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1. Background

• J. Renault, A groupoid approach to C∗-
algebras, Lecture Notes in Mathematics,

793, Springer, 1980.

• J. Kellendonk, The local structure of tilings

and their integer group of coinvariants, Comm.

Math. Phys 187 (1997), 115–157.

The goal is to understand the connection be-

tween inverse semigroups and étale groupoids

and the rôle this connection plays in C∗-algebras

and beyond.
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2. Inverse semigroups

“Symmetry denotes that sort of con-

cordance of several parts by which they

integrate into a whole.” – Hermann Weyl

Symmetry is more than groups.

As groups are algebraic tools for studying sym-

metry, so inverse semigroups are tools for study-

ing partial symmetry.
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A semigroup S is said to be inverse if for each

a ∈ S there exists a unique element a−1 such

that a = aa−1a and a−1 = a−1aa−1.

Example: the symmetric inverse monoid

Let X be a set equipped with the discrete

topology. Denote by I(X) the set of all partial

bijections of X. This is an example of an in-

verse semigroup called the symmetric inverse

monoid.

Theorem [Vagner-Preston] Symmetric inverse

monoids are inverse, and every inverse semi-

group can be embedded in a symmetric inverse

monoid.

4



The natural partial order

Let S be an inverse semigroup. Define a ≤ b if

a = ba−1a.

Proposition The relation ≤ is a partial order

with respect to which S is a partially ordered

semigroup.

It is called the natural partial order.

Example In symmetric inverse monoids the

natural partial order is nothing other than the

restriction ordering on partial bijections.
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Let S be an inverse semigroup. Elements of
the form a−1a and aa−1 are idempotents. De-
note by E(S) the set of idempotents of S.

Remarks

1. E(S) is a commutative subsemigroup or
semilattice.

2. E(S) is an order ideal of S.

Observation Suppose that a, b ≤ c. Then
ab−1 ≤ cc−1 and a−1b ≤ c−1c. Thus a necessary
condition for a and b to have an upper bound
is that a−1b and ab−1 be idempotent.

Define a ∼ b if a−1b and ab−1 are idempotent.
This is the compatibility relation.

A non-empty subset is said to be compatible
if each pair of distinct elements in the set are
compatible.
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Example

The idempotents in I(X) are the identity func-

tions defined on the subsets of X. Denote

them by 1A, where A ⊆ X, called partial iden-

tities. Then

1A ≤ 1B ⇐⇒ A ⊆ B

and

1A1B = 1A∩B.

Thus the semilattice of idempotents on I(X)

is isomorphic to P(X).

Partial bijections f and g are compatible if and

only if f ∪ g is a partial bijection.
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• An inverse semigroup is said to have fi-

nite (resp. infinite) joins if each non-empty

finite (resp. arbitrary) compatible subset

has a join.

• An inverse monoid is said to be a pseu-

dogroup if it has infinite joins and multipli-

cation distributes over such joins.

• An inverse semigroup is said to be distribu-

tive if it has finite joins and multiplication

distributes over such joins.

• An inverse semigroup is said to be Boolean

if it is distributive and its semilattice of

idempotents is a (generalized) Boolean al-

gebra.
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Un petit peu d’histoire

Pseudogroups of transformations are pseudogroups

of partial homeomorphisms between the open

subsets of a topological space.

They play an important rôle in geometry. See

page 110 of Three-dimensional geometry and

topology by William P. Thurston.

They are the origin of inverse semigroup the-

ory.

Important in the work of Charles Ehresmann,

who was the first to apply category theory to

differential geometry.
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3. Groupoids

We view categories as 1-sorted structures: ev-

erything is an arrow. Objects are identified

with identity arrows.

A groupoid is a category in which every arrow

is invertible.

We regard groupoids as ‘groups with many

identities’.

Let G be a groupoid with set of identities Go.

A subset A ⊆ G is called a local bisection if

A−1A,AA−1 ⊆ Go.

Proposition The set of all local bisections of

a groupoid forms an inverse monoid.
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A topological groupoid is said to be étale if its

domain and range maps are local homeomor-

phisms.

Why étale? This is explained by the following

result.

Theorem [Resende] A topological groupoid is

étale if and only if its set of open subsets forms

a monoid under multiplication of subsets.

Etale groupoids therefore have a strong alge-

braic character.
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4. The main adjunction theorem

There are two basic constructions.

• Let G be an étale groupoid. Denote by

B(G) the set of all open local bisections of

G. Then B(G) is a pseudogroup.

• Let S be a pseudogroup. Denote by G(S)

the set of all completely prime filters of S.

Then G(S) is an étale groupoid. [This is

the ‘hard’ direction].

Denote by Inv a suitable category of pseu-

dogroups and by Etale a suitable category of

étale groupoids.

Theorem 1 The functor G : Invop → Etale is

right adjoint to the functor B : Etale→ Invop.
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5. Boolean inverse semigroups

A locally compact Boolean space is a locally

compact Hausdorff space with a basis of clopen

subsets.

A Boolean groupoid is an étale topological groupoid

whose space of identities is a locally compact

Boolean space.

If G is a Boolean groupoid denote by KB(G)

the set of all compact-open local bisections.

If S is a Boolean inverse monoid denote by

G(S) the set of ultrafilters of S.
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The following may be deduced from Theo-

rem 1.

Theorem 2

1. KB(G) is a Boolean inverse semigroup.

2. G(S) is a Boolean groupoid.

3. Boolean inverse semigroups are in duality

with Boolean groupoids.
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Connections . . .

• Universal algebra. Boolean inverse semi-
groups form a congruence-permutable va-
riety (Wehrung).

• Logic. MV-algebras.

• Etale groupoids.

• Groups of dynamical origin.

• Dynamical systems.

• Aperiodic tilings.

• Coarse structures.

• C∗-algebras of real rank zero.
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