What is a quantum symmetry?

Ulrich Krähmer & Angela Tabiri

U Glasgow ~ TU Dresden

CLAP 30/11/2016
Road map

- Classical maths: symmetries = actions of groups

Main message today: Classical objects can have interesting quantum symmetries

More specifically: Many (maybe all) singular plane curves are quantum homogeneous spaces
Road map

- Classical maths: symmetries = actions of groups
- Quantum maths: actions of Hopf algebras (or even Hopf algebroids, Hopf monads...)

Main message today: Classical objects can have interesting quantum symmetries

More specifically: Many (maybe all) singular plane curves are quantum homogeneous spaces
Road map

- Classical maths: symmetries = actions of groups
- Quantum maths: actions of Hopf algebras (or even Hopf algebroids, Hopf monads...)
- Main message today: Classical objects can have interesting quantum symmetries
Road map

- Classical maths: symmetries = actions of groups
- Quantum maths: actions of Hopf algebras (or even Hopf algebroids, Hopf monads...)
- Main message today: Classical objects can have interesting quantum symmetries
- More specifically: Many (maybe all) singular plane curves are quantum homogeneous spaces
Part I: Quantum groups (Hopf algebras)
Algebras (aka monoids)

Definition

An **algebra** in a monoidal category \mathcal{C} is an object G with morphisms $\mu : G \otimes G \to G$, and $\eta : \mathbb{I} \to G$ such that

\[
\begin{array}{c}
G \otimes G \otimes G \\
\downarrow \text{id} \otimes \mu \\
G \otimes G \\
\downarrow \mu \\
G
\end{array}
\]

and

\[
\begin{array}{c}
\mathbb{I} \otimes G \\
\sim \\
G \\
\sim \\
G \otimes \mathbb{I}
\end{array}
\]

commute.
Examples

- **Logic:** $\mathcal{C} = \textbf{Set}$, $\otimes = \times$, $\mathbb{I} = \{\emptyset\}$, algebras = monoids, i.e. semigroups G with a unit element e_G

- **Physics:** $\mathcal{C} = \textbf{Vect}_k$ (k some field), $\otimes = \otimes_k$, $\mathbb{I} = k$, algebras = unital associative k-algebras

- **Categories:** $\mathcal{C} = \textbf{End}_\mathcal{D}$ (\mathcal{D} some category), $\otimes = \circ$, $\mathbb{I} = \text{id}$, algebras = monads on \mathcal{D}

- The last example is sort of universal if we identify an algebra G in \mathcal{C} with the monad $G \otimes -$ on \mathcal{C}
Definition

A _module_ over a monad T on \mathcal{D} is an object M in \mathcal{D} with an action $\alpha : T(M) \to M$ of T,

\[
\begin{array}{ccc}
T(T(M)) & \xrightarrow{T(\alpha)} & T(M) \\
\mu(id) & \downarrow & \downarrow \alpha \\
T(M) & \xrightarrow{\alpha} & M
\end{array}
\quad
\begin{array}{ccc}
M & \xrightarrow{\eta(id)} & T(M) \\
\text{id} & \downarrow \downarrow \alpha \\
M & \xrightarrow{\alpha} & M
\end{array}
\]

- $\mathcal{D} = \textbf{Set}$, $T = G \times -$, G monoid: T-modules are G-sets X, $\alpha : G \times X \to X$, $(g, x) \mapsto gx$ satisfies
 \[
g(hx) = (gh)x, \quad e_Gx = x, \quad \forall g, h \in G, x \in X.
\]
Hopf algebras

- Co(al)gebras in $\mathcal{C} = \text{algebras in } \mathcal{C}^\circ$,
 \[
 \Delta : G \rightarrow G \otimes G, \quad \varepsilon : G \rightarrow \mathbb{I}.
 \]

- In $\mathcal{C} = \text{Set}$, $\Delta : G \rightarrow G \times G$ must be $g \mapsto (g, g)$, in $\mathcal{C} = \text{Vect}_k$ things are more flexible (linear duality!)

- Definition
 A Hopf algebra is a coalgebra in $\text{Alg } \mathcal{C}$ for which
 \[
 \Gamma : G \otimes G \Delta \otimes \text{id} \rightarrow G \otimes G \otimes G \text{id} \otimes \mu \rightarrow G \otimes G
 \]
 is an isomorphism (this is called the Galois map).

What is a quantum symmetry?
Hopf algebras

- Co(al)gebras in $\mathcal{C} = \text{algebras in } \mathcal{C}^\circ$:
 $$\Delta : G \rightarrow G \otimes G, \quad \varepsilon : G \rightarrow \mathbb{1}.$$

- In $\mathcal{C} = \text{Set}$, $\Delta : G \rightarrow G \times G$ must be $g \mapsto (g, g)$, in $\mathcal{C} = \text{Vect}_k$ things are more flexible (linear duality!)

- Braidings $\chi : G \otimes G \rightarrow G \otimes G$ (e.g. the flip for Set and Vect_k) turn $\text{Alg}_\mathcal{C}$ into a monoidal category.

Definition

A **Hopf algebra** is a coalgebra in $\text{Alg}_\mathcal{C}$ for which

$$\Gamma : G \otimes G \xrightarrow{\Delta \otimes \text{id}} G \otimes G \otimes G \xrightarrow{\text{id} \otimes \mu} G \otimes G$$

is an isomorphism (this is called the **Galois map**).
An algebra in \textbf{Set} is a semigroup with unit element,

$$\mu : G \times G \to G, \quad (g, h) \mapsto gh, \quad f(gh) = (fg)h,$$

$$\eta : \{\emptyset\} \to G, \quad e_G g = ge_G = g, \quad e_G := \eta(\emptyset).$$
An algebra in \textbf{Set} is a semigroup with unit element,

$$\mu : G \times G \to G, \quad (g, h) \mapsto gh, \quad f(gh) = (fg)h,$$

$$\eta : \{\emptyset\} \to G, \quad e_Gg = ge_G = g, \quad e_G := \eta(\emptyset).$$

Every set G is a coalgebra in a unique way,

$$\Delta : G \to G \times G, \quad g \mapsto (g, g), \quad \varepsilon : G \to \{\emptyset\}.$$

This turns an algebra into a coalgebra in $\textbf{Alg}_{\textbf{Set}}$ with respect to the braiding $\chi(g, h) = (h, g),

$$\Delta(gh) = (gh, gh) = (g, g)(h, h) = \Delta(g)\Delta(h).$$
An algebra in \(\textbf{Set} \) is a semigroup with unit element,
\[
\mu : G \times G \to G, \quad (g, h) \mapsto gh, \quad f(gh) = (fg)h,
\]
\[
\eta : \{\emptyset\} \to G, \quad e_G g = ge_G = g, \quad e_G := \eta(\emptyset).
\]

Every set \(G \) is a coalgebra in a unique way,
\[
\Delta : G \to G \times G, \quad g \mapsto (g, g), \quad \varepsilon : G \to \{\emptyset\}.
\]

This turns an algebra into a coalgebra in \(\textbf{Alg}_{\textbf{Set}} \)
with respect to the braiding \(\chi(g, h) = (h, g) \),
\[
\Delta(gh) = (gh, gh) = (g, g)(h, h) = \Delta(g)\Delta(h).
\]

The Galois map is \(\Gamma(g, h) = (g, gh) \), so a Hopf
algebra is a group, with \(\Gamma^{-1}(g, h) = (g, g^{-1}h) \).
Part II: Quantum homogeneous spaces
Homogeneous spaces

Definition

A **homogeneous space** of a group G is a set X with a transitive action $G \times X \to X$, $(g, x) \mapsto gx$. Fixing $x \in X$ defines a G-equivariant surjective map $\pi: G \to X$, $g \mapsto gx$ and identifies X with the G-set $G/H := \{gH | g \in G\} \subset \mathcal{P}(G)$ of all cosets $gH = \{gh | h \in H\}$ of the isotropy group $H := \{g \in G | gx = x\}$.
Homogeneous spaces

Definition

A **homogeneous space** of a group G is a set X with a transitive action $G \times X \to X$, $(g, x) \mapsto gx$.

Fixing $x \in X$ defines a G-equivariant surjective map

$$\pi : G \to X, \quad g \mapsto gx$$

and identifies X with the G-set

$$G/H := \{gH \mid g \in G\} \subset \mathcal{P}(G)$$

of all cosets $gH = \{gh \mid h \in H\}$ of the **isotropy group**

$$H := \{g \in G \mid gx = x\}.$$
Affine schemes over k

We can give X more structure and lift \textbf{Set} by any category in which groups, actions, and surjective morphisms $G \to X$ make sense, e.g.
We can give X more structure and lift Set by any category in which groups, actions, and surjective morphisms $G \to X$ make sense, e.g.

- $\text{Sch}_k := \text{CommAlg}_k^\circ$: an affine scheme over k is a commutative k-algebra, morphisms $A \to B$ of affine schemes are k-algebra homomorphisms $B \to A$.
- The set underlying a scheme is $X = \text{Hom}_{\text{Sch}_k}(k, B)$.

Uli (U Glasgow)

What is a quantum symmetry?

CLAP 30/11/2016
Hilbert’s Nullstellensatz

- Historical motivation: If \(k = \mathbb{C} \) and \(A \) is finitely generated and reduced (no nilpotents), then

\[
A \cong \mathcal{O}(X)
\]

for some algebraic set

\[
X = \{ x \in k^n \mid f_1(x) = \ldots f_d(x) = 0 \}
\]

given by \(f_1, \ldots, f_d \in k[t_1, \ldots, t_n] \), where \(\mathcal{O}(X) \) is the \textbf{coordinate ring} of \(X \), i.e. the set of all polynomial functions \(X \to k \).
Hilbert’s Nullstellensatz

- Historical motivation: If $k = \mathbb{C}$ and A is finitely generated and reduced (no nilpotents), then

$$A \cong \mathcal{O}(X)$$

for some algebraic set

$$X = \{ x \in k^n \mid f_1(x) = \ldots f_d(x) = 0 \}$$

given by $f_1, \ldots, f_d \in k[t_1, \ldots, t_n]$, where $\mathcal{O}(X)$ is the coordinate ring of X, i.e. the set of all polynomial functions $X \to k$. Also,

$$X \cong \text{Hom}_{\text{Sch}_k}(k, A) \cong \text{MaxSpec}(A).$$
Affine group schemes

- \textbf{Sch}_k has a good notion of “\times” to make sense of groups and actions, namely $A \otimes_k B$.

- Commutative Hopf algebras A are affine group schemes $\Rightarrow A$-comodule algebras B associated with affine schemes that carry an action of an affine group scheme.

- $G = \text{Hom}_{\text{Sch}_k}(k, A)$ is a group that acts on $X = \text{Hom}_{\text{Sch}_k}(k, B)$ via convolution $\phi^* \psi := \mu_k \circ (\phi \otimes \psi) \circ \rho$, where $\mu_k : k \otimes k \rightarrow k$ is the multiplication map and $\rho : B \rightarrow A \otimes_k B$ is the coaction.

- What is a quantum symmetry?
Affine group schemes

- Sch_k has a good notion of “\times” to make sense of groups and actions, namely $A \otimes_k B$.
- \Rightarrow comm. Hopf algebras $A = \text{affine group schemes}$
- $\Rightarrow A$-comodule algebras $B = \text{affine schemes with an action of an affine group scheme}$.
Affine group schemes

- \(\text{Sch}_k \) has a good notion of “\(\times \)” to make sense of groups and actions, namely \(A \otimes_k B \).
- \(\hookrightarrow \) comm. Hopf algebras \(A = \) affine group schemes
- \(\hookrightarrow A \)-comodule algebras \(B = \) affine schemes with an action of an affine group scheme.
- \(G = \text{Hom}_{\text{Sch}_k}(k, A) \) is a group that acts on \(X = \text{Hom}_{\text{Sch}_k}(k, B) \) via convolution

\[
\varphi \ast \psi := \mu_k \circ (\varphi \otimes \psi) \circ \rho,
\]

where \(\mu_k : k \otimes_k k \to k \) is the multiplication map and \(\rho : B \to A \otimes_k B \) is the coaction.
Faithful flatness

- Sch_k also has a good notion of “surjective map”, namely a **faithfully flat** algebra embedding $B \to A$.

This means: a chain complex $L \to M \to N$ of B-modules is exact iff so is the induced complex $A \otimes B L \to A \otimes B M \to A \otimes B N$ of A-modules.

What is a quantum symmetry?

Faithful flatness

- \(\text{Sch}_k \) also has a good notion of “surjective map”, namely a **faithfully flat** algebra embedding \(B \to A \).
- This means: a chain complex

\[
L \to M \to N
\]

of \(B \)-modules is exact iff so is the induced complex

\[
A \otimes_B L \to A \otimes_B M \to A \otimes_B N
\]

of \(A \)-modules.
Motivation

In particular: if \(I \subset B \) is a proper ideal, then \(AI \cong A \otimes_B I \) is an ideal in \(A \cong A \otimes_B B \), and since

\[
I \to B \to 0
\]

is not exact (as \(B/I \neq 0 \)), faithful flatness implies

\[
AI \to A \to 0
\]

is not exact, so \(AI \) is a proper ideal.
Motivation

- In particular: if \(I \subset B \) is a proper ideal, then \(AI \cong A \otimes_B I \) is an ideal in \(A \cong A \otimes_B B \), and since

\[
I \rightarrow B \rightarrow 0
\]

is not exact (as \(B/I \neq 0 \)), faithful flatness implies

\[
AI \rightarrow A \rightarrow 0
\]

is not exact, so \(AI \) is a proper ideal.

- \(\rightsquigarrow \) a faithfully flat ring map \(B \rightarrow A \) induces a surjection \(\text{MaxSpec}(A) \rightarrow \text{MaxSpec}(B) \).
Homogeneous spaces

- Summing up, this leads to:

Definition

A **homogeneous space** of an affine group scheme A is a left coideal subalgebra $B \subset A$, $\Delta(B) \subset A \otimes_k B$, for which A is faithfully flat as a B-module.

- **Quantum groups** and **quantum homogeneous spaces**: allow A and B to be noncommutative.
- Main examples obtained by deformation quantisation of Poisson homogeneous spaces.
Question

Which affine schemes are quantum homogeneous spaces?

Observation

The cusp $X \subset \mathbb{k}^2$ given by $y^2 = x^3$ and the nodal cubic $Y \subset \mathbb{k}^2$ given by $y^2 = x^2 + x^3$ both are!

Interesting, as "homogenous" means all points look alike, but these curves are singular so they are definitely not homogeneous; an algebraic set over $\mathbb{k} = \mathbb{R}$ which is a homogeneous space must be smooth (a manifold).
Question

Which affine schemes are quantum homogeneous spaces?

Observation

The cusp $X \subset k^2$ given by $y^2 = x^3$ and the nodal cubic $Y \subset k^2$ given by $y^2 = x^2 + x^3$ both are!

Interesting, as “homogenous” means all points look alike, but these curves are singular so they are definitely not homogeneous; an algebraic set over $k = \mathbb{R}$ which is a homogeneous space must be smooth (a manifold).
The cusp

- Fix a field k and $q \in k$ with $q^3 = 1$. Then the algebra A with generators x, y, a, a^{-1} and relations

$$ay = -ya, \ ax = qx a, \ a^6 = 1, \ xy = yx, \ y^2 = x^3$$

is a Hopf algebra with

$$\Delta(y) = 1 \otimes y + y \otimes a^3, \quad \Delta(x) = 1 \otimes x + x \otimes a^2,$$

$$\Delta(a) = a \otimes a, \quad \varepsilon(x) = \varepsilon(y) = 0, \quad \varepsilon(a) = 1,$$

$$S(y) = -ya^{-3}, \quad S(x) = -xa^{-2}, \quad S(a) = a^{-1}.$$

- The subalgebra generated by x, y is the algebra of polynomial functions on the cusp and is a quantum homogeneous space.
Similarly, fix \((p, q) \in k^2\) such that \(p^2 = q^2 + q^3\) and define the algebra \(A\) with generators \(a, b, x, y, a^{-1}, b^{-1}\) and relations

\[
\begin{align*}
 aa^{-1} &= a^{-1}a = bb^{-1} = b^{-1}b = 1, \\
 y^2 &= x^2 + x^3, \\
 ba &= ab, \\
 ya &= ay, \\
 bx &= xb, \\
 yx &= xy, \\
 a^2x &= -xa^2 - axa - a^2 + (1 + 3q)a^3, \\
 ax^2 &= -ax - xa - x^2a - xax + (2 + 3q)qa^3, \\
 a^3 &= b^2, \\
 by + yb &= 2pb^2.
\end{align*}
\]
This is a Hopf algebra with

\[\Delta(x) = 1 \otimes (x - qa) + x \otimes a, \]
\[\Delta(y) = 1 \otimes (y - pb) + y \otimes b, \]
\[\Delta(a) = a \otimes a, \quad \Delta(b) = b \otimes b, \]
\[\varepsilon(x) = q, \quad \varepsilon(y) = p, \quad \varepsilon(a) = \varepsilon(b) = 1, \]
\[S(x) = q - (x - q) a^{-1}, \quad S(y) = p - (y - p) b^{-1}, \]
\[S(a) = a^{-1}, \quad S(b) = b^{-1} \]

and the subalgebra generated by \(x, y \) embeds the coordinate ring of the nodal cubic as a quantum homogeneous space.
Wild guessing and hard labour in particular by Angela, but observe that

\[X = x - q, \quad Y = y - p \]

are twisted primitive,

\[\Delta(X) = 1 \otimes X + X \otimes a, \quad \Delta(Y) = 1 \otimes Y + Y \otimes b \]

and satisfy the defining relation of the curve again,

\[Y^2 = X^2 + X^3. \]
References and outlook

- A. Masuoka, D. Wigner 1994 - background theory (with references to M. Takeuchi 1979)
- U.K, A. Tabiri 2016 - the plane curve story