What is a quantum symmetry?

Ulrich Krähmer & Angela Tabiri

U Glasgow \rightsquigarrow TU Dresden

CLAP 30/11/2016

Uli (U Glasgow)

What is a quantum symmetry?

CLAP 30/11/2016 1 / 20

• Classical maths: symmetries = actions of groups

A 🖓

- Classical maths: symmetries = actions of groups
- Quantum maths: actions of Hopf algebras (or even Hopf algebroids, Hopf monads...)

- Classical maths: symmetries = actions of groups
- Quantum maths: actions of Hopf algebras (or even Hopf algebroids, Hopf monads...)
- Main message today: Classical objects can have interesting quantum symmetries

- Classical maths: symmetries = actions of groups
- Quantum maths: actions of Hopf algebras (or even Hopf algebroids, Hopf monads...)
- Main message today: Classical objects can have interesting quantum symmetries
- More specifically: Many (maybe all) singular plane curves are quantum homogeneous spaces

Part I: Quantum groups (Hopf algebras)

< 67 ▶

Algebras (aka monoids)

Definition

An **algebra** in a monoidal category C is an object G with morphisms $\mu : G \otimes G \to G$, and $\eta : \mathbb{I} \to G$ such that

commute.

Uli (U Glasgow)

- Logic: C = Set, ⊗ = ×, I = {∅}, algebras = monoids, i.e. semigroups G with a unit element e_G
- Physics: $C = \mathbf{Vect}_k$ (k some field), $\otimes = \otimes_k$, $\mathbb{I} = k$, algebras = unital associatve k-algebras
- Categories: $C = \text{End}_{\mathcal{D}} (\mathcal{D} \text{ some category}), \otimes = \circ,$ $\mathbb{I} = \mathrm{id}, \text{ algebras} = \text{monads on } \mathcal{D}$
- The last example is sort of universal if we identify an algebra G in C with the monad $G \otimes -$ on C

Modules (aka algebras) over a monad

Definition

A **module** over a monad T on \mathcal{D} is an object M in \mathcal{D} with an action $\alpha \colon T(M) \to M$ of T,

• $\mathcal{D} = \mathbf{Set}, \mathsf{T} = G \times -, G \text{ monoid: T-modules are}$ G-sets $X, \alpha : G \times X \to X, (g, x) \mapsto gx$ satisfies $g(hx) = (gh)x, e_G x = x, \forall g, h \in G, x \in X.$

Hopf algebras

• Co(al)gebras in C = algebras in C° ,

$$\Delta: G \to G \otimes G, \quad \varepsilon: G \to \mathbb{I}.$$

 In C = Set, Δ : G → G × G must be g → (g,g), in C = Vect_k things are more flexible (linear duality!)

Hopf algebras

• Co(al)gebras in \mathcal{C} = algebras in \mathcal{C}° ,

$$\Delta: G \to G \otimes G, \quad \varepsilon: G \to \mathbb{I}.$$

In C = Set, Δ : G → G × G must be g → (g,g), in C = Vect_k things are more flexible (linear duality!)
Braidings χ : G ⊗ G → G ⊗ G (e.g. the flip for Set and Vect_k) turn Alg_C into a monoidal category.

Definition

A **Hopf algebra** is a coalgebra in $Alg_{\mathcal{C}}$ for which

$$\mathsf{\Gamma} \colon \mathsf{G} \otimes \mathsf{G} \xrightarrow{\Delta \otimes \mathrm{id}} \mathsf{G} \otimes \mathsf{G} \otimes \mathsf{G} \xrightarrow{\mathrm{id} \otimes \mu} \mathsf{G} \otimes \mathsf{G}$$

is an isomorphism (this is called the Galois map).

$(\mathsf{Set}, imes, \{\emptyset\})$ in detail

• An algebra in **Set** is a semigroup with unit element,

$$\mu \colon G \times G \to G, \quad (g, h) \mapsto gh, \quad f(gh) = (fg)h,$$

 $\eta \colon \{\emptyset\} \to G, \quad e_G g = g e_G = g, \quad e_G := \eta(\emptyset).$

$(\mathsf{Set}, imes, \{\emptyset\})$ in detail

• An algebra in **Set** is a semigroup with unit element,

$$\mu \colon G \times G \to G, \quad (g,h) \mapsto gh, \quad f(gh) = (fg)h,$$

$$\eta \colon \{\emptyset\} \to G, \quad e_G g = g e_G = g, \quad e_G := \eta(\emptyset).$$

• Every set G is a coalgebra in a unique way,

$$\Delta\colon G o G imes G, \quad g \mapsto (g,g), \quad arepsilon \colon G o \{\emptyset\}.$$

• This turns an algebra into a coalgebra in Alg_{Set} with respect to the braiding $\chi(g, h) = (h, g)$,

$$\Delta(gh) = (gh, gh) = (g, g)(h, h) = \Delta(g)\Delta(h).$$

$(\mathsf{Set}, imes, \{ \emptyset \})$ in detail

• An algebra in **Set** is a semigroup with unit element,

$$\mu\colon G\times G \to G, \quad (g,h)\mapsto gh, \quad f(gh)=(fg)h,$$

$$\eta \colon \{\emptyset\} \to G, \quad e_G g = g e_G = g, \quad e_G := \eta(\emptyset).$$

• Every set G is a coalgebra in a unique way,

$$\Delta\colon {\sf G} o {\sf G} imes {\sf G}, \quad {\sf g} \mapsto ({\sf g}, {\sf g}), \quad arepsilon \colon {\sf G} o \{ \emptyset \}.$$

• This turns an algebra into a coalgebra in Alg_{Set} with respect to the braiding $\chi(g, h) = (h, g)$,

$$\Delta(gh) = (gh, gh) = (g, g)(h, h) = \Delta(g)\Delta(h).$$

• The Galois map is $\Gamma(g, h) = (g, gh)$, so a Hopf algebra is a group, with $\Gamma^{-1}(g, h) = (g, g^{-1}h)$.

Part II: Quantum homogeneous spaces

Homogeneous spaces

Definition

A homogeneous space of a group G is a set X with a transitive action $G \times X \to X$, $(g, x) \mapsto gx$.

Homogeneous spaces

Definition

A homogeneous space of a group G is a set X with a transitive action $G \times X \to X$, $(g, x) \mapsto gx$.

Fixing $x \in X$ defines a *G*-equivariant surjective map

$$\pi\colon G\to X, \quad g\mapsto gx$$

and identifies X with the G-set

$$G/H := \{gH \mid g \in G\} \subset \mathcal{P}(G)$$

of all cosets $gH = \{gh \mid h \in H\}$ of the **isotropy group**

$$H:=\{g\in G\mid gx=x\}.$$

• We can give X more structure and lift **Set** by any category in which groups, actions, and surjective morphisms $G \rightarrow X$ make sense, e.g.

- We can give X more structure and lift Set by any category in which groups, actions, and surjective morphisms G → X make sense, e.g.
- Sch_k := CommAlg[°]_k: an affine scheme over k is a commutative k-algebra, morphisms A → B of affine schemes are k-algebra homomorphisms B → A.
- The set underlying a scheme is $X = \operatorname{Hom}_{\operatorname{Sch}_k}(k, B)$.

Hilbert's Nullstellensatz

• Historical motivation: If $k = \mathbb{C}$ and A is finitely generated and reduced (no nilpotents), then

$$A\cong \mathcal{O}(X)$$

for some algebraic set

$$X = \{x \in k^n \mid f_1(x) = \dots f_d(x) = 0\}$$

given by $f_1, \ldots, f_d \in k[t_1, \ldots, t_n]$, where $\mathcal{O}(X)$ is the **coordinate ring** of X, i.e. the set of all polynomial functions $X \to k$.

Hilbert's Nullstellensatz

• Historical motivation: If $k = \mathbb{C}$ and A is finitely generated and reduced (no nilpotents), then

$$A\cong \mathcal{O}(X)$$

for some algebraic set

$$X = \{x \in k^n \mid f_1(x) = \dots f_d(x) = 0\}$$

given by $f_1, \ldots, f_d \in k[t_1, \ldots, t_n]$, where $\mathcal{O}(X)$ is the **coordinate ring** of X, i.e. the set of all polynomial functions $X \to k$. Also,

$$X \cong \operatorname{Hom}_{\operatorname{Sch}_k}(k, A) \cong \operatorname{MaxSpec}(A).$$

Affine group schemes

• Sch_k has a good notion of " \times " to make sense of groups and actions, namely $A \otimes_k B$.

Affine group schemes

- Sch_k has a good notion of "×" to make sense of groups and actions, namely A ⊗_k B.
- \rightsquigarrow comm. Hopf algebras A = affine group schemes
- → A-comodule algebras B = affine schemes with an action of an affine group scheme.

Affine group schemes

- Sch_k has a good notion of "×" to make sense of groups and actions, namely A ⊗_k B.
- \rightsquigarrow comm. Hopf algebras A = affine group schemes
- → A-comodule algebras B = affine schemes with an action of an affine group scheme.
- $G = \operatorname{Hom}_{\operatorname{Sch}_k}(k, A)$ is a group that acts on $X = \operatorname{Hom}_{\operatorname{Sch}_k}(k, B)$ via convolution

$$\varphi * \psi := \mu_k \circ (\varphi \otimes \psi) \circ \rho,$$

where $\mu_k \colon k \otimes_k k \to k$ is the multiplication map and

$$\rho\colon B\to A\otimes_k B$$

is the coaction.

• Sch_k also has a good notion of "surjective map", namely a faithfully flat algebra embedding $B \rightarrow A$.

- Sch_k also has a good notion of "surjective map", namely a faithfully flat algebra embedding B → A.
 This means a shain complex.
- This means: a chain complex

$$L \rightarrow M \rightarrow N$$

of *B*-modules is exact iff so is the induced complex

$$A \otimes_B L \to A \otimes_B M \to A \otimes_B N$$

of A-modules.

Motivation

• In particular: if $I \subset B$ is a proper ideal, then $AI \cong A \otimes_B I$ is an ideal in $A \cong A \otimes_B B$, and since

$$I \rightarrow B \rightarrow 0$$

is not exact (as $B/I \neq 0$), faithful flatness implies

$$AI \rightarrow A \rightarrow 0$$

is not exact, so AI is a proper ideal.

Motivation

• In particular: if $I \subset B$ is a proper ideal, then $AI \cong A \otimes_B I$ is an ideal in $A \cong A \otimes_B B$, and since

$$I \rightarrow B \rightarrow 0$$

is not exact (as $B/I \neq 0$), faithful flatness implies

$$AI \rightarrow A \rightarrow 0$$

is not exact, so AI is a proper ideal.

→ a faithfully flat ring map B → A induces a surjection MaxSpec(A) → MaxSpec(B).

• Summing up, this leads to:

Definition

A **homogeneous space** of an affine group scheme A is a left coideal subalgebra $B \subset A$, $\Delta(B) \subset A \otimes_k B$, for which A is faithfully flat as a B-module.

- Quantum groups and quantum homogeneous spaces: allow *A* and *B* to be noncommutative.
- Main examples obtained by deformation quantisation of Poisson homogeneous spaces.

Final slide despite the number

Question

Which affine schemes are quantum homogeneous spaces?

Final slide despite the number

Question

Which affine schemes are quantum homogeneous spaces?

Observation

The cusp $X \subset k^2$ given by $y^2 = x^3$ and the nodal cubic $Y \subset k^2$ given by $y^2 = x^2 + x^3$ both are!

Interesting, as "homogenous" means all points look alike, but these curves are **singular** so they are definitely not homogeneous; an algebraic set over $k = \mathbb{R}$ which is a homogeneous space must be smooth (a manifold).

The cusp

• Fix a field k and $q \in k$ with $q^3 = 1$. Then the algebra A with generators x, y, a, a^{-1} and relations

$$ay = -ya, \ ax = qxa, \ a^6 = 1, \ xy = yx, \ y^2 = x^3$$

is a Hopf algebra with

$$\begin{split} \Delta(y) &= 1 \otimes y + y \otimes a^3, \quad \Delta(x) = 1 \otimes x + x \otimes a^2, \\ \Delta(a) &= a \otimes a, \quad \varepsilon(x) = \varepsilon(y) = 0, \quad \varepsilon(a) = 1, \\ S(y) &= -ya^{-3}, \quad S(x) = -xa^{-2}, \quad S(a) = a^{-1}. \end{split}$$

• The subalgebra generated by *x*, *y* is the algebra of polynomial functions on the cusp and is a quantum homogeneous space.

Uli (U Glasgow)

The nodal cubic I

• Similarly, fix $(p,q) \in k^2$ such that $p^2 = q^2 + q^3$ and define the algebra A with generators $a, b, x, y, a^{-1}, b^{-1}$ and relations

$$\begin{aligned} aa^{-1} &= a^{-1}a = bb^{-1} = b^{-1}b = 1, & y^2 = x^2 + x^3, \\ ba &= ab, & ya = ay, & bx = xb, & yx = xy, \\ a^2x &= -xa^2 - axa - a^2 + (1+3q)a^3, \\ ax^2 &= -ax - xa - x^2a - xax + (2+3q)qa^3, \\ a^3 &= b^2, & by + yb = 2pb^2. \end{aligned}$$

The nodal cubic II

• This is a Hopf algebra with

$$\begin{array}{l} \Delta(x)=1\otimes(x-qa)+x\otimes a,\\ \Delta(y)=1\otimes(y-pb)+y\otimes b,\\ \Delta(a)=a\otimes a,\quad \Delta(b)=b\otimes b,\\ \varepsilon(x)=q,\quad \varepsilon(y)=p,\quad \varepsilon(a)=\varepsilon(b)=1,\\ S(x)=q-(x-q)\,a^{-1},\quad S(y)=p-(y-p)\,b^{-1},\\ \quad S(a)=a^{-1},\quad S(b)=b^{-1} \end{array}$$

and the subalgebra generated by x, y embeds the coordinate ring of the nodal cubic as a quantum homogeneous space.

Uli (U Glasgow)

Where do the relations come from?

• Wild guessing and hard labour in particular by Angela, but observe that

$$X = x - q, \qquad Y = y - p$$

are twisted primitive,

$$\Delta(X) = 1 \otimes X + X \otimes a, \quad \Delta(Y) = 1 \otimes Y + Y \otimes b$$

and satisfy the defining relation of the curve again,

$$Y^2 = X^2 + X^3.$$

References and outlook

- A. Masuoka, D. Wigner 1994 background theory (with references to M. Takeuchi 1979)
- U.K, A. Tabiri 2016 the plane curve story

