the identity for an object \mathcal{H} is the truncating projector:

$$id_\mathcal{H} := P_\mathcal{H}$$
Morphisms $F : \mathcal{H} \rightarrow \mathcal{K}$ in $\ast\text{Hilb}$ are the those internal non-standard linear maps $F : |\mathcal{H}| \rightarrow |\mathcal{K}|$ such that:

$$P_{\mathcal{K}} \circ F \circ P_{\mathcal{H}} = F$$

In particular, the identity for an object \mathcal{H} is the truncating projector:

$$id_{\mathcal{H}} := P_{\mathcal{H}}$$

This makes $\ast\text{Hilb}$ a full subcategory of the Karoubi envelope for the category of non-standard Hilbert spaces and $\ast\mathbb{C}$-linear maps.
Morphisms $F : \mathcal{H} \to \mathcal{K}$ in $\ast\text{Hilb}$ can be expressed as matrices with non-standard dimensions, using orthonormal bases for \mathcal{H} and \mathcal{K}:

$$F = \dim \mathcal{K} \dim \mathcal{H} \sum_{d' = 1}^{\dim \mathcal{K}} \sum_{d = 1}^{\dim \mathcal{H}} |e'_{d'}\rangle F_{d' d} \langle e_d|$$

In particular, the identity on \mathcal{H} can be expressed as follows:

$$\text{id}_\mathcal{H} = \dim \mathcal{H} \sum_{d = 1}^{\dim \mathcal{H}} |e_d\rangle \langle e_d|$$

Equipped with Kronecker product, conjugate transpose, and the $\ast\text{C}$-linear structure of matrices, $\ast\text{Hilb}$ is an enriched \dagger-symmetric monoidal category, with $\ast\text{C}$ as its field of scalars.
Morphisms $F : \mathcal{H} \rightarrow \mathcal{K}$ in *Hilb can be expressed as matrices with non-standard dimensions, using orthonormal bases for \mathcal{H} and \mathcal{K}:

$$F = \sum_{d'=1}^{\dim \mathcal{K}} \sum_{d=1}^{\dim \mathcal{H}} |e'_{d'}\rangle F_{d' d} \langle e_d|$$

In particular, the identity on \mathcal{H} can be expressed as follows:

$$id_\mathcal{H} = \sum_{d=1}^{\dim \mathcal{H}} |e_d\rangle \langle e_d|$$
The category $\mathcal{Hilb} - \dagger$-symmetric monoidal structure

Morphisms $F : \mathcal{H} \to \mathcal{K}$ in \mathcal{Hilb} can be expressed as matrices with non-standard dimensions, using orthonormal bases for \mathcal{H} and \mathcal{K}:

$$F = \sum_{d' = 1}^{\dim \mathcal{K}} \sum_{d = 1}^{\dim \mathcal{H}} |e'_{d'}\rangle F_{d' d} \langle e_d|$$

In particular, the identity on \mathcal{H} can be expressed as follows:

$$\text{id}_{\mathcal{H}} = \sum_{d = 1}^{\dim \mathcal{H}} |e_d\rangle \langle e_d|$$

Equipped with Kronecker product, conjugate transpose, and the \mathbb{C}-linear structure of matrices, \mathcal{Hilb} is an enriched \dagger-symmetric monoidal category, with \mathbb{C} as its field of scalars.
If $|e_d\rangle_{d=1}^{\dim \mathcal{H}}$ is an orthonormal basis for \mathcal{H}, the following comultiplication and counit define a unital special commutative \dagger-Frobenius algebra on \mathcal{H}:

$$
\text{comultiplication} := \sum_{d=1}^{\dim \mathcal{H}} |e_d\rangle \otimes |e_d\rangle \otimes \langle e_d|,
$$

$$
\text{counit} := \sum_{d=1}^{\dim \mathcal{H}} \langle e_d|.
$$
If $\ket{e_d}_{d=1}^\dim \mathcal{H}$ is an orthonormal basis for \mathcal{H}, the following comultiplication and counit define a unital special commutative \dagger-Frobenius algebra on \mathcal{H}:

\[
\begin{align*}
\delta \colon & \quad \sum_{d=1}^{\dim \mathcal{H}} \ket{e_d} \otimes \ket{e_d} \otimes \bra{e_d} \\
\epsilon \colon & \quad \sum_{d=1}^{\dim \mathcal{H}} \bra{e_d}
\end{align*}
\]

When $\ket{e_d}_{d=1}^\dim \mathcal{H}$ is the non-standard extension of a standard complete orthonormal basis $\ket{e_d}_{d=1}^\infty$, the comultiplication is the non-standard extension of the standard isometry given by the \mathbb{H}^*-algebra associated with $\ket{e_d}_{d=1}^\infty$. In that case, the counit is the genuinely non-standard object.
The category \mathcal{H}^*-dagger compact structure

(i) Consider an object \mathcal{H}, and a decomposition $P_\mathcal{H} = \sum_{d=1}^{\dim \mathcal{H}} |e_d\rangle\langle e_d|$ of its truncating projector in terms of some orthonormal basis of \mathcal{H}.

(ii) Let $|\xi_d\rangle$ be the state in $|\mathcal{H}|^*$ corresponding to the effect $\langle e_d|$ in \mathcal{H}.

(iii) The dual object is defined by $\mathcal{H}^* = (|\mathcal{H}|^*, P_\mathcal{H}^*)$, where we let

$$P_\mathcal{H}^* = \frac{\dim \mathcal{H}}{\sum_{n=1}^\text{dim } \mathcal{H} |\xi_n\rangle \otimes |e_n\rangle}.$$

(iv) Cups and caps can then be defined as follows:

$$\dim \mathcal{H} \sum_{n=1}^{\text{dim } \mathcal{H}} |\xi_n\rangle \otimes |e_n\rangle = \dim \mathcal{H} \sum_{n=1}^{\text{dim } \mathcal{H}} \langle e_n| \otimes \langle \xi_n|.$$

(v) The category-theoretic dimension for \mathcal{H} is $\text{Tr} P_\mathcal{H} = \dim \mathcal{H}$.

By Transfer Theorem, this definition is independent of the choice of basis.
Consider an object \(\mathcal{H} \), and a decomposition \(P_{\mathcal{H}} = \sum_{d=1}^{\dim \mathcal{H}} |e_d \rangle \langle e_d| \) of its truncating projector in terms of some orthonormal basis of \(\mathcal{H} \).

Let \(|\xi_d \rangle \) be the state in \(|\mathcal{H}|^* \) corresponding to the effect \(\langle e_d | \) in \(\mathcal{H} \).

\(\text{By Transfer Theorem, this definition is independent of the choice of basis.} \)
Consider an object \mathcal{H}, and a decomposition $P_\mathcal{H} = \sum_{d=1}^{\dim \mathcal{H}} |e_d\rangle\langle e_d|$ of its truncating projector in terms of some orthonormal basis of \mathcal{H}.

Let $|\xi_d\rangle$ be the state in $|\mathcal{H}|^*$ corresponding to the effect $\langle e_d|$ in \mathcal{H}.

The dual object is defined by $\mathcal{H}^* := (|\mathcal{H}|^*, P_{\mathcal{H}^*})$, where we let:

$$P_{\mathcal{H}^*} := \sum_{d=1}^{\dim \mathcal{H}} |\xi_d\rangle\langle \xi_d|$$

By Transfer Theorem, this definition is independent of the choice of basis.
The category *Hilb - dagger compact structure

(i) Consider an object \mathcal{H}, and a decomposition $P_\mathcal{H} = \sum_{d=1}^{\dim \mathcal{H}} |e_d\rangle\langle e_d|$ of its truncating projector in terms of some orthonormal basis of \mathcal{H}.

(ii) Let $|\xi_d\rangle$ be the state in $|\mathcal{H}|^*$ corresponding to the effect $\langle e_d|$ in \mathcal{H}.

(iii) The dual object is defined by $\mathcal{H}^* := (|\mathcal{H}|^*, P_{\mathcal{H}^*})$, where we let3:

$$P_{\mathcal{H}^*} := \sum_{d=1}^{\dim \mathcal{H}} |\xi_d\rangle\langle \xi_d|$$

(iv) Cups and caps can then be defined as follows:

$$\left(\sum_{n=1}^{\dim \mathcal{H}} |\xi_n\rangle \otimes |e_n\rangle \right) := \sum_{n=1}^{\dim \mathcal{H}} \langle e_n| \otimes \langle \xi_n|$$

3By Transfer Theorem, this definition is independent of the choice of basis.
The category \(*\text{Hilb} - \text{dagger compact structure}\)

(i) Consider an object \(\mathcal{H}\), and a decomposition \(P_{\mathcal{H}} = \sum_{d=1}^{\dim \mathcal{H}} |e_d \rangle \langle e_d|\) of its truncating projector in terms of some orthonormal basis of \(\mathcal{H}\).

(ii) Let \(|\xi_d\rangle\) be the state in \(|\mathcal{H}|^*\) corresponding to the effect \(\langle e_d|\) in \(\mathcal{H}\).

(iii) The dual object is defined by \(\mathcal{H}^* := (|\mathcal{H}|^*, P_{\mathcal{H}^*})\), where we let\(^3\):

\[
P_{\mathcal{H}^*} := \sum_{d=1}^{\dim \mathcal{H}} |\xi_d\rangle \langle \xi_d|
\]

(iv) Cups and caps can then be defined as follows:

\[
\begin{align*}
\cup & := \bigoplus_{n=1}^{\dim \mathcal{H}} |\xi_n\rangle \otimes |e_n\rangle \\
\cap & := \bigoplus_{n=1}^{\dim \mathcal{H}} \langle e_n| \otimes \langle \xi_n|
\end{align*}
\]

(v) The category-theoretic dimension for \(\mathcal{H}\) is \(\text{Tr} P_{\mathcal{H}} = \dim \mathcal{H}\).

\(^3\)By Transfer Theorem, this definition is independent of the choice of basis.
Wavefunctions in an n-dimensional box with periodic boundary conditions.

(i) Underlying Hilbert space $\mathcal{L}^2[(\mathbb{R}/\mathbb{Z})^n]$.

(ii) Complete orthonormal basis of momentum eigenstates:

$$|\chi_k\rangle := x \rightarrow e^{-i2\pi k \cdot x}$$

(iii) Dimension $D := (2\omega + 1)^n$, where ω is some infinite natural.
Wavefunctions in an n-dimensional box with periodic boundary conditions.

(i) Underlying Hilbert space $\mathcal{L}^2[\mathbb{R}/\mathbb{Z}]^n$.

(ii) Complete orthonormal basis of momentum eigenstates:

$$|\chi_k\rangle := x \rightarrow e^{-i2\pi k \cdot x}$$

(iii) Dimension $D := (2\omega + 1)^n$, where ω is some infinite natural.

Classical structure corresponding to the momentum observable:

$$\sum_{k_1=-\omega}^{+\omega} \ldots \sum_{k_n=-\omega}^{+\omega} |\chi_k\rangle \otimes |\chi_k\rangle \otimes \langle \chi_k|$$
The following multiplication and unit define a unital quasi-special commutative \dagger-Frobenius algebra, with normalisation factor $(2\omega + 1)^n$:

$$
\begin{align*}
\cdots \sum_{k_1, h_1 = -\omega}^{+\omega} |\chi_{k+h}\rangle \otimes \langle \chi_k | \otimes \langle \chi_h | \\
\sum_{k_n, h_n = -\omega}^{+\omega} |\chi_{k+h}\rangle \otimes \langle \chi_k | \otimes \langle \chi_h |
\end{align*}
$$

$\quad := \quad |\chi_0\rangle$

$\quad := \quad |\chi_0\rangle$
The following multiplication and unit define a unital quasi-special commutative \dagger-Frobenius algebra, with normalisation factor $(2\omega + 1)^n$:

$$
\begin{align*}
\cdot & := \sum_{k_1, h_1 = -\omega}^{+\omega} \cdots \sum_{k_n, h_n = -\omega}^{+\omega} |\chi_{k+h}\rangle \otimes \langle\chi_k| \otimes \langle\chi_h| \\
\cdot & := |\chi_0\rangle
\end{align*}
$$

The addition used here is that of the abelian group $*\mathbb{Z}_{2\omega+1}^n$:

- from the point of view of $*\mathbb{Z}^n$, it is cyclic on $\{-\omega, \ldots, +\omega\}^n$;
- from the point of view of \mathbb{Z}^n, it cycles “beyond infinity”.

In particular, it contains \mathbb{Z}^n as a proper subgroup.
The classical states for \dot{x} are those in the following form, where x takes the form $x = \frac{1}{2\omega + 1} q$ for some $q \in \mathbb{Z}^n_{2\omega + 1}$ (i.e. we have $x \in \mathbb{R}^n_{\omega + 1}$):

$$|\delta_x\rangle := \sum_{k_1 = -\omega}^{+\omega} \cdots \sum_{k_n = -\omega}^{+\omega} \chi_k(x)^* |\chi_k\rangle$$
The classical states for a wavefunction with periodic boundary conditions take the form $x = \frac{1}{2\omega + 1} q$ for some $q \in \mathbb{Z}^n_{2\omega + 1}$ (i.e. we have $x \in \frac{1}{2\omega + 1} \mathbb{Z}^n_{2\omega + 1}$):

$$|\delta_x\rangle := \sum_{k_1=-\omega}^{+\omega} \cdots \sum_{k_n=-\omega}^{+\omega} \chi_k(x)^* |\chi_k\rangle$$

The classical states for δ_x behave as Dirac deltas:

$$\langle \delta_{x_0} | f \rangle \simeq f(x_0),$$

for near-standard smooth f and near-standard x_0.

We call them the **position eigenstates**, and δ_x the **position observable**.
The requirement that $x \in \frac{1}{2\omega+1} \mathbb{Z}_{2\omega+1}^n$ for position eigenstates $|\delta_x\rangle$ is a consequence of the fact that the functions χ_k are multiplicative characters of \mathbb{Z}^n, but not necessarily of $\mathbb{Z}_{2\omega+1}^n$. From the non-standard point of view, $\frac{1}{2\omega+1} \mathbb{Z}_{2\omega+1}^n$ is a periodic lattice of infinitesimal mesh $\frac{1}{2\omega+1}$ in the non-standard torus \mathbb{R}/\mathbb{Z}^n. From the standard point of view, $\frac{1}{2\omega+1} \mathbb{Z}_{2\omega+1}^n$ approximates all elements of the standard torus (\mathbb{R}/\mathbb{Z}^n) up to infinitesimal equivalence.
The requirement that $x \in \frac{1}{2\omega + 1} * \mathbb{Z}_{2\omega + 1}^n$ for position eigenstates $|\delta_x\rangle$ is a consequence of the fact that the functions χ_k are multiplicative characters of \mathbb{Z}_n, but not necessarily of $* \mathbb{Z}_{2\omega + 1}^n$.

An undesirable extra phase $e^{i2\pi(2\omega + 1)s \cdot x}$ (for generic $s_j \in \{-1, 0, +1\}$) appears when equation $|\delta_x\rangle \otimes |\delta_x\rangle$ is expanded, and this phase cancels out in general if and only if $x \in \frac{1}{2\omega + 1} * \mathbb{Z}_{2\omega + 1}^n$.
Interlude - approximating tori by periodic lattices

- The requirement that \(x \in \frac{1}{2\omega + 1} \mathbb{Z}^n_{2\omega + 1} \) for position eigenstates \(|\delta_x\rangle \) is a consequence of the fact that the functions \(\chi_k \) are multiplicative characters of \(\mathbb{Z}^n \), but not necessarily of \(\mathbb{Z}^n_{2\omega + 1} \).

- An undesirable extra phase \(e^{i2\pi(2\omega + 1)s \cdot x} \) (for generic \(s_j \in \{-1, 0, +1\} \)) appears when equation \(\bigotimes_{\sigma} |\delta_x\rangle = |\delta_x\rangle \otimes |\delta_x\rangle \) is expanded, and this phase cancels out in general if and only if \(x \in \frac{1}{2\omega + 1} \mathbb{Z}^n_{2\omega + 1} \).

- From the non-standard point of view, \(\frac{1}{2\omega + 1} \mathbb{Z}^n_{2\omega + 1} \) is a periodic lattice of infinitesimal mesh \(\frac{1}{2\omega + 1} \) in the non-standard torus \(*(\mathbb{R}/\mathbb{Z})^n \).
The requirement that \(x \in \frac{1}{2\omega+1} \ast \mathbb{Z}_{2\omega+1}^n \) for position eigenstates \(|\delta_x\rangle \) is a consequence of the fact that the functions \(\chi_k \) are multiplicative characters of \(\mathbb{Z}^n \), but not necessarily of \(\ast \mathbb{Z}_{2\omega+1}^n \).

An undesirable extra phase \(e^{i2\pi(2\omega+1)s \cdot x} \) (for generic \(s_j \in \{-1, 0, +1\} \)) appears when equation \(\bigotimes |\delta_x\rangle = |\delta_x\rangle \otimes |\delta_x\rangle \) is expanded, and this phase cancels out in general if and only if \(x \in \frac{1}{2\omega+1} \ast \mathbb{Z}_{2\omega+1}^n \).

From the non-standard point of view, \(\frac{1}{2\omega+1} \ast \mathbb{Z}_{2\omega+1}^n \) is a periodic lattice of infinitesimal mesh \(\frac{1}{2\omega+1} \) in the non-standard torus \(\ast (\mathbb{R}/\mathbb{Z})^n \).

From the standard point of view, \(\frac{1}{2\omega+1} \ast \mathbb{Z}_{2\omega+1}^n \) approximates all elements of the standard torus \((\mathbb{R}/\mathbb{Z})^n \) up to infinitesimal equivalence.
Case study - wavefunctions with periodic boundary

The position and momentum observables are strongly complementary, a manifestation of the Weyl Canonical Commutation Relations.

\[
\delta x \chi_k = \chi_k \delta x \quad \delta x \chi_k T_x T_x B_k B_k \chi_k^* (x)
\]
Case study - wavefunctions with periodic boundary

The position and momentum observables are strongly complementary, a manifestation of the Weyl Canonical Commutation Relations.

- Position observable defined by the group algebra for boosts B_k.
- Momentum observable acts as the group algebra for translations T_x:

$$\left\{ |\delta_x\rangle \mid x \in \frac{1}{2\omega+1} \mathbb{Z}^n_{2\omega+1} \right\} \approx \left(\frac{1}{2\omega+1} \mathbb{Z}^n_{2\omega+1}, +, 0 \right)$$
Case study - wavefunctions with periodic boundary

The position and momentum observables are strongly complementary, a manifestation of the Weyl Canonical Commutation Relations.

- Position observable defined by the group algebra for boosts B_k.
- Momentum observable acts as the group algebra for translations T_x:

$$\left\{ |\delta_x\rangle \bigg| x \in \frac{1}{2\omega + 1}^n \mathbb{Z}_{2\omega + 1} \right\}, \quad \Rightarrow \quad \simeq \left(\frac{1}{2\omega + 1}^n \mathbb{Z}_{2\omega + 1}, +, 0 \right)$$

The Weyl Canonical Commutation Relations in graphical form:
Wavefunctions on an n-dimensional lattice \mathbb{Z}^n.

(i) Underlying Hilbert space $L^2[\mathbb{Z}^n]$.

(ii) Complete orthonormal basis of position eigenstates:

$$|\delta_k\rangle := h \mapsto \begin{cases} 1 & \text{if } k = h \\ 0 & \text{otherwise} \end{cases}$$

(iii) Dimension $D := (2\omega + 1)^n$, where ω is some infinite natural.
Wavefunctions on an n-dimensional lattice \mathbb{Z}^n.

(i) Underlying Hilbert space $\mathcal{L}^2[\mathbb{Z}^n]$.

(ii) Complete orthonormal basis of position eigenstates:

$$|\delta_k\rangle := h \mapsto \begin{cases} 1 & \text{if } k = h \\ 0 & \text{otherwise} \end{cases}$$

(iii) Dimension $D := (2\omega + 1)^n$, where ω is some infinite natural.

Classical structure corresponding to the position observable:

$$\begin{array}{c}
\sum_{k_1=-\omega}^{+\omega} \ldots \sum_{k_n=-\omega}^{+\omega} |\delta_k\rangle \otimes |\delta_k\rangle \otimes \langle \delta_k| \\
\sum_{k_1=-\omega}^{+\omega} \ldots \sum_{k_n=-\omega}^{+\omega} \langle \delta_k|
\end{array}$$
The following multiplication and unit define a unital quasi-special commutative \dagger-Frobenius algebra, with normalisation factor $(2\omega + 1)^n$:

\[: = \sum_{k_1, h_1 = -\omega}^{+\omega} \cdots \sum_{k_n, h_n = -\omega}^{+\omega} \ket{\delta_{k+h}} \otimes \bra{\delta_k} \otimes \bra{\delta_h} \]

\[\circ : = \ket{\delta_0} \]

Its classical states are those in the following form, for $x \in \frac{1}{2}(2\omega + 1) \star \mathbb{Z}$:

\[\ket{\chi_x} : = \sum_{k_1, h_1 = -\omega}^{+\omega} \cdots \sum_{k_n, h_n = -\omega}^{+\omega} \ket{\delta_k} e^{-i\frac{\pi}{\omega} k \cdot x} \otimes \bra{\delta_h} \]

We call them the momentum eigenstates (they are self-evidently plane-waves), and the momentum observable. Once again, position and momentum observables are strongly complementary.
Case study - wavefunctions on lattices

The following multiplication and unit define a unital quasi-special commutative \(^\dagger \)-Frobenius algebra, with normalisation factor \((2\omega + 1)^n\):

\[
\otimes_{k_1, h_1 = -\omega}^{+\omega} \ldots \otimes_{k_n, h_n = -\omega}^{+\omega} |\delta_{k+h}\rangle \otimes |\delta_k\rangle \otimes |\delta_h\rangle
\]

\[
\circ := |\delta_0\rangle
\]

Its classical states are those in the following form, for \(x \in \frac{1}{2\omega + 1} \star \mathbb{Z}_{2\omega + 1}^n \):

\[
|\chi_x\rangle := \sum_{k_1 = -\omega}^{+\omega} \ldots \sum_{k_n = -\omega}^{+\omega} e^{-i2\pi k \cdot x} |\delta_k\rangle
\]

We call them the momentum eigenstates (they are self-evidently plane-waves), and \(\circ \) the momentum observable.
Case study - wavefunctions on lattices

The following multiplication and unit define a unital quasi-special commutative \(\dagger \)-Frobenius algebra, with normalisation factor \((2\omega + 1)^n\):

\[
\begin{align*}
\text{\bigcirc} & := \sum_{k_1,h_1=-\omega}^{+\omega} \cdots \sum_{k_n,h_n=-\omega}^{+\omega} |\delta_{k+h}\rangle \otimes |\delta_k\rangle \otimes |\delta_h\rangle \\
\text{\bigcirc} & := |\delta_0\rangle
\end{align*}
\]

Its classical states are those in the following form, for \(x \in \frac{1}{2\omega+1} \star \mathbb{Z}^n_{2\omega+1} \):

\[
|\chi_x\rangle := \sum_{k_1=-\omega}^{+\omega} \cdots \sum_{k_n=-\omega}^{+\omega} e^{-i2\pi k \cdot x} |\delta_k\rangle
\]

We call them the **momentum eigenstates** (they are self-evidently plane-waves), and \(\circ \) the **momentum observable**. Once again, position and momentum observables are strongly complementary.
A common trick in non-standard analysis sees standard real space approximated by non-standard lattices of infinitesimal mesh.

4For the sceptics out there: an odd non-standard natural $\kappa \in \ast\mathbb{N}$ is an equivalence class $\kappa = [(k_i)_{i \in \mathbb{N}}]$ of sequences the elements of which are “asymptotically odd”, or “odd almost everywhere”, according to the chosen non-principal ultrafilter \mathcal{F} on \mathbb{N}.
A common trick in non-standard analysis sees standard real space approximated by non-standard lattices of infinitesimal mesh.

(i) Fix two odd $4\omega_{uv}, \omega_{ir} \in \star \mathbb{N}$.

For the sceptics out there: an odd non-standard natural $\kappa \in \star \mathbb{N}$ is an equivalence class $\kappa = [(k_i)_{i \in \mathbb{N}}]$ of sequences the elements of which are “asymptotically odd”, or “odd almost everywhere”, according to the chosen non-principal ultrafilter \mathcal{F} on \mathbb{N}.
Interlude - approximating real space by lattices

A common trick in non-standard analysis sees standard real space approximated by non-standard lattices of infinitesimal mesh.

(i) Fix two odd\(^4\) infinite naturals \(\omega_{uv}, \omega_{ir} \in \mathbf{\star \mathbb{N}}\).

(ii) Write \(\omega_{uv}\omega_{ir} = 2\omega + 1\) for some (unique) infinite natural \(\omega \in \mathbf{\star \mathbb{N}}\).

\(^4\)For the sceptics out there: an odd non-standard natural \(\kappa \in \mathbf{\star \mathbb{N}}\) is an equivalence class \(\kappa = [(k_i)_{i \in \mathbb{N}}]\) of sequences the elements of which are “asymptotically odd”, or “odd almost everywhere”, according to the chosen non-principal ultrafilter \(\mathcal{F}\) on \(\mathbb{N}\).
Interlude - approximating real space by lattices

A common trick in non-standard analysis sees standard real space approximated by non-standard lattices of infinitesimal mesh.

(i) Fix two odd\(^4\) infinite naturals \(\omega_{uv}, \omega_{ir} \in \star \mathbb{N}\).

(ii) Write \(\omega_{uv} \omega_{ir} = 2\omega + 1\) for some (unique) infinite natural \(\omega \in \star \mathbb{N}\).

(iii) Consider the periodic lattice \(\frac{1}{\omega_{uv}} \mathbb{Z}^n_{2\omega+1}\) of infinitesimal mesh in the non-standard torus \((\star \mathbb{R} / \omega_{ir} \mathbb{Z})^n\).

\(^4\)For the sceptics out there: an odd non-standard natural \(\kappa \in \star \mathbb{N}\) is an equivalence class \(\kappa = [(k_i)_{i \in \mathbb{N}}]\) of sequences the elements of which are “asymptotically odd”, or “odd almost everywhere”, according to the chosen non-principal ultrafilter \(\mathcal{F}\) on \(\mathbb{N}\).
A common trick in non-standard analysis sees standard real space approximated by non-standard lattices of infinitesimal mesh.

(i) Fix two odd\(^4 \) infinite naturals \(\omega_{uv}, \omega_{ir} \in \#\mathbb{N} \).

(ii) Write \(\omega_{uv}\omega_{ir} = 2\omega + 1 \) for some (unique) infinite natural \(\omega \in \#\mathbb{N} \).

(iii) Consider the periodic lattice \(\frac{1}{\omega_{uv}} \#\mathbb{Z}_{2\omega+1}^n \) of infinitesimal mesh in the non-standard torus \(\#\mathbb{R}/\omega_{ir}\#\mathbb{Z} \).

(iv) The standard reals \(\mathbb{R} \) are recovered by restricting to the (aperiodic) sub-lattice of finite elements \(\frac{1}{\omega_{uv}} \#\mathbb{Z}_{2\omega+1}^n \cap \#\mathbb{R}/\omega_{ir}\#\mathbb{Z} \), and then quotienting by infinitesimal equivalence \(\simeq \):

\[
\mathbb{R} \simeq \left(\frac{1}{\omega_{uv}} \#\mathbb{Z}_{2\omega+1}^n \cap \#\mathbb{R}/\omega_{ir}\#\mathbb{Z} \right) / \simeq
\]

\(^4\)For the sceptics out there: an odd non-standard natural \(\kappa \in \#\mathbb{N} \) is an equivalence class \(\kappa = [(k_i)_{i \in \mathbb{N}}] \) of sequences the elements of which are “asymptotically odd”, or “odd almost everywhere”, according to the chosen non-principal ultrafilter \(\mathcal{F} \) on \(\mathbb{N} \).
Wavefunctions in n-dimensional real space \mathbb{R}^n.

(i) Underlying Hilbert space $L^2[\mathbb{R}^n]$.

(ii) Orthonormal set of non-standard momentum eigenstates:

$$|\chi_p\rangle := x \mapsto \frac{1}{\sqrt{\omega_{uv}}} e^{-i2\pi (p \cdot x)}, \text{ for all } p \in \frac{1}{\omega_{uv}} \mathbb{Z}_{2\omega+1}^n$$

(iii) Dimension $D := (2\omega + 1)^n$, where $2\omega + 1 = \omega_{uv}\omega_{ir}$.

S Gogioso, F Genovese (Oxford) Infinite-dimensional CQM CLAP Scotland 21 / 24
Wavefunctions in n-dimensional real space \mathbb{R}^n.

(i) Underlying Hilbert space $\mathcal{L}^2[\mathbb{R}^n]$.

(ii) Orthonormal set of non-standard **momentum eigenstates**:

$$|\chi_p\rangle := \mathbf{x} \mapsto \frac{1}{\sqrt{\omega_{uv}}} e^{-i2\pi (p \cdot \mathbf{x})}, \text{ for all } p \in \frac{1}{\omega_{uv}} * \mathbb{Z}^{n}_{2\omega+1}$$

(iii) Dimension $D := (2\omega + 1)^n$, where $2\omega + 1 = \omega_{uv}\omega_{ir}$.

Classical structure corresponding to the **momentum observable**:

$$\begin{array}{c}
\sum_{p_1=-\omega_{ir}}^{+\omega_{ir}} \ldots \sum_{p_n=-\omega_{ir}}^{+\omega_{ir}} |\chi_p\rangle \otimes |\chi_p\rangle \otimes \langle \chi_p| \\
\sum_{p_1=-\omega_{ir}}^{+\omega_{ir}} \ldots \sum_{p_n=-\omega_{ir}}^{+\omega_{ir}} \langle \chi_p|
\end{array}$$
The following multiplication and unit define a unital quasi-special commutative \dagger-Frobenius algebra, with normalisation factor $(2\omega + 1)^n$:

$$
\begin{align*}
&:= \sum_{p_1,q_1=-\omega_i}^{+\omega_i} \cdots \sum_{p_n,q_n=-\omega_i}^{+\omega_i} |\chi_{p+q}\rangle \otimes \langle \chi_p| \otimes \langle \chi_q| \\
&= |\chi_0\rangle
\end{align*}
$$
Case study - wavefunctions in real space

The following multiplication and unit define a unital quasi-special commutative †-Frobenius algebra, with normalisation factor \((2\omega + 1)^n\):

\[
\begin{align*}
\prod_{\pm \omega} \ &= \sum_{p_1, q_1 = -\omega}^{+\omega} \cdots \sum_{p_n, q_n = -\omega}^{+\omega} |\chi_{p+q}\rangle \otimes \langle \chi_p| \otimes \langle \chi_q| \\
\sum_{\pm \omega} \ &= \ |\chi_0\rangle
\end{align*}
\]

Its classical states are those in the following form, for \(x \in \frac{1}{\omega \pi} \ast \mathbb{Z}_{2\omega+1}^n\):

\[
|\delta_x\rangle := \sum_{p_1 = -\omega}^{+\omega} \cdots \sum_{p_n = -\omega}^{+\omega} \chi_p(x)^* |\chi_p\rangle
\]

Once again, the classical states for \(\bullet\) behave as Dirac deltas, so we call them the **position eigenstates**, and \(\bullet\) the **position observable**.
The following multiplication and unit define a unital quasi-special commutative \dagger-Frobenius algebra, with normalisation factor $(2\omega + 1)^n$:

$$\begin{align*}
\bullet &:= \sum_{p_1, q_1 = -\omega}^{+\omega} \cdots \sum_{p_n, q_n = -\omega}^{+\omega} |\chi_{p+q}\rangle \otimes \langle \chi_p| \otimes \langle \chi_q|
\end{align*}$$

Its classical states are those in the following form, for $x \in \frac{1}{\omega} \ast \mathbb{Z}_{2\omega+1}$:

$$|\delta_x\rangle := \sum_{p_1 = -\omega}^{+\omega} \cdots \sum_{p_n = -\omega}^{+\omega} \chi_p(x)^* |\chi_p\rangle$$

Once again, the classical states for \bullet behave as Dirac deltas, so we call them the position eigenstates, and \bullet the position observable. And once again the position and momentum observables are strongly complementary.
The framework already covers a lot more material:

- quantum fields on infinite lattices (non-separable);
- quantum fields in real spaces (non-separable);
- quantum algorithm for the Hidden Subgroup Problem on \mathbb{Z}^n;
- Mermin-type non-locality arguments for infinite-dimensional systems.
More stuff out there, and a lot more to come

The framework already covers a lot more material:

- quantum fields on infinite lattices (non-separable);
- quantum fields in real spaces (non-separable);
- quantum algorithm for the Hidden Subgroup Problem on \mathbb{Z}^n;
- Mermin-type non-locality arguments for infinite-dimensional systems.

And even more material is currently being worked out:

- position/momentum duality, quantum symmetries and dynamics;
- applications to other quantum protocols (e.g. RFI quantum teleport’n);
- wavefunctions/fields over general locally compact abelian Lie groups;
- wavefunctions/fields over Minkowski space;
- connections with Feynman diagrams.
Thank You!

Thanks for Your Attention!

Any Questions?

S Abramsky, C Heunen. *H*-algebras and nonunital FAs*. arXiv:1011.6123

CQM := “Categorical Quantum Mechanics”
FA := “Frobenius algebra”

5 This is a revised and extended version, and will be out by the end of the week.