Dagger category theory: monads and limits

Martti Karvonen (joint work with Chris Heunen)

THE UNIVERSITY of EDINBURGH

November 30, 2016
Structure of the talk

1. Brief intro

2. Dagger monads

3. Dagger limits

4. The question of evil
Introduction

- Dagger category is a category equipped with a dagger: a functorial way of reversing the direction of arrows:

\[
\begin{align*}
& A \xrightarrow{f = f^{\dagger\dagger}} B \\
& B \xrightarrow{f^{\dagger}} A
\end{align*}
\]

- Any groupoid G has a dagger given by $f^{\dagger} := f^{-1}$

- The category Rel of sets and relations.

- The category FHilb of finite-dimensional Hilbert spaces and linear maps.

- The category Prob having finite sets as objects, doubly stochastic matrices as maps.
The way of the dagger

- Dagger isomorphism, henceforward a unitary, is an isomorphism f such that $f^{-1} = f^\dagger$.

- A dagger projection is an endomorphism p satisfying $p = p^2 = p^\dagger$.

- A dagger functor satisfies $F(f^\dagger) = (Ff)^\dagger$.

- Note: no need to define “dagger natural transformation”: if F, G are dagger functors and $\sigma : F \rightarrow G$, then $\sigma^\dagger : G \rightarrow F$.

- monoidal dagger categories, compact dagger categories...
Three questions

- But what are dagger monads?
- Or dagger limits?
- If this is not trivially trivial, why not?
Two tentative answers

- Dagger categories are EVIL

- **DagCat**, the category of dagger categories, dagger functors and natural transformations is not just a 2-category, it is a *dagger 2-category*.

- I.e. 2-cells have a dagger, so one should require unitary 2-cells etc.

- A vague but handy principle: If the statement P implies Q for categories, then $P^\dagger+$ (maybe some equations) implies $Q^\dagger+$ (maybe some equations) for dagger categories.
Dagger monads

- Wish: dagger monads should be to dagger adjunctions as monads are to adjunctions (say this, but have a pic instead)

- A dagger adjunction is an adjunction in \textbf{DagCat}. Note that there is no distinction between left and right.

- The underlying endofunctor of a dagger monad should at least be a dagger functor. But then it induces a comonad.

- Maybe the monad and the comonad should be required to interact in the right way?
Dagger monads

We argue that the right way is given by the Frobenius law

\[\mu_T \circ T \mu^\dagger = T \mu \circ \mu^\dagger T. \]

Example: \(- \otimes M\) for a dagger Frobenius algebra.

Lemma

Dagger adjunctions induce dagger Frobenius monads

Lemma

\[
\begin{array}{c}
(A \xrightarrow{f} T(B)) \mapsto (B \xrightarrow{\eta} T(B) \xrightarrow{\mu^\dagger} T^2(B) \xrightarrow{T(f^\dagger)} T(A))
\end{array}
\]

is a dagger on \(\text{Kl}(T)\) commuting with the functors \(\mathbf{C} \to \text{Kl}(T)\) and \(\text{Kl}(T) \to \mathbf{C}\)
Dagger monads

Definition
Let T be a monad on a dagger category \mathbf{C}. A Frobenius-Eilenberg-Moore algebra, or FEM-algebra for short, is an Eilenberg-Moore algebra $a: T(A) \rightarrow A$ that makes the following diagram commute.

\[
\begin{array}{ccc}
T(A) & \xrightarrow{T(a)^\dagger} & T^2(A) \\
\mu^\dagger \downarrow & & \downarrow \mu \\
T^2(A) & \xrightarrow{T(a)} & T(A)
\end{array}
\]

Denote the category of FEM-algebras (A, a) and algebra homomorphisms by $\text{FEM}(T)$.
Dagger monads

For $T = - \otimes M$ this becomes

\[(1) \]

\[\begin{align*}
\text{Theorem} \\
FEM\text{-algebras form the largest full subcategory of } C^T \text{ containing } C_T \text{ that carries a dagger commuting with the forgetful functor } C^T \to C. \\
\text{There are EM-algebras that are not FEM.}
\end{align*}\]
Dagger monads

Theorem
Let F and G be dagger adjoints, and write $T = G \circ F$ for the induced dagger Frobenius monad. There are unique dagger functors K and J making the following diagram commute.

Moreover, J is full, K is full and faithful, and $J \circ K$ is the canonical inclusion.
On the proof

Lemma

Let T be a dagger Frobenius monad. An EM-algebra (A, a) is FEM if and only if a^\dagger is a homomorphism $(A, a) \to (TA, \mu_A)$.

Proof.
Everything else is easy, just need to prove that J lands us in $\text{FEM}(T)$. Let (A, a) be in the image. Since $J \circ K$ equals the canonical inclusion and (A, a) is associative, the homomorphism $a: (TA, \mu_A) \to (A, a)$ is in the image as well. Hence it’s dagger is in the image too, so by the lemma (A, a) is Frobenius. \qed
What are dagger limits?

Desiderata:

▶ Unique up to unique \textit{unitary}

▶ Defined canonically for arbitrary diagrams

▶ Definition shouldn’t depend on additional structure (e.g. enrichment)

▶ Generalizes dagger biproducts and dagger equalizers

▶ Connections to dagger adjunctions and dagger Kan extensions
Unique up to unitary

Let \((L, l_A)\) and \((M, m_A)\) be two limits of the same diagram, and let \(f : L \to M\) to be the unique isomorphism of limits. Then \(f^{-1}\) is an iso of limits \(f : M \to L\) and \(f^\dagger\) is an iso of colimits. \((M, m_A^\dagger) \to (L, l_A^\dagger)\). Thus \(f\) is unitary iff it is simultaneously a map of limits and a map of colimits.

Lemma

Two limits are unitarily isomorphic iff the diagram

\[
\begin{array}{ccc}
A & \longrightarrow & L \\
\downarrow & & \downarrow \\
M & \longrightarrow & B
\end{array}
\]

commutes for all \(A, B\)

So finding the right notion of a limit is a matter of fixing the maps \(A \to L \to B\).
Dagger-shaped limits

This is easy in the special case when the diagram is a dagger functor:

Definition

Let C be a dagger category with zero morphisms. Let J be a small dagger category and $D: J \to C$ be a dagger functor. Then the *dagger limit* of D is a limit $(L, \{l_A\}_{A \in J})$ (in the ordinary sense) of diagram $D: J \to (C, \dagger)$ such that

(i) For each $A \in J$ the map $l_A \circ l_A^\dagger$ is a dagger projection.

(ii) $l_B \circ l_A = 0$ whenever there are no maps $A \to B$ in J.

This definition is unique up to unitary.

Theorem

Let C and J be dagger categories. C has all J-shaped limits iff the diagonal functor $\Delta: C \to [J, C]$ has a dagger adjoint L such that $\epsilon \circ \epsilon^\dagger$ is idempotent, where $\epsilon: \Delta \circ L \to \text{id}$ is the counit.
What about the general case?

- Admittedly, one wants limits that aren’t dagger-shaped as well.

- But what would this mean for loops? Consider e.g.

\[
\begin{array}{c}
C \\ \downarrow^{1/4} \\
C \\
\end{array} & \xrightarrow{2} & \begin{array}{c}
C \\
\downarrow^{2} \\
C \\
\end{array}
\]

- Or infinite chains?

\[
\begin{array}{c}
\cdots \\ \xrightarrow{2} \\
C \\
\xrightarrow{2} \\
C \\
\xrightarrow{2} \\
C \\
\xrightarrow{2} \\
\cdots
\end{array}
\]
Dagger categories are EVIL...

▶ Yes: Consider the forgetful functor $\text{FHilb} \to \text{FVect}$. There is no dagger on FVect that is respected by it.

▶ Proof: Equip a vector space V with two different inner products, and consider the map $v \mapsto v$. It is not unitary in FHilb, but it maps to identity in FVect

▶ But maybe there are some qualifications to such evil behavior...
... but they ain’t all that bad

Definition
A dagger equivalence is an equivalence \((F, G, \epsilon, \eta)\) in \textbf{DagCat} such that \(\epsilon\) and \(\eta\) are unitary.

Now, if \((\mathcal{C}, \dagger)\) is a dagger category and \(F: \mathcal{C} \leftrightarrow \mathcal{D}: G\) is an equivalence in \textbf{Cat}, with \(\eta: \text{id}_\mathcal{C} \to GF\) and \(\epsilon: FG \to \text{id}_\mathcal{D}\), when does \((F, G, \epsilon, \eta)\) lift to a dagger equivalence? Obviously it is necessary that \(\eta\) and \(G\epsilon\) are unitary.

Theorem
This is sufficient.

Theorem
As long there is a unitary isomorphism \(GFA \to A\) for each \(A\), one can always replace \(F\) and \(G\) with isomorphic functors and lift that to a dagger equivalence.
Conclusion

▶ **DagCat** is not just a 2-category and thus dagger category theory is nontrivial.

▶ Dagger monads are those that satisfy the Frobenius law.

▶ A nice theory of dagger-shaped limits, although the general case is still in the works

▶ Restrictions on how evil dagger categories are