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The very basics

Cryptography

The art and science of
ensuring information can
only be understood by
certain people.

Cryptanalysis

The art and science of
ensuring you are
one of those people.

“It is clear that the cryptographers are winning the
information war . . .

. . . experience tells us that every unbreakable cipher
eventually succumbs to cryptanalysis.”

– The Code Book, Simon Singh
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An overview ...

This talk is about:

1 Reasoning about cryptographic protocols

using categorical diagrams.

2 Some unexpected connections with

the foundations of category theory.

‘Cryptography for category theorists’, not vice versa!
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Completely unbreakable encryption(!)

Alice and Bob wish to communication privately.

They meet up to generate a large string of

random binary digits: ps1, s2, . . . snq P Zn
2.

This is their shared secret (the one-time pad).

Alice later wishes to send to Bob a message

pm1,m2, . . . ,mk q P Zk
2

She (insecurely) transmits pm1 ` s1,m2 ` s2, . . . ,mk ` sk q.

Everyone can see this message, but a copy of

the shared secret is needed to decode it:

pm1`s1`s1,m2`s2`s2, . . . ,mk`sk`sk q “ pm1,m2, . . . ,mk q
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Perfect, but impractical (I)

“Anyone who considers algorithmic methods of
producing random digits is, of course, living in a state of
sin.” – J. von Neumann

“One time pads are an absolutely *ancient* idea that is easy to implement by means of an ebook that both parties

have to independently download” – register.co.uk comments 01/04/2017.

It is important that the shared secret is not reused!

The Venona project (1943-80)

An attack on Soviet encryption by the U.S.

Signals Intelligence Unit or National Security Agency

Spectacular sucesses due to re-use of one-time pads.
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‘We’ll meet again ...’

When their one-time pad has been used up, Alice and Bob
have two options:

1 meet up again, to generate more random sequences.

2 rely on a trusted network of couriers.

Both of these options are inconvenient & insecure.

Is it possible for Alice and Bob to share a secret

without ever having to meet?
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Public Key Distribution

Alice and Bob can come to share a secret, even when all their
communications are being monitored.

Diffie – Hellman key exchange (1976)

Relies on the difficulty of computing discrete logarithms.

Very heavily used online.

Highly vunerable to quantum computers.

Security through obscurity?

Previously discovered by Ellis, Cocks, Williamson of GCHQ.
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A motivating thought-experiment

Prior to D.-H (or E-C-W), it was believed that such
secret-sharing should be possible.

The ‘untrusted courier’ scenario

Alice wishes to send Bob some physical object.
Alice padlocks it into a box & sends the locked box to Bob.
Bob is unable to open it; he secures the box with his own
padlock & returns it to Alice.
Alice is unable to open it; she removes her padlock &
sends it back to Bob.
Bob receives a box that is secured with his padlock only.
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Commutativity & the untrusted courier

Algebraic requirements ...

Locking operations have left inverses.

l

Idl

��

Alice Locks

~~

Bob Locks

  
l

Alice Unlocks   

l

Bob Unlocks~~
l

Locking operations commute with each other.

l
Alice Locks //

Bob Locks
��

l

Bob Locks
��

l
Alice Locks

// l
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Order theory & the untrusted courier

Epistemic requirements ...

Only Alice can perform:

Alice locks : l Ñ l

Alice Unlocks : l Ñ l

Only Bob can perform:

Bob Locks : l Ñ l

Bob Unlocks : l Ñ l
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Protocols as diagrams

Aims and Objectives:

1 Express entire protocols as commuting diagrams.

2 Use a single diagram to model

Algebra
Commuting (canonical?) diagrams

Knowledge
Partial order enrichment

Information flow
2-categorical structure

3 Use these to attack study protocols.
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A family of key exchange protocols

For obvious (quantum) reasons, we seek secret-sharing
protocols that are not based on prime fields / factorization /
discrete logarithms / etc.

Recent work (January 2017) suggests that graph isomorphism
is also not a good place to start:

“Graph isomorphism in quasi-polynomial time” –
Lásló Babai, Univ. Chicago

We will look at some proposed algebraic protocols instead.
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An algebraic approach to secret sharing

Commuting Action Key Exchange (CAKE)

A general family of key exchange (secret sharing) protocols.

Introduced in 2004 by V. Shpilrain & G. Zapata

Includes many interesting protocols as special cases

(Ko-Lee key exchange, Braid group protocols, Shpilrain –
Ushakov protocol, &c..).

We will look at the semigroup (monoid) version:

Example 3, Section 3 of Combinatorial Group Theory and

Public Key Cryptography S.-Z. (2004).
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CAKE – sharing protocol
Alice and Bob will come to share a secret element of a semigroup M.

1 Alice and Bob both have large key pools A,B ĎM that satisfy

ab “ ba @ a P A, b P B.

2 A fixed public root element γ PM is chosen.
3 Alice chooses her private key, pα1, α2q P Aˆ A, and publicly

broadcasts α1γα2 PM
4 Bob chooses his private key,pβ1, β2q P B ˆ B, and publicly

broadcasts β1γβ2 PM.
5 Alice computes α1β1γβ2α2 and Bob computes β1α1γα2β2.

By the point-wise commutativity of A,B ĎM, these are equal, giving
Alice and Bob’s shared secret σ as

σ “ α1β1γβ2α2 “ β1α1γα2β2
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In a clearer form!

The algebraic data:

Alice Public Bob
Public root γ

Selects private Selects private
α1, α2 P A β1, β2 P B

Sends α1γα2
PA //

PBoo Sends β1γβ2

Computes: α1PBα2 Computes: β1PAβ2
By commutativity,
these are equal.
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Knowns and unknowns in semigroup CAKE

The participants: t Alice, Bob, Eve u.

The epistemic data:

Everybody
γ,PA,PB

Alice & Bob
σ

Alice
α1 , α2

Bob
β1 , β2

Nobody
α1β1 , α2β2
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CAKE as a commuting diagram over a monoid

The required arrows are:
1 The root γ
2 Alice & Bob’s private keys, pα1, α2q and pβ1, β2q

3 Alice & Bob’s public announcements, PA and PB

4 Their shared secret σ

‚

α2

ww

σ //

β2

‚

‚

β2

��

PB
//

β2α2

��

��

‚

α1

77

‚

α2

ww

PA
// ‚

β1

^^

‚ γ // ‚

α1

77

β1

^^
β1α1

OO
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Combining algebraic & epistemic data

Introducing epistemic data to diagrams

Form the powerset-lattice of participants.

Label each edge in the diagram by an element of this
lattice:

‚
f ,X // ‚

X P 2tAlice,Bob,Eveu consists of participants who

know the value of f , or (more accurately)

are able to perform the operation f .
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CAKE, in summary

The Algebraic-Epistemic diagram for semigroup-CAKE:

‚

α2,tAu

ww

σ,tA,Bu //

β2,tBu

‚

‚

β2,tBu

��

PB ,J //

β2α2,K

��

��

‚

α1,tAu

77

‚

α2,tAu

ww

PA,J // ‚

β1,tBu

^^

‚ γ,J // ‚

α1,tAu

77

β1,tBu

^^
β1α1,K

OO
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Commuting diagrams??

Treating 2tA,B,Eu as a ^-monoid:

Question: Is this diagram for CAKE a commuting diagram

over the product category Mˆ 2tA,B,Eu ?

Answer: No!

Turning a bug into a feature: The reasons why / points at
which it fails to commute are highly significant.

1 Information sharing by participants.

2 Different routes to calculating the same value.
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Failure of commutativity & public announcements

Diagram 1 commutes, Diagram 2 is a slice of CAKE.

‚

β2,tBu
��

β1γβ2,tBu //

Diagram D1

‚ ‚

β2,tBu
��

β1γβ2,J //

Diagram D2

‚

‚
γ,tA,B,Eu

// ‚

β1,tBu

OO

‚
γ,tA,B,Eu

// ‚

β1,tBu

OO

1 In diagram 1, Bob computes β2γβ1, and keeps quiet.
2 In diagram 2, Bob computes β2γβ1, and tells the whole

world the result.
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Public announcements as 2-categorical data

Announcements are 2-cells:

‚

β2,tBu

��

β1γβ2,J // ‚

p“,ďq

KS

‚
γ,tA,B,Eu

// ‚

β1,tBu

OO

but not all such 2-cells are announcements!

In a well-designed protocol ...

we have a single simple property they satisfy.
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A simple definition ...

A diagram D over a Poset enriched category satisfies the edge-path
condition (EPC) when:

Given an edge and a path between the nodes X and Y , we
have the following 2-cell:

. . .

óďX,Y
gn

''X
f

//

g1

77

Y

Given nodes X ,Y with paths but no edges between them, we
have the following 2-cell:

. . .

ó“X,Y
gn

''X

g1

77

h1// . . . hk
// Y
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The Edge-Path condition & protocols

Model protocols using EPC diagrams over a product category C ˆ L.

C models the algebraic structure, and is enriched over the
discrete partial order.

L models the participants / epistemic data, and has more
interesting poset-enrichment.

Consider left- and right- projections

For such a diagram D,

The projection π1pDq is a commuting diagram over C

The projection π2pDq simply satisfies the E-P condition.
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General vs. Concrete

We can define a C-EPO diagrams over any product category
C ˆ L, where L is enriched over Poset.

For this talk, we simply need L to be a lattice
(usually the powerset-lattice of participants).

Even for current protocols, we need C to be a category,
not just a monoid.
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Interpreting the edge-path condition

Motivation: Why such conditions on diagrams??

Experimentally – we always find this to be the case.

Conceptually – we will justify this by considering
powerset-lattices of participants.

Practically – if this fails, we are missing something!
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The edge-path condition: who knows what?

Consider a fragment of the A-E diagram for some protocol:

‚
a2,R2 // . . .

an´1,Rn´1 // ‚

an,Tn
��

H

a1,R1

OO

b,Q
// K

The edge-path condition states that

b “ an . . . a1 and
n
ľ

j“1

Rj ď Q

In terms of powerset-lattices

Any participant x P
Źn

j“1 Rj who knows (is able to perform)
each operation tajuj“1..n certainly knows (is able to perform)
the composite rn . . . r1.
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No participant left behind
Consider a fragment of an A-E diagram for some protocol with a
single edge and multiple paths from node H to node K .

H b,Q //

a1,R1

��

a2,R2

!!an,Rn ++ K

...

The edge-path condition states that

b “ a1 “ . . . “ an and Rj ď Q @ j “ 1..n

In terms of powerset-lattices

The members of R1,R2, . . . ,Rn are all able to calculate (perform) b,
albeit in different ways. Therefore, the subset of participants who can
perform b contains each Rj .

peter.hines@york.ac.uk Category Theory in Cryptography



A worked example

Tripartite Diffie-Hellman key exchange
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The usual story ...

Three participants tAlice,Bob,Carolu will come to share a
secret.

Start with a (public) prime p and root g P Zp.

Alice, Bob, and Carol have private keys a,b, c P Zp.

They will construct the shared secret gabc “ gbca “ gcab.

All three of them are required, to construct this.

The usual evesdropper Eve can see all communication.
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Tripartite Diffie-Hellman, Round I

Based on the public root g, and their private keys a,b, c,

1 Alice computes ga and announces the result to Bob.

2 Bob computes gb and announces the result to Carol.

3 Carol computes gc and announces the result to Alice.
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Tripartite Diffie-Hellman, Round II

Based on the messages they receive,

1 Alice computes pgcq
a
“ gca and announces the result to

Bob.

2 Bob computes pgaq
b
“ gab and announces the result to

Carol.

3 Carol computes
`

gb
˘c
“ gbc and announces the result to

Alice.
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Tripartite Diffie-Hellman, Round III

They are now able to compute the shared secret.

1 Alice computes
`

gbc
˘a
“ gabc .

2 Bob computes pgcaq
b
“ gabc

3 Carol computes
`

gab
˘c
“ gabc .
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The underlying category

The action takes place in a small subcategory of Set:

Objects: Zp and t˚u

Arrows:

1 modular exponentiation p qx : Zp Ñ Zp, for all x “ 0 . . . p ´ 1

2 selecting an element rxs : t‹u Ñ Zp, where rxsp‹q “ x P Zp
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The core identity

The basic identity is ppp qaqbqc “ ppp qbqcqa “ ppp qcqaqb

Zp

p qc

��

Zp

p qb

��

Zp

p qb

>>

p qc

''

p qaoo

Zp

p qa

~~

Zp

p qa

��

Zp p qc // Zp

Zp

p qb

gg
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Adding in the root element
We require these equalities applied to the root g P Z.

Zp

p q
c

��

Zp

p q
b

��

Zp

p q
b

EE

p q
c

''

p q
a

oo

Zp

p q
a

��

t˚u

rgabcs

��

rgs

OO

Zp

p q
a

~~
Zp p q

c // Zp

Zp

p q
b

gg
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What announcements are made?

The elements ga,gb,gc ,gab,gbc ,gca are all announced:

Zp

p qc

��

Zp

p qb

��

Zp

p qb
>>

p qc

))

p qaoo

Zp

p qa

��

t˚u

rgabcs

��

rgs

OO

rgas

bb

rgabs

||

rgbs

GG

rgbcs

&&

rgcs

55

rgcas

��

Zp

p qa
xx

Zp p qc // Zp

Zp

p qb

ii
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Who knows what?
Adding in the epistemic data:

Zp

p q
c ,tCu

��

Zp

p q
b,tBu

��

Zp

p q
b,tBu

>>

p q
c ,tCu
))

p q
a,tAuoo

Zp

p q
a,tAu

��

t˚u

rgabcs,tA,B,Cu

��

rgs,J

OO

rgas,tA,B,Eu

^^

rgabs,tB,C,Eu

��

rgbs,tB,C,Eu

II

rgbcs,tC,A,Eu

&&

rgcs,tC,A,Eu

99

rgcas,tA,B,Eu

��

Zp

p q
a,tAu~~

Zp
p q

c ,tCu
// Zp

Zp

p q
b,tBu

ii
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Does this help??

Simple diagram-chasing makes it easy to answer some questions:

Question Can we vary the order of computations /
announcements?

Answer Yes, quite a bit!

Question Does it matter if any of the participants (apart from
Eve) are evesdropping?

Answer No, not at all!

Question What does Eve need to know, to find the shared
secret?

Answer Any of the private keys will do!

We can also compare approaches to the same problem.
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Another approach ...

How else may Alice, Bob, and Carol communicate privately?

As before, assume:

Prime p,

Public Root g P Zp

Private keys a,b, c P Zp

Every pair will compute a distinct shared secret.

Alice ´´Bob Bob ´´Carol Carol ´´Alice
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Pairwise three-party Diffie-Hellman

Alice, Bob, and Carol compute

ga and gb and gc

respectively. They publicly announce their results.
They each compute a pair of shared secrets:

Alice computes gba and gca

Bob computes gcb and gab

Carol computes gac and gbc
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A-E diagram for 3-way secret sharing

The (commuting) algebraic labelling:

Zp Zp

p qc

��

p qaoo

Zp

p qc

��

p qb
88

Zp

p qb
88

p qc

��

p qaoo

t˚u

rgabs

OO

rgcas

xx

rgbcs //

g

CC

rgas

[[

rgcs

&&

rgbs

??

Zp

Zp Zp
p qa

oo
p qb

88
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A-E diagram for 3-way secret sharing

The (EPC satisfying) lattice labelling:

Zp Zp

tCu

��

tAuoo

Zp

tCu

��

tBu
88

Zp

tBu
88

tCu

��

tAuoo

t˚u

tA,Bu

OO

tA,Cu

xx

tB,Cu //

J

CC

J

[[

J

&&

J

??

Zp

Zp Zp
tAu

oo
tBu

88
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Comparing this approach ...

Again, by simple diagram-chasing:

Question Can any additional information be announced?

Answer No, not without compromising the protocol!

Question What happens if Eve discovers (say) Bob’s secret key?

Answer She can discover two out of the three shared secrets.

Question Is this the same as tripartite Diffie-Hellman?

Answer No, definitely not!
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Can we go further??

Drawing diagrams gives a visual representation of
algebraic relationships, epistemic knowledge,

and information flow.

The underlying algebra has been treated as a ‘black box’.

Is category theory relevant to the underlying algebra?
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Back to CAKE

Recall the CAKE protocol

This is a general recipe for producing public key protocols.

The key ingredient is the choice of semigroup.

In fact, any structure with an associative composition will do.

We could even use canonical coherence isomorphisms!
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An interesting first choice ...

CAKE was first proposed in:

Combinatorial group theory and public key cryptography (2004)

General proposals for cryptosystems based on algebraic
structures.

A concrete protocol was given in:

Thompson’s group and Public Key Cryptography (2004)

The underlying structure was Thompson’s group F .

peter.hines@york.ac.uk Category Theory in Cryptography



Any particular reasons?

From TFA

“This group has several properties that make it
particularly fit for cryptographic purposes.”

“The difficulty of solving equations “resembles the
factorization problem which is at the heart of the
RSA cryptosystem.”
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A practical reason ...

Group-based cryptosystems are susceptible

to length-based cryptanalysis (— pioneered by Shamir).

This works best with groups that are

‘close to being free’ – Folklore

Thompson’s group F is ‘as far from free as possible’.

Any quotient causes a collapse to an abelian monoid.

This Folklore is incorrect: “Length-based crytanalysis: the case of
Thompson’s group” – Ruinsky, Shamir, Tsaban (2007)
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This is an ex-protocol.

This protocol is not currently in use!

F. Matucci (2006)

The Shpilrain-Ushakov Protocol for Thompson’s Group F is
always breakable

Ruinskiy, Shamir, Tsaban (2007)

Length-Based Cryptanalysis: the case of Thompson’s group

Conjecture: “ no practical public key cryptosystem
based on the difficulty of solving an equation in this group
can be secure.”
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Thompson’s group F and associativity

R. McKenzie, R. Thompson (1971): Close connection between
Thompson’s group F , and associativity laws

K. Brown (2004) A group homomorphism ‹ : F ˆ F Ñ F that
is associative up to isomorphism.

M. V. Lawson (2004) The canonical associativity isomorphisms
for a class of single-object tensors is precisely F .

P. Dehornoy (2005) ‘The only [non-trivial] relations in this
presentation of F correspond to the well-known
MacLane-Stasheff pentagon.’

M. Brinn (2005) ‘the resemblance of the usual coherence
theorems with Thompson’s group F ’.

M. Fiore, T. Leinster (2010) Thompson’s group F is the
symmetry group of an idempotent U in the free strict monoidal
category generated by U.
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Cryptographic protocols as canonical diagrams

Based on these: Thompson’s group F is a group of
associativity isomorphisms, in some setting.

Diagrams for the Shpilrain-Ushakov protocol
are commuting canonical diagrams

in the sense of MacLane’s coherence theorem.
‚

α2

xx

σ //

β2

‚

‚

β2

��

PB //

β2α2

��

��

‚

α1

88

‚

α2

xx

PA // ‚

β1

^^

‚ γ // ‚

α1

88

β1

^^

β1α1

OO

The precise setting needs some explanation ...
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A bit of terminology ...

A semi-monoidal category pC,b, τ , , q is one that satisfies
MacLane’s axioms for a monoidal category,

Functoriality
Naturality
Pentagon

except for those relating to the unit object.

The lack of a unit allows us to talk about semi-monoidal
monoids, or monoids with tensors.
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When we need a unit object

We rely on the theory of Saavedra units
Catégories Tannakiennes A. Saavedra (1972)

Elementary Remarks on Units J. Kock (2008)

Coherence for Weak Units A. Joyal, J. Kock (2011)

Kock’s simplification
A unit object U is a cancellative pseudo-idempotent

The functors U b and b U are fully faithful, and U b U – U.
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In the trivial case:

For a monoid M with a tensor ‹ (e.g. Thompson’s group F)
the unique object is a unit object precisely when

p1 ‹ q, p ‹ 1q : MÑM

are isomorphisms.

The homology of Thompson’s F – K. Brown (2004)

K. Brown emphasises that the tensor p ‹ q on F
does not satisfy this condition.
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A relevant cohence theorem:

Coherence and Strictification for Self-Similarity
Journal of Homotopy & related structures (PMH 2016)

A semi-monoidal equivalence of monogenic categories
Self-similarity S – S b S Strict self-similarity S “ S ‹ S

up to isomorphism

(a.k.a. idempotency) (a.k.a. being a monoid)
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A relevant cohence theorem:

Coherence and Strictification for Self-Similarity
Journal of Homotopy & related structures (PMH 2016)

Dropping in the ’generic idempotent’ of F.– L. (2010)
The group of associativity isomorphisms for a tensor on a
monoid, in the ‘free’ setting is precisely Thompson’s group F .

As proved by M. V. Lawson (2004) in the case where the tensor
has projections / injections.
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What does it mean to be ‘free’?

Proposition (from PMH 2016):

A tensor p ‹ q : MˆMÑM on a monoid
is strictly associative

ðñ

The unique object m is the unit object.

Proof (ð) (Standard Theory ...) By the Eckmann-Hilton argument

on the interchange law, the endomorphism monoid of a unit object

is abelian, and the tensor coincides (up to isomorphism) with this

abelian, associative, composition. l
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Is it because I is strict?

Proof (ñ) The map

η “ p1 ‹ ‹ 1q : M ãÑM

is an injective monoid homomorphism, so M – ηpMq.

Define a semi-monoidal tensor on its image, by, for all
ηprq, ηpsq P ηpMq

ηprq d ηpsq “ 1 ‹ pr ‹ sq ‹ 1

By construction, pM, ‹q – pηpMq,dq.

(Hence the unique object of pηpMq,dq is idempotent).
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Freedom is just another word for ...

By definition, for all ηpf q P ηpMq,

1d ηpf q “ 1 ‹ p1 ‹ f q ‹ 1
“ p1 ‹ 1q ‹ f ‹ 1
“ 1 ‹ f ‹ 1
“ ηpf q

Thus 1d “ IdηpMq “ d 1, so the unique object
of pηpMq,dq is a unit object!

However, pηpMq,dq – pM, ‹q. l

Corollary Let M be a monoid with a tensor. Then either:

1 The group of associativity iso.s is isomorphic to F
2 M is an abelian monoid, and tensor coincides with composition.
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The key properties are categorical

One of the key properties required of F is highly categorical.

What about the others??

A particularly important one!

It “resembles the factorization problem which is at the heart of
the RSA cryptosystem.” – Shpilrain & Ushakov (2004)

Can there really be a connection
between coherence and modular arithmetic??
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Some relevant work:

Geometry of Interaction (I) — J.-Y. Girard (1988)

A representation of Linear Logic in terms of partial isomorphisms

(... after getting rid of some non-essential structure).

The representation of conjunction

pf ‹ gqpnq “

$

’

’

&

’

’

%

2f
` n

2

˘

n pmod 2q “ 0

2g
` n´1

2

˘

` 1 n pmod 2q “ 1
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Girard as a category theorist

This ‘conjunction’ was studied in category-theoretic & inverse
semigroup theoretic terms by PMH, M. V. Lawson (1998,1999)

It is a semi-monoidal tensor on a monoid.

It is identical (up to scaling) to Brown’s tensor (2004) on a
representation of F

It cannot be strictly associative!

It is one of a large family of tensors
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Associative up to isomorphism

The associativity isomorphism is:

αpnq “

$

’

’

’

’

&

’

’

’

’

%

2n n pmod 2q “ 0,

n ` 1 n pmod 4q “ 1,

n´1
2 n pmod 4q “ 3.

In this concrete setting canonical isomorphisms are modular
arithmetic functions.
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Categorical coherence as modular arithmetic

The components of MacLane’s pentagon

pid ‹ τqpnq “

$

’

’

&

’

’

%

n n pmod 2q “ 0
2n ´ 1 n pmod 4q “ 1
n ` 2 n pmod 8q “ 3
n´1

2 n pmod 8q “ 7

pτ ‹ idqpnq “

$

’

’

&

’

’

%

2n n pmod 4q “ 0
n ` 2 n pmod 8q “ 2
n`1

2 n pmod 8q “ 6
n n pmod 2q “ 1

τ.τpnq “

$

’

’

&

’

’

%

4n n pmod 2q “ 0
n ` 2 n pmod 4q “ 1
n`1

2 n pmod 8q “ 3
n´3

4 n pmod 8q “ 7

τ2pnq “ pτ ‹ idqτpid ‹ τqpnq for all n P N

An arithmetic proof of the Pentagon condition seems quite tedious (!)
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A general setting

(PMH, MVL 1998-99) Any dissection of N into two (infinite) disjoint
subsets N “ AZ B determines a distinct tensor on EndpNq.

Of particular interest ...

In the case where we consider

tn pmod pq “ ku and tn pmod pq ‰ ku

our associativity isomorphisms are modular arithmetic functions.

Are these (as per Shpilrain - Ushakov) related to those used in RSA?
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Another relevant reference:

Modular arithmetic identities from categorical coherence, PMH (2013)

Even when looking at the simplest case (Girard’s conjunction):

The worst-case scenario – exponential / factorial growth

“ categorical diagrams correspond to arithmetic identities over
equivalence classes of the form t2k .N` xux“0...2k´1. ”

“there are n! simple loops to consider.”

“clearly this is unfeasible, even for moderately large diagrams”.
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A concrete example

Consider a canonical diagram over such functions:

N

α
��

Nαoo α´1
//

α´1‹α
��

N

α´1

��
N N

α

��

α´1

��

N

N
pαpα‹1qq‹1

__

α´2
// N

1‹pα´1p1‹αqq

??

How easy is it to decide whether this commutes?

A conjecture
“we suggest that this task is in fact linear, instead of
exponential.” – PMH 2013
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Which canonical diagrams commute?

Recall the proof of MacLane’s coherence theorem for
associativity:

In a (non-abelian) monoid M with a tensor ‹ ,

The commuting canonical diagrams over M

are precisely those that are the image

of some diagram over MacLane’s W,

under the usual substitution functor.
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The great leap backwards ...

Let’s make this picture more complicated!
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The naming of the variables

Start with: a countably infinite set Var of variable symbols.

We work with binary trees, with each leaf labelled by a
distinct variable symbol.

Definition
A pair pS,T q of trees is a linear pair when the leaf traversals of
S and T are the same.
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A posetal groupoid of linear pairs

� �

� �

��

� �

�

Leat Traversal “ pa , b , c , dq

Make a posetal category LP of linear pairs by:

pT ,SqpQ,Pq “
"

pT ,Pq S “ Q,
undefined otherwise.

This does not have a tensor
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Bound variable names are unimportant

Define an equivalence „α on linear pairs by

pQ,Pq „α pT ,Sq

iff there exists an iso. φ : Var Ñ Var such that

pφpQq, φpPqq “ pT ,Sq

Identifying equivalent pairs gives a functor:

LP
{„α //W

(From linear pairs, to MacLane’s category).
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... to get something very familiar!

LP
{„α //

r s

!!

W

Subst

��
M

Given a linear pair pT ,Sq, we denote its image by rT ,Ss PM.

We will call these clauses.
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Two crucial questions:

Given linear pairs pT ,Sq and pV ,Uq in LP

1 How can we decide when rT ,Ss “ rV ,Us ?

2 How can we find a linear pair pQ,Pq such that

rQ,Ps “ rT ,Ss rV ,Us ?

A very simple solution

All we need is that:

i/ M only has one object.

ii/ MacLane’s functor W ÑM preserves tensors.
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Simple consequences:

As M has a unique object,

rT ,T s “ 1M for all trees T

As a corollary:

Given a linear pair pT ,Sq, and a function

θ : Var Ñ VarTree

such that pθpT q, θpSqq is also a linear pair, then

rT ,Ss “ rθpT q, θpSqs
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Substituting trees for variables:

Given a function θ : Var Ñ VarTree, then the linear pairs:

� �

� �

��

� �

�

and

�

����

����

����

���� ����

���� ����

����

are mapped to the same canonical iso. of M.
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Some complexity ...

A linear pair pQ,Pq is in simplest form when,

for any substitution

pQ,Pq “ ηpQ1,P 1q

the pairs pQ,Pq and pQ1,P 1q have the same rank.

Reduction to simplest form accomplished by Opnq algorithm:

R. Grossi (1992) “On finding common sub-trees”.

Counting the linear pairs of rank n needs a surprisingly complex formula
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Characterising composition

Given clauses rV ,Us and rT ,Ss, how can we find a linear pair
pQ,Pq satisfying:

rQ,Ps “ rV ,UsrT ,Ss ?

Assume (w.l.o.g.) that U and T have no variables in common.

Can we find θ : Var Ñ VarTree such that θpUq “ θpT q ??

If so,

rV ,UsrT ,Ss “ rθpV q, θpUqsrθpT q
looooomooooon

, θpSqs “ rθpV q, θpSqs
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Basic Comp. Sci.

Some (very standard!) theory:

Given binary trees T ,U over distinct variable sets,

the set of ‘unifiers’ of S,T ,

tθ : Var Ñ VarTree s.t . θpT q “ θpUqu

is (up to variable renaming) a poset, with top element.

The top element is the most general unifier, written mguT ,U .

Our composition becomes

rV ,UsrT ,Ss “ rθpV q, θpSqs where θ “ mguT ,U
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Clause algebras

This composition was introduced in the clause algebras of

Geometry of Interaction (III)

— J.-Y. Girard (1995)

It is seen in a large range of algebraic settings,

including representations of Thompson’s group:

A correspondence between balanced varieties

— M. V. Lawson (2006)
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Unification, generally

Let L be a term language freely built from:

A set of n-ary predicates tPp , q , Qp q , Rp , , q , Spq , . . .u

A countably infinite set of variable symbols Var

A substitution σ : Var Ñ L assigns terms to variable symbols in L.

A unification of a set of terms tTju
N
j“1 is a substitution µ : Var Ñ L

where
µpTiq “ µpTjq @i , j “ 1 . . .N

Robinson’s Unification Algorithm either:

i/ Finds the (unique) most general unifier of tTju.

ii/ Reports that tTju is not unifiable.
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How complex is Robinson?

What is the complexity of unification?

Robinson (1965)

Exponentially complex Op2nq (in both time & space).

Martelli & Montanari (1976), Paterson & Wegman (1978)

A linear Opnq algorithm for unification.

Ružička & Prı́vara (1982)

Robinson’s original algorithm is made ‘almost linear’

i.e. Opn1`εq complexity, where ε “ 1
Ackpn,nq .
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Some consequences ...

When working with associativity isomorphisms,

The word problem is linear.

Deciding whether a diagram commutes is easy.

Key tools for solving equations involving unknowns:

Unification, Resolution and Robinson’s algorithm.
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A (very simple) algorithm

Deciding whether a canonical diagram commutes

we do not need to consider Opn!q simple loops.

This is a simple application of logic programming

The lazy approach ...

Let PROLOG sort it all out!

Interpret each canonical isomorphism in clause form as a logical
proposition, & see whether they are all consistent.
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More explicitly ...

Let D be a canonical diagram, with nodes tn0, . . .nku.

For each edge labelled with canonical isomorphism c,

relabel with some linear pair pC1,C0q satisfying rC1,C0s “ c.

¨ d //

c
��

¨

e
��

f
��

¨

a

@@

b //

h
''

¨ g // ¨

¨

k

77

(Use distinct variable symbols for each edge!)
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More explicitly ...

Let D be a canonical diagram, with nodes tn0, . . .nku.

For each edge labelled with canonical isomorphism c,

relabel with some linear pair pC1,C0q satisfying rC1,C0s “ c.

¨ pD0,D1q //

pC0,C1q

��

¨

pE0,E1q

��
pF0,F1q

��
¨

pA0,A1q

@@

pB0,B1q //

pH0,H1q

''

¨ pG0,G1q // ¨

¨

pK0,K1q

77

(Use distinct variable symbols for each edge!)
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Computing Unifiers

At the node n0, we have the set of incident edges:

incoming

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

pT1,T 11q pS1,S11q

pT2,T 12q pS2,S12q

. . . . . .

pTx ,T 1xq pSy ,S1y q

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

outgoing

Compute the most general unifier:

θ0 “ mgutT1, . . .Tx ,S11, . . . ,S
1
yu
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The iterative step:

Then apply this unifier θ0 to every edge in the diagram.

We get a new diagram D1 “ θ0pDq, with the same nodes.

Repeat this process for nodes n1,n2, . . .

We get a series of re-labelled diagrams:

Dn`1 “ θnpDnq

If unification ever fails, the original diagram does not commute!
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Assuming success ...

We have a diagram Dn with edges labelled by linear pairs:

Each linear pair has the same leaf traversal.

Labelling is ‘consistent’ at every node.

This is the simplest diagram over MacLane’s W satisfying

SubstpDnq “ D

Not just a decision procedure – we get a witness.
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Extending techniques ...

We can vary this algorithm, by re-using variable symbols:

¨ d //

px,yq

��

¨

e

��
f

��
¨

a

??

b //

h

''

¨ g // ¨

¨

py,xq

77

¨ d //

pz‹x,z‹yq

��

¨

e

��
py‹z,x‹zq

��
¨

a

??

b //

h

''

¨ g // ¨

¨

k

77

“Red edges are mutually inverse” “Red edges are of the form
1 ‹ γ and γ´1 ‹ 1”
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Is this an isolated incident?

Stepping back a bit ...

At one point, cryptographers became fascinated with structures
from the foundations of category theory ... was this a one-off?
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Some other places to look ...

Proposed use of Thompson’s group V

– the coherence isomorphisms for a symmetric tensor on a
monoid.

M. Fiore, M. Campos (2013)

Proposed use of poylcyclic monoids / groups.

– related to coherence isomorphisms for tensors
on monoids with projections / injections.

PMH MVL (1998,1999)

Shor’s quantum algorithm for factoring.

– related to Laplaza’s theory of coherence for distributivity
PMH (2013)

Other proposed algebraic structures (!)

–T.B.C.
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